1
|
Maitusong B, Laguzzi F, Strawbridge RJ, Baldassarre D, Veglia F, Humphries SE, Savonen K, Kurl S, Pirro M, Smit AJ, Giral P, Silveira A, Tremoli E, Hamsten A, de Faire U, Gigante B, Leander K. Cross-Sectional Gene-Smoking Interaction Analysis in Relation to Subclinical Atherosclerosis-Results From the IMPROVE Study. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:236-247. [PMID: 37021583 PMCID: PMC10284137 DOI: 10.1161/circgen.122.003710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/29/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND Smoking is associated with carotid intima-media thickness (C-IMT). However, knowledge about how genetics may influence this association is limited. We aimed to perform nonhypothesis driven gene-smoking interaction analyses to identify potential genetic variants, among those included in immune and metabolic platforms, that may modify the effect of smoking on carotid intima-media thickness. METHODS We used baseline data from 1551 men and 1700 women, aged 55 to 79, included in a European multi-center study. Carotid intima-media thickness maximum, the maximum of values measured at different locations of the carotid tree, was dichotomized with cut point values ≥75, respectively. Genetic data were retrieved through use of the Illumina Cardio-Metabo- and Immuno- Chips. Gene-smoking interactions were evaluated through calculations of Synergy index (S). After adjustments for multiple testing, P values of <2.4×10-7 for S were considered significant. The models were adjusted for age, sex, education, physical activity, type of diet, and population stratification. RESULTS Our screening of 207 586 SNPs available for analysis, resulted in the identification of 47 significant gene-smoking synergistic interactions in relation to carotid intima-media thickness maximum. Among the significant SNPs, 28 were in protein coding genes, 2 in noncoding RNA and the remaining 17 in intergenic regions. CONCLUSIONS Through nonhypothesis-driven analyses of gene-smoking interactions, several significant results were observed. These may stimulate further research on the role of specific genes in the process that determines the effect of smoking habits on the development of carotid atherosclerosis.
Collapse
Affiliation(s)
- Buamina Maitusong
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China (B.M.)
| | - Federica Laguzzi
- Unit of Cardiovascular & Nutritional Epidemiology, Institute of Environmental Medicine (F.L., U.d.F., K.L.), Karolinska Institutet, Stockholm, Sweden
| | - Rona J. Strawbridge
- Cardiovascular Medicine Unit, Department of Medicine Solna (R.J.S., B.G.), Karolinska Institutet, Stockholm, Sweden
- Mental Health & Wellbeing, Institute of Mental Health & Wellbeing, University of Glasgow (R.J.S.)
- Health Data Research, United Kingdom (R.J.S.)
| | - Damiano Baldassarre
- Department of Medical Biotechnology & Translational Medicine, Università degli Studi di Milano (D.B.)
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (D.B., F.V., E.T.)
| | - Fabrizio Veglia
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (D.B., F.V., E.T.)
| | - Steve E. Humphries
- Cardiovascular Genetics, Institute Cardiovascular Science, University College London, United Kingdom (S.E.H.)
| | - Kai Savonen
- Foundation for Research in Health Exercise & Nutrition, Kuopio & Research Institute of Exercise Medicine, Kuopio, Finland (K.S.)
- Department of Clinical Physiology & Nuclear Medicine, Kuopio University Hospital (K.S.)
| | - Sudhir Kurl
- Institute of Public Health & Clinical Nutrition, University of Eastern Finland, Kuopio (S.K.)
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology & Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Italy (M.P.)
| | - Andries J. Smit
- Department of Medicine, University Medical Center Groningen, the Netherlands (A.J.S.)
| | - Philippe Giral
- Unités de Prévention Cardiovasculaire, Assistance Publique-Hôpitaux de Paris, Service Endocrinologie-Métabolisme, Groupe Hospitalier Pitié-Salpétrière, France (P.G.)
| | - Angela Silveira
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet & Karolinska Hospital, Stockholm, Sweden (A.S., A.H.)
| | - Elena Tremoli
- Centro Cardiologico Monzino, IRCCS, Milan, Italy (D.B., F.V., E.T.)
| | - Anders Hamsten
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet & Karolinska Hospital, Stockholm, Sweden (A.S., A.H.)
