1
|
Diensthuber RP, Hartmann FK, Kathmann D, Franz P, Tsiavaliaris G. Switch-2 determines Mg 2+ADP-release kinetics and fine-tunes the duty ratio of Dictyostelium class-1 myosins. Front Physiol 2024; 15:1393952. [PMID: 38887318 PMCID: PMC11181000 DOI: 10.3389/fphys.2024.1393952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/02/2024] [Indexed: 06/20/2024] Open
Abstract
Though myosins share a structurally conserved motor domain, single amino acid variations of active site elements, including the P-loop, switch-1 and switch-2, which act as nucleotide sensors, can substantially determine the kinetic signature of a myosin, i.e., to either perform fast movement or enable long-range transport and tension generation. Switch-2 essentially contributes to the ATP hydrolysis reaction and determines product release. With few exceptions, class-1 myosin harbor a tyrosine in the switch-2 consensus sequence DIYGFE, at a position where class-2 myosins and a selection of myosins from other classes have a substitution. Here, we addressed the role of the tyrosine in switch-2 of class-1 myosins as potential determinant of the duty ratio. We generated constitutively active motor domain constructs of two class-1 myosins from the social amoeba Dictyostelium discoideum, namely, Myo1E, a high duty ratio myosin and Myo1B, a low duty ratio myosin. In Myo1E we introduced mutation Y388F and in Myo1B mutation F387Y. The detailed functional characterization by steady-state and transient kinetic experiments, combined with in vitro motility and landing assays revealed an almost reciprocal relationship of a number of critical kinetic parameters and equilibrium constants between wild-type and mutants that dictate the lifetime of the strongly actin-attached states of myosin. The Y-to-F mutation increased the duty ratio of Moy1B by almost one order of magnitude, while the introduction of the phenylalanine in switch-2 of Myo1E transformed the myosin into a low duty ratio motor. These data together with structural considerations propose a role of switch-2 in fine-tuning ADP release through a mechanism, where the class-specific tyrosine together with surrounding residues contributes to the coordination of Mg2+ and ADP. Our results highlight the importance of conserved switch-2 residues in class-1 myosins for efficient chemo-mechanical coupling, revealing that switch-2 is important to adjust the duty ratio of the amoeboid class-1 myosins for performing movement, transport or gating functions.
Collapse
Affiliation(s)
| | | | | | | | - Georgios Tsiavaliaris
- Institute for Biophysical Chemistry, OE 4350, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Franz P, Ewert W, Preller M, Tsiavaliaris G. Unraveling a Force-Generating Allosteric Pathway of Actomyosin Communication Associated with ADP and P i Release. Int J Mol Sci 2020; 22:ijms22010104. [PMID: 33374308 PMCID: PMC7795666 DOI: 10.3390/ijms22010104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022] Open
Abstract
The actomyosin system generates mechanical work with the execution of the power stroke, an ATP-driven, two-step rotational swing of the myosin-neck that occurs post ATP hydrolysis during the transition from weakly to strongly actin-bound myosin states concomitant with Pi release and prior to ADP dissociation. The activating role of actin on product release and force generation is well documented; however, the communication paths associated with weak-to-strong transitions are poorly characterized. With the aid of mutant analyses based on kinetic investigations and simulations, we identified the W-helix as an important hub coupling the structural changes of switch elements during ATP hydrolysis to temporally controlled interactions with actin that are passed to the central transducer and converter. Disturbing the W-helix/transducer pathway increased actin-activated ATP turnover and reduced motor performance as a consequence of prolonged duration of the strongly actin-attached states. Actin-triggered Pi release was accelerated, while ADP release considerably decelerated, both limiting maximum ATPase, thus transforming myosin-2 into a high-duty-ratio motor. This kinetic signature of the mutant allowed us to define the fractional occupancies of intermediate states during the ATPase cycle providing evidence that myosin populates a cleft-closure state of strong actin interaction during the weak-to-strong transition with bound hydrolysis products before accomplishing the power stroke.
Collapse
Affiliation(s)
- Peter Franz
- Cellular Biophysics, Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany;
| | - Wiebke Ewert
- Structural Bioinformatics and Chemical Biology, Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany; (W.E.); (M.P.)
| | - Matthias Preller
- Structural Bioinformatics and Chemical Biology, Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany; (W.E.); (M.P.)
- Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, 53757 Sankt Augustin, Germany
| | - Georgios Tsiavaliaris
- Cellular Biophysics, Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany;
- Correspondence:
| |
Collapse
|
3
|
Abstract
( S)-Blebbistatin, a chiral tetrahydropyrroloquinolinone, is a widely used and well-characterized ATPase inhibitor selective for myosin II. The central role of myosin II in many normal and pathological biological processes has been revealed with the aid of this small molecule. The first part of this manuscript provides a summary of myosin II and ( S)-blebbistatin literature from a medicinal chemist's perspective. The second part of this perspective deals with the physicochemical deficiencies that trouble the use of ( S)-blebbistatin in advanced biological settings: low potency and solubility, fluorescence interference, (photo)toxicity, and stability issues. A large toolbox of analogues has been developed in which particular shortcomings have been addressed. This perspective provides a necessary overview of these developments and presents guidelines for selecting the best available analogue for a given application. As the unmet need for high-potency analogues remains, we also propose starting points for medicinal chemists in search of nanomolar myosin II inhibitors.
Collapse
|
4
|
Varol O, Yuret D, Erman B, Kabakçıoğlu A. Mode coupling points to functionally important residues in myosin II. Proteins 2014; 82:1777-86. [PMID: 24677138 DOI: 10.1002/prot.24531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/07/2014] [Accepted: 01/28/2014] [Indexed: 11/08/2022]
Abstract
Relevance of mode coupling to energy/information transfer during protein function, particularly in the context of allosteric interactions is widely accepted. However, existing evidence in favor of this hypothesis comes essentially from model systems. We here report a novel formal analysis of the near-native dynamics of myosin II, which allows us to explore the impact of the interaction between possibly non-Gaussian vibrational modes on fluctutational dynamics. We show that an information-theoretic measure based on mode coupling alone yields a ranking of residues with a statistically significant bias favoring the functionally critical locations identified by experiments on myosin II.
Collapse
Affiliation(s)
- Onur Varol
- Colleges of Engineering and Sciences, Koç University, Sarıyer, 34450, İstanbul, Turkey; School of Informatics and Computing, Indiana University, Bloomington, Indiana
| | | | | | | |
Collapse
|
5
|
Cochran JC, Thompson ME, Kull FJ. Metal switch-controlled myosin II from Dictyostelium discoideum supports closure of nucleotide pocket during ATP binding coupled to detachment from actin filaments. J Biol Chem 2013; 288:28312-23. [PMID: 23960071 DOI: 10.1074/jbc.m113.466045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G-proteins, kinesins, and myosins are hydrolases that utilize a common protein fold and divalent metal cofactor (typically Mg(2+)) to coordinate purine nucleotide hydrolysis. The nucleoside triphosphorylase activities of these enzymes are activated through allosteric communication between the nucleotide-binding site and the activator/effector/polymer interface to convert the free energy of nucleotide hydrolysis into molecular switching (G-proteins) or force generation (kinesins and myosin). We have investigated the ATPase mechanisms of wild-type and the S237C mutant of non-muscle myosin II motor from Dictyostelium discoideum. The S237C substitution occurs in the conserved metal-interacting switch-1, and we show that this substitution modulates the actomyosin interaction based on the divalent metal present in solution. Surprisingly, S237C shows rapid basal steady-state Mg(2+)- or Mn(2+)-ATPase kinetics, but upon binding actin, its MgATPase is inhibited. This actin inhibition is relieved by Mn(2+), providing a direct and experimentally reversible linkage of switch-1 and the actin-binding cleft through the swapping of divalent metals in the reaction. Using pyrenyl-labeled F-actin, we demonstrate that acto·S237C undergoes slow and weak MgATP binding, which limits the rate of steady-state catalysis. Mn(2+) rescues this effect to near wild-type activity. 2'(3')-O-(N-Methylanthraniloyl)-ADP release experiments show the need for switch-1 interaction with the metal cofactor for tight ADP binding. Our results are consistent with strong reciprocal coupling of nucleoside triphosphate and F-actin binding and provide additional evidence for the allosteric communication pathway between the nucleotide-binding site and the filament-binding region.