| | - Ulf de Faire
- Unit of Cardiovascular & Nutritional Epidemiology, Institute of Environmental Medicine (F.L., U.d.F., K.L.), Karolinska Institutet, Stockholm, Sweden
| | - Bruna Gigante
- Cardiovascular Medicine Unit, Department of Medicine Solna (R.J.S., B.G.), Karolinska Institutet, Stockholm, Sweden
| | - Karin Leander
- Unit of Cardiovascular & Nutritional Epidemiology, Institute of Environmental Medicine (F.L., U.d.F., K.L.), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Song W, Qiu N. MiR-495-3p depletion contributes to myocardial ischemia/reperfusion injury in cardiomyocytes by targeting TNC. Regen Ther 2022; 21:380-388. [PMID: 36161101 PMCID: PMC9478495 DOI: 10.1016/j.reth.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/08/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
Background Tenascin-C (TNC) has been found to abnormally express in myocardial ischemia/reperfusion injury (MI/RI), but its effect on cardiomyocytes apoptosis is unknown and is worthy of investigation. Methods H9C2 cells were given hypoxia/reoxygenation (H/R) treatment to obtain the replica of MI/RI in vitro. The effect of H/R on viability, apoptosis and inflammation was studied by CCK-8 assay, flow cytometry, mitochondrial membrane potential (MMP) and Ca2+ measurements as well as enzyme linked immunosorbent assay. We applied bioinformatics analysis and luciferase reporter assay to screened and validated TNC-targeting miR-495-3p which was then mechanistically investigated by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. With the assistance of cell transfection, rescue assays were conducted. Results H9C2 cells showed diminished viability, accelerated apoptosis, elevated tumour necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β), and TNC overexpression in response to H/R induction, while silencing of TNC partially reversed the effect of H/R treatment on the H9C2 cells. TNC silencing reduced Ca2+ level and enhanced MMP level in the H/R-stimulated cells. MiR-495-3p targeted TNC and showed a low expression in the H/R-stimulated cells. The expression of TNC was negatively regulated by miR-495-3p. Inhibition of miR-495-3p repressed viability and MMP level, and facilitated apoptosis and levels of Ca2+, TNF-α and IL-1β in the H/R-stimulated cells. The effect of TNC silencing and miR-495-3p depletion on H/R-induced cardiomyocyte injury was mutually reversed in vitro. Conclusion MiR-495-3p targeted TNC to regulate the apoptosis and inflammation of cardiomyocytes in H/R induction, which was associated with Ca2+ overload.
Collapse
Affiliation(s)
- Wei Song
- Department of Cardiology, Taizhou Central Hospital (Taizhou University Hospital), 999 Donghai Avenue, Jiaojiang District, Taizhou, Zhejiang Province, China
| | - Naiyan Qiu
- Department of Cardiology, The Fifth People's Hospital of Jinan, No. 24297 Jingshi Road, Huaiyin District, Jinan, Shandong Province, 250021, China
| |
Collapse
|
3
|
Sporkova A, Ghosh S, Al-Hasani J, Hecker M. Lin11-Isl1-Mec3 Domain Proteins as Mechanotransducers in Endothelial and Vascular Smooth Muscle Cells. Front Physiol 2021; 12:769321. [PMID: 34867475 PMCID: PMC8640458 DOI: 10.3389/fphys.2021.769321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
Arterial hypertension is the leading risk factor for cardiovascular morbidity and mortality worldwide. However, little is known about the cellular mechanisms underlying it. In small arteries and arterioles, a chronic increase in blood pressure raises wall tension and hence stretches, namely, the medial vascular smooth muscle cells (VSMC) but also endothelial cell (EC) to cell contacts. Initially compensated by an increase in vascular tone, the continuous biomechanical strain causes a prominent change in gene expression in both cell types, frequently driving an arterial inward remodeling process that ultimately results in a reduction in lumen diameter, stiffening of the vessel wall, and fixation of blood pressure, namely, diastolic blood pressure, at the elevated level. Sensing and propagation of this supraphysiological stretch into the nucleus of VSMC and EC therefore seems to be a crucial step in the initiation and advancement of hypertension-induced arterial remodeling. Focal adhesions (FA) represent an important interface between the extracellular matrix and Lin11-Isl1-Mec3 (LIM) domain-containing proteins, which can translocate from the FA into the nucleus where they affect gene expression. The varying biomechanical cues to which vascular cells are exposed can thus be rapidly and specifically propagated to the nucleus. Zyxin was the first protein described with such mechanotransducing properties. It comprises 3 C-terminal LIM domains, a leucine-rich nuclear export signal, and N-terminal features that support its association with the actin cytoskeleton. In the cytoplasm, zyxin promotes actin assembly and organization as well as cell motility. In EC, zyxin acts as a transcription factor, whereas in VSMC, it has a less direct effect on mechanosensitive gene expression. In terms of homology and structural features, lipoma preferred partner is the nearest relative of zyxin among the LIM domain proteins. It is almost exclusively expressed by smooth muscle cells in the adult, resides like zyxin at FA but seems to affect mechanosensitive gene expression indirectly, possibly via altering cortical actin dynamics. Here, we highlight what is currently known about the role of these LIM domain proteins in mechanosensing and transduction in vascular cells.
Collapse
Affiliation(s)
- Alexandra Sporkova
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Subhajit Ghosh
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Jaafar Al-Hasani
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site, Heidelberg/Mannheim, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site, Heidelberg/Mannheim, Germany
| |
Collapse
|
4
|
McGovern SP, Purfield DC, Ring SC, Carthy TR, Graham DA, Berry DP. Candidate genes associated with the heritable humoral response to Mycobacterium avium ssp. paratuberculosis in dairy cows have factors in common with gastrointestinal diseases in humans. J Dairy Sci 2019; 102:4249-4263. [PMID: 30852025 DOI: 10.3168/jds.2018-15906] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/20/2019] [Indexed: 01/09/2023]
Abstract
Infection of cattle with bovine paratuberculosis (i.e., Johne's disease) is caused by Mycobacterium avium ssp. paratuberculosis (MAP) and results in a chronic incurable gastroenteritis. This disease, which has economic ramifications for the cattle industry, is increasing in detected prevalence globally; subclinically infected animals can silently shed the bacterium into the environment for years, exposing contemporaries and hampering disease-control programs. The objective of the present study was to first quantify the genetic parameters for humoral response to MAP in dairy cattle. This was followed by a genome-based association analysis and subsequent downstream bioinformatic analyses from imputed whole genome sequence SNP data. After edits, ELISA test records were available on 136,767 cows; analyses were also undertaken on a subset of 33,818 of these animals from herds with at least 5 MAP ELISA-positive cows, with at least 1 of those positive cows being homebred. Variance components were estimated using univariate animal and sire linear mixed models. The heritability calculated from the animal model for humoral response to MAP using alternative phenotype definitions varied from 0.02 (standard error = 0.003) to 0.05 (standard error = 0.008). The genome-based associations were undertaken within a mixed model framework using weighted deregressed estimated breeding values as a dependent variable on 1,883 phenotyped animals that were ≥87.5% Holstein-Friesian. Putative susceptibility quantitative trait loci (QTL) were identified on Bos taurus autosome 1, 3, 5, 6, 8, 9, 10, 11, 13, 14, 18, 21, 23, 25, 26, 27, and 29; mapping the most significant SNP to genes within and overlapping these QTL revealed that the most significant associations were with the 10 functional candidate genes KALRN, ZBTB20, LPP, SLA2, FI3A1, LRCH3, DNAJC6, ZDHHC14, SNX1, and HAS2. Pathway analysis failed to reveal significantly enriched biological pathways, when both bovine-specific pathway data and human ortholog data were taken into account. The existence of genetic variation for MAP susceptibility in a large data set of dairy cows signifies the potential of breeding programs for reducing MAP susceptibility. Furthermore, the identification of susceptible QTL facilitates greater biological understanding of bovine paratuberculosis and potential therapeutic targets for future investigation. The novel molecular similarities identified between bovine paratuberculosis and human inflammatory bowel disease suggest potential for human therapeutic interventions to be translated to veterinary medicine and vice versa.
Collapse
Affiliation(s)
- S P McGovern
- Department of Microbiology, University College Cork, Coláiste na hOllscoile Corcaigh, College Road, Cork City, Co. Cork, Ireland T12 CY82
| | - D C Purfield
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996
| | - S C Ring
- Irish Cattle Breeding Federation, Highfield House, Shinagh, Bandon, Co. Cork, Ireland P72 X050
| | - T R Carthy
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996
| | - D A Graham
- Animal Health Ireland, 4-5 The Archways, Carrick-on-Shannon, Co. Leitrim, Ireland N41 WN27
| | - D P Berry
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996.
| |
Collapse
|
5
|
Gao W, Li J, Ni H, Shi H, Qi Z, Zhu S, Hao C, Xie Q, Luo X, Xie K. Tenascin C: A Potential Biomarker for Predicting the Severity of Coronary Atherosclerosis. J Atheroscler Thromb 2018; 26:31-38. [PMID: 29769455 PMCID: PMC6308263 DOI: 10.5551/jat.42887] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
AIMS Coronary artery disease (CAD) is the leading cause of mortality and morbidity worldwide and one of the greatest threats to public health. Tenascin C (TNC) is an extracellular matrix glycoprotein that is found in low concentrations in normal tissues and is enhanced by a range of cardiovascular pathologies. This study aimed to evaluate the value of TNC in assessing the severity of atherosclerosis measured by the Gensini score. METHODS A total of 157 patients with chest pains who underwent selective coronary angiography for suspected coronary atherosclerosis were enrolled. The patients were divided into the CAD group and non-CAD group according to symptoms and angiography. Demographic data and laboratory analyses were collected. RESULTS The mean TNC level was significantly higher in the CAD group than in the non-CAD group (p<0.001). A significant positive correlation between TNC levels and Gensini score (p<0.01, r=0.672) was found. ROC curve analysis demonstrated that the cutoff value for TNC at 89.48 ng/mL was well differentiated in the CAD and non-CAD groups. Furthermore, TNC was also a good predictor for a higher Gensini score (the third tertile) in the ROC curve analysis. When the cutoff was accepted as 100.91 ng/mL, the sensitivity and specificity were 82.7% and 79%, respectively. CONCLUSION A significant relationship was found between the Gensini score and serum TNC level. TNC levels can be considered in risk assessments for CAD before angiography.
Collapse
Affiliation(s)
- Wen Gao
- Department of Cardiology, Huashan Hospital, Fudan University
| | - Jian Li
- Department of Cardiology, Huashan Hospital, Fudan University
| | - Huanchun Ni
- Department of Cardiology, Huashan Hospital, Fudan University
| | - Haiming Shi
- Department of Cardiology, Huashan Hospital, Fudan University
| | - Zhiyong Qi
- Department of Cardiology, Zhongshan Hospital, Fudan University
| | - Shouguo Zhu
- Department of Cardiology, Yunnan Kungang Hospital, Kunming
| | - Chuanming Hao
- Department of Nephrology, Huashan Hospital, Fudan University
| | - Qionghong Xie
- Department of Nephrology, Huashan Hospital, Fudan University
| | - Xinping Luo
- Department of Cardiology, Huashan Hospital, Fudan University
| | - Kun Xie
- Department of Cardiology, Huashan Hospital, Fudan University
| |
Collapse
|
6
|
Abstract
Palladin is an important component of motile actin-rich structures and nucleates branched actin filament arrays in vitro Here we examine the role of palladin during Listeria monocytogenes infections in order to tease out novel functions of palladin. We show that palladin is co-opted by L. monocytogenes during its cellular entry and intracellular motility. Depletion of palladin resulted in shorter and misshapen comet tails, and when actin- or VASP-binding mutants of palladin were overexpressed in cells, comet tails disintegrated or became thinner. Comet tail thinning resulted in parallel actin bundles within the structures. To determine whether palladin could compensate for the Arp2/3 complex, we overexpressed palladin in cells treated with the Arp2/3 inhibitor CK-666. In treated cells, bacterial motility could be initiated and maintained when levels of palladin were increased. To confirm these findings, we utilized a cell line depleted of multiple Arp2/3 complex subunits. Within these cells, L. monocytogenes failed to generate comet tails. When palladin was overexpressed in this Arp2/3 functionally null cell line, the ability of L. monocytogenes to generate comet tails was restored. Using purified protein components, we demonstrate that L. monocytogenes actin clouds and comet tails can be generated (in a cell-free system) by palladin in the absence of the Arp2/3 complex. Collectively, our results demonstrate that palladin can functionally replace the Arp2/3 complex during bacterial actin-based motility.IMPORTANCE Structures containing branched actin filaments require the Arp2/3 complex. One of the most commonly used systems to study intracellular movement generated by Arp2/3-based actin motility exploits actin-rich comet tails made by Listeria Using these infections together with live imaging and cell-free protein reconstitution experiments, we show that another protein, palladin, can be used in place of Arp2/3 to form actin-rich structures. Additionally, we show that palladin is needed for the structural integrity of comet tails as its depletion or mutation of critical regions causes dramatic changes to comet tail organization. These findings are the first to identify a protein that can functionally replace the Arp2/3 complex and have implications for all actin-based structures thought to exclusively use that complex.
Collapse
|
7
|
Ngan E, Kiepas A, Brown CM, Siegel PM. Emerging roles for LPP in metastatic cancer progression. J Cell Commun Signal 2017; 12:143-156. [PMID: 29027626 DOI: 10.1007/s12079-017-0415-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/03/2017] [Indexed: 01/21/2023] Open
Abstract
LIM domain containing proteins are important regulators of diverse cellular processes, and play pivotal roles in regulating the actin cytoskeleton. Lipoma Preferred Partner (LPP) is a member of the zyxin family of LIM proteins that has long been characterized as a promoter of mesenchymal/fibroblast cell migration. More recently, LPP has emerged as a critical inducer of tumor cell migration, invasion and metastasis. LPP is thought to contribute to these malignant phenotypes by virtue of its ability to shuttle into the nucleus, localize to adhesions and, most recently, to promote invadopodia formation. In this review, we will examine the mechanisms through which LPP regulates the functions of adhesions and invadopodia, and discuss potential roles of LPP in mediating cellular responses to mechanical cues within these mechanosensory structures.
Collapse
Affiliation(s)
- Elaine Ngan
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 508, Montréal, Québec, H3A 1A3, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Alex Kiepas
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | - Claire M Brown
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 508, Montréal, Québec, H3A 1A3, Canada. .,Department of Medicine, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
8
|
Franzoni M, Walsh MT. Towards the Identification of Hemodynamic Parameters Involved in Arteriovenous Fistula Maturation and Failure: A Review. Cardiovasc Eng Technol 2017; 8:342-356. [PMID: 28744783 DOI: 10.1007/s13239-017-0322-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/13/2017] [Indexed: 12/13/2022]
Abstract
Native arteriovenous fistulas have a high failure rate mainly due to the lack of maturation and uncontrolled neo-intimal hyperplasia development. Newly established hemodynamics is thought to be central in driving the fistula fate, after surgical creation. To investigate the effects of realistic wall shear stress stimuli on endothelial cells, an in vitro approach is necessary in order to reduce the complexity of the in vivo environment. After a systematic review, realistic WSS waveforms were selected and analysed in terms of magnitude, temporal gradient, presence of reversing phases (oscillatory shear index, OSI) and frequency content (hemodynamics index, HI). The effects induced by these waveforms in cellular cultures were also considered, together with the materials and methods used to cultivate and expose cells to WSS stimuli. The results show a wide heterogeneity of experimental approaches and WSS waveform features that prevent a complete understanding of the mechanisms that regulate mechanotransduction. Furthermore, the hemodynamics derived from the carotid bifurcation is the most investigated (in vitro), while the AVF scenario remains poorly addressed. In conclusion, standardisation of the materials and methods employed, as well as the decomposition of realistic WSS profiles, are required for a better understanding of the hemodynamic effects on AVF outcomes. This standardisation may also lead to a new classification of WSS features according to the risk associated with vascular dysfunction.
Collapse
Affiliation(s)
- Marco Franzoni
- Centre for Applied Biomedical Engineering Research, Health Research Institute, Bernal Institute, School of Engineering, University of Limerick, Limerick, Ireland
| | - Michael T Walsh
- Centre for Applied Biomedical Engineering Research, Health Research Institute, Bernal Institute, School of Engineering, University of Limerick, Limerick, Ireland.
| |
Collapse
|
9
|
Lee M, San Martín A, Valdivia A, Martin-Garrido A, Griendling KK. Redox-Sensitive Regulation of Myocardin-Related Transcription Factor (MRTF-A) Phosphorylation via Palladin in Vascular Smooth Muscle Cell Differentiation Marker Gene Expression. PLoS One 2016; 11:e0153199. [PMID: 27088725 PMCID: PMC4835087 DOI: 10.1371/journal.pone.0153199] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 03/24/2016] [Indexed: 01/18/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) undergo a phenotypic switch from a differentiated to synthetic phenotype in cardiovascular diseases such as atherosclerosis and restenosis. Our previous studies indicate that transforming growth factor-β (TGF-β) helps to maintain the differentiated phenotype by regulating expression of pro-differentiation genes such as smooth muscle α-actin (SMA) and Calponin (CNN) through reactive oxygen species (ROS) derived from NADPH oxidase 4 (Nox4) in VSMCs. In this study, we investigated the relationship between Nox4 and myocardin-related transcription factor-A (MRTF-A), a transcription factor known to be important in expression of smooth muscle marker genes. Previous work has shown that MRTF-A interacts with the actin-binding protein, palladin, although how this interaction affects MRTF-A function is unclear, as is the role of phosphorylation in MRTF-A activity. We found that Rho kinase (ROCK)-mediated phosphorylation of MRTF-A is a key event in the regulation of SMA and CNN in VSMCs and that this phosphorylation depends upon Nox4-mediated palladin expression. Knockdown of Nox4 using siRNA decreases TGF-β -induced palladin expression and MRTF-A phosphorylation, suggesting redox-sensitive regulation of this signaling pathway. Knockdown of palladin also decreases MRTF-A phosphorylation. These data suggest that Nox4-dependent palladin expression and ROCK regulate phosphorylation of MRTF-A, a critical factor in the regulation of SRF responsive gene expression.
Collapse
Affiliation(s)
- Minyoung Lee
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United Sates of America
| | - Alejandra San Martín
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United Sates of America
| | - Alejandra Valdivia
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United Sates of America
| | - Abel Martin-Garrido
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United Sates of America
| | - Kathy K. Griendling
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United Sates of America
| |
Collapse
|
10
|
LIU JIA, LIU XUEQING, LIU YING, SUN YANAN, LI SI, LI CHUNMEI, LI JIE, TIAN WEI, SHANG XIAOMING, ZHOU YUNTAO. MicroRNA 28-5p regulates ATP-binding cassette transporter A1 via inhibiting extracellular signal-regulated kinase 2. Mol Med Rep 2015; 13:433-40. [DOI: 10.3892/mmr.2015.4563] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 07/29/2015] [Indexed: 11/05/2022] Open
|
11
|
miR-28-5p Involved in LXR-ABCA1 Pathway is Increased in the Plasma of Unstable Angina Patients. Heart Lung Circ 2015; 24:724-30. [DOI: 10.1016/j.hlc.2014.12.160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 12/30/2014] [Accepted: 12/31/2014] [Indexed: 11/21/2022]
|
12
|
Chang EH, Gasim AH, Kerber ML, Patel JB, Glaubiger SA, Falk RJ, Jennette JC, Otey CA. Palladin is upregulated in kidney disease and contributes to epithelial cell migration after injury. Sci Rep 2015; 5:7695. [PMID: 25573828 PMCID: PMC4648347 DOI: 10.1038/srep07695] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/03/2014] [Indexed: 01/25/2023] Open
Abstract
Recovery from acute kidney injury involving tubular epithelial cells requires proliferation and migration of healthy cells to the area of injury. In this study, we show that palladin, a previously characterized cytoskeletal protein, is upregulated in injured tubules and suggest that one of its functions during repair is to facilitate migration of remaining cells to the affected site. In a mouse model of anti-neutrophilic cytoplasmic antibody involving both tubular and glomerular disease, palladin is upregulated in injured tubular cells, crescents and capillary cells with angiitis. In human biopsies of kidneys from patients with other kidney diseases, palladin is also upregulated in crescents