Collapse
Affiliation(s)
- Jared C Cochran
- From the Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
| | | | | |
Collapse
|
6
|
Switch II mutants reveal coupling between the nucleotide- and actin-binding regions in myosin V. Biophys J 2012; 102:2545-55. [PMID: 22713570 DOI: 10.1016/j.bpj.2012.04.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 04/11/2012] [Accepted: 04/17/2012] [Indexed: 11/21/2022] Open
Abstract
Conserved active-site elements in myosins and other P-loop NTPases play critical roles in nucleotide binding and hydrolysis; however, the mechanisms of allosteric communication among these mechanoenzymes remain unresolved. In this work we introduced the E442A mutation, which abrogates a salt-bridge between switch I and switch II, and the G440A mutation, which abolishes a main-chain hydrogen bond associated with the interaction of switch II with the γ phosphate of ATP, into myosin V. We used fluorescence resonance energy transfer between mant-labeled nucleotides or IAEDANS-labeled actin and FlAsH-labeled myosin V to examine the conformation of the nucleotide- and actin-binding regions, respectively. We demonstrate that in the absence of actin, both the G440A and E442A mutants bind ATP with similar affinity and result in only minor alterations in the conformation of the nucleotide-binding pocket (NBP). In the presence of ADP and actin, both switch II mutants disrupt the formation of a closed NBP actomyosin.ADP state. The G440A mutant also prevents ATP-induced opening of the actin-binding cleft. Our results indicate that the switch II region is critical for stabilizing the closed NBP conformation in the presence of actin, and is essential for communication between the active site and actin-binding region.
Collapse
|
7
|
Lin T, Greenberg MJ, Moore JR, Ostap EM. A hearing loss-associated myo1c mutation (R156W) decreases the myosin duty ratio and force sensitivity. Biochemistry 2011; 50:1831-8. [PMID: 21265502 PMCID: PMC3059334 DOI: 10.1021/bi1016777] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
myo1c is a member of the myosin superfamily that has been proposed to function as the adaptation motor in vestibular and auditory hair cells. A recent study identified a myo1c point mutation (R156W) in a person with bilateral sensorineural hearing loss. This mutated residue is located at the start of the highly conserved switch 1 region, which is a crucial element for the binding of nucleotide. We characterized the key steps on the ATPase pathway at 37 °C using recombinant wild-type (myo1c(3IQ)) and mutant myo1c (R156W-myo1c(3IQ)) constructs that consist of the motor domain and three IQ motifs. The R156W mutation only moderately affects the rates of ATP binding, ATP-induced actomyosin dissociation, and ADP release. The actin-activated ATPase rate of the mutant is inhibited >4-fold, which is likely due to a decrease in the rate of phosphate release. The rate of actin gliding, as measured by the in vitro motility assay, is unaffected by the mutation at high myosin surface densities, but the rate of actin gliding is substantially reduced at low surface densities of R156W-myo1c(3IQ). We used a frictional loading assay to measure the affect of resisting forces on the rate of actin gliding and found that R156W-myo1c(3IQ) is less force-sensitive than myo1c(3IQ). Taken together, these results indicate that myo1c with the R156W mutation has a lower duty ratio than the wild-type protein and motile properties that are less sensitive to resisting forces.
Collapse
Affiliation(s)
- Tianming Lin
- Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Michael J. Greenberg
- Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - Jeffrey R. Moore
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - E. Michael Ostap
- Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
8
|
Purcell TJ, Naber N, Franks-Skiba K, Dunn AR, Eldred CC, Berger CL, Málnási-Csizmadia A, Spudich JA, Swank DM, Pate E, Cooke R. Nucleotide pocket thermodynamics measured by EPR reveal how energy partitioning relates myosin speed to efficiency. J Mol Biol 2010; 407:79-91. [PMID: 21185304 DOI: 10.1016/j.jmb.2010.11.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 11/24/2010] [Accepted: 11/26/2010] [Indexed: 11/26/2022]
Abstract
We have used spin-labeled ADP to investigate the dynamics of the nucleotide-binding pocket in a series of myosins, which have a range of velocities. Electron paramagnetic resonance spectroscopy reveals that the pocket is in equilibrium between open and closed conformations. In the absence of actin, the closed conformation is favored. When myosin binds actin, the open conformation becomes more favored, facilitating nucleotide release. We found that faster myosins favor a more closed pocket in the actomyosin•ADP state, with smaller values of ΔH(0) and ΔS(0), even though these myosins release ADP at a faster rate. A model involving a partitioning of free energy between work-generating steps prior to rate-limiting ADP release explains both the unexpected correlation between velocity and opening of the pocket and the observation that fast myosins are less efficient than slow myosins.
Collapse
Affiliation(s)
- Thomas J Purcell
- Department of Biochemistry and Biophysics, UCSF MC 2240, Genentech Hall Room S416C, 600 16th Street, San Francisco, CA 94158-2517, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Myosin complexed with ADP and blebbistatin reversibly adopts a conformation resembling the start point of the working stroke. Proc Natl Acad Sci U S A 2010; 107:6799-804. [PMID: 20351242 DOI: 10.1073/pnas.0907585107] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The powerstroke of the myosin motor is the basis of cell division and bodily movement, but has eluded empirical description due to the short lifetime and low abundance of intermediates during force generation. To gain insight into this process, we used well-established single-tryptophan and pyrene fluorescent sensors and electron microscopy to characterize the structural and kinetic properties of myosin complexed with ADP and blebbistatin, a widely used inhibitor. We found that blebbistatin does not weaken the tight actin binding of myosin.ADP, but unexpectedly it induces lever priming, a process for which the gamma-phosphate of ATP (or its analog) had been thought necessary. The results indicate that a significant fraction of the myosin.ADP.blebbistatin complex populates a previously inaccessible conformation of myosin resembling the start of the powerstroke.
Collapse
|
10
|
Gyimesi M, Kintses B, Bodor A, Perczel A, Fischer S, Bagshaw CR, Málnási-Csizmadia A. The mechanism of the reverse recovery step, phosphate release, and actin activation of Dictyostelium myosin II. J Biol Chem 2008; 283:8153-63. [PMID: 18211892 DOI: 10.1074/jbc.m708863200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rate-limiting step of the myosin basal ATPase (i.e. in absence of actin) is assumed to be a post-hydrolysis swinging of the lever arm (reverse recovery step), that limits the subsequent rapid product release steps. However, direct experimental evidence for this assignment is lacking. To investigate the binding and the release of ADP and phosphate independently from the lever arm motion, two single tryptophan-containing motor domains of Dictyostelium myosin II were used. The single tryptophans of the W129+ and W501+ constructs are located at the entrance of the nucleotide binding pocket and near the lever arm, respectively. Kinetic experiments show that the rate-limiting step in the basal ATPase cycle is indeed the reverse recovery step, which is a slow equilibrium step (k(forward) = 0.05 s(-1), k(reverse) = 0.15 s(-1)) that precedes the phosphate release step. Actin directly activates the reverse recovery step, which becomes practically irreversible in the actin-bound form, triggering the power stroke. Even at low actin concentrations the power stroke occurs in the actin-attached states despite the low actin affinity of myosin in the pre-power stroke conformation.
Collapse
Affiliation(s)
- Máté Gyimesi
- Department of Biochemistry, Institute of Biology, Eötvös University, Pázmány Péter Sétány 1/A, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
11
|
Kintses B, Gyimesi M, Pearson DS, Geeves MA, Zeng W, Bagshaw CR, Málnási-Csizmadia A. Reversible movement of switch 1 loop of myosin determines actin interaction. EMBO J 2007; 26:265-74. [PMID: 17213877 PMCID: PMC1782383 DOI: 10.1038/sj.emboj.7601482] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 10/25/2006] [Indexed: 11/09/2022] Open
Abstract
The conserved switch 1 loop of P-loop NTPases is implicated as a central element that transmits information between the nucleotide-binding pocket and the binding site of the partner proteins. Recent structural studies have identified two states of switch 1 in G-proteins and myosin, but their role in the transduction mechanism has yet to be clarified. Single tryptophan residues were introduced into the switch 1 region of myosin II motor domain and studied by rapid reaction methods. We found that in the presence of MgADP, two states of switch 1 exist in dynamic equilibrium. Actin binding shifts the equilibrium towards one of the MgADP states, whereas ATP strongly favors the other. In the light of electron cryo-microscopic and X-ray crystallographic results, these findings lead to a specific structural model in which the equilibrium constant between the two states of switch 1 is coupled to the strength of the actin-myosin interaction. This has implications for the enzymatic mechanism of G-proteins and possibly P-loop NTPases in general.
Collapse
Affiliation(s)
- Bálint Kintses
- Department of Biochemistry, Eötvös Lorand University, Budapest, Hungary
| | - Máté Gyimesi
- Department of Biochemistry, Eötvös Lorand University, Budapest, Hungary
| | - David S Pearson
- Department of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Michael A Geeves
- Department of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Wei Zeng
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Clive R Bagshaw
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - András Málnási-Csizmadia
- Department of Biochemistry, Eötvös Lorand University, Budapest, Hungary
- Department of Biochemistry, Eötvös Lorand University, Budapest 1117, Hungary. Tel.: +36 1 381 2171; Fax: +36 1 381 2172; E-mail:
| |
Collapse
|
12
|
Naber N, Purcell TJ, Pate E, Cooke R. Dynamics of the nucleotide pocket of myosin measured by spin-labeled nucleotides. Biophys J 2006; 92:172-84. [PMID: 17028139 PMCID: PMC1697850 DOI: 10.1529/biophysj.106.090035] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have used electron paramagnetic probes attached to the ribose of ATP (SL-ATP) to monitor conformational changes in the nucleotide pocket of myosin. Spectra for analogs bound to myosin in the absence of actin showed a high degree of immobilization, indicating a closed nucleotide pocket. In the Actin.Myosin.SL-AMPPNP, Actin.Myosin.SL-ADP.BeF(3), and Actin.Myosin.SL-ADP.AlF(4) complexes, which mimic weakly binding states near the beginning of the power stroke, the nucleotide pocket remained closed. The spectra of the strongly bound Actin.Myosin.SL-ADP complex consisted of two components, one similar to the closed pocket and one with increased probe mobility, indicating a more open pocket, The temperature dependence of the spectra showed that the two conformations of the nucleotide pocket were in equilibrium, with the open conformation more favorable at higher temperatures. These results, which show that opening of the pocket occurs only in the strongly bound states, appear reasonable, as this would tend to keep ADP bound until the end of the power stroke. This conclusion also suggests that force is initially generated by a myosin with a closed nucleotide pocket.
Collapse
Affiliation(s)
- Nariman Naber
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA.
| | | | | | | |
Collapse
|
13
|
Zeng W, Seward HE, Málnási-Csizmadia A, Wakelin S, Woolley RJ, Cheema GS, Basran J, Patel TR, Rowe AJ, Bagshaw CR. Resonance Energy Transfer between Green Fluorescent Protein Variants: Complexities Revealed with Myosin Fusion Proteins. Biochemistry 2006; 45:10482-91. [PMID: 16939200 DOI: 10.1021/bi060943u] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Green fluorescent protein and its variants are frequently used as Förster (fluorescence) resonance energy transfer (FRET) pairs to determine the proximity of protein domains. We prepared fusion proteins comprising yellow fluorescent protein-Dictyostelium myosin II motor domain-cyan fluorescent protein (YFP-myosin-CFP) and compared their FRET properties with an existing construct (GFP-myosin-BFP), containing a green fluorescent protein acceptor and blue fluorescent protein donor [Suzuki, Y., Yasunaga, T., Ohkura, R., Wakabayashi, T. and Sutoh, K. (1998) Nature 396, 380-383]. The latter construct showed an apparent 40% reduction in acceptor fluorescence on ATP addition, when excited via the donor, compared with the YFP-myosin-CFP constructs which showed a small increase (<or=5%). We propose that this disparity primarily arises from the differential response of GFP and YFP on intramolecular association with the donor probe. Studies with isolated GFP and YFP at high concentrations show that they dimerize with similar K(d) values but the spectrum shifts toward the protonated state only with GFP. On excitation at 380 nm, the protonated GFPH emits at 510 nm via excited-state proton transfer, giving the appearance of extensive FRET. These findings have important implications for FRET measurements using GFP-type probes because they give rise to changes in donor and acceptor emission ratios through processes other than FRET and complicate the extraction of the true degree of energy transfer from experimental data. Furthermore, the unknown orientation factor prevents the distance of the lever arm swing from being derived from these FRET changes.
Collapse
Affiliation(s)
- Wei Zeng
- Department of Biochemistry, University of Leicester, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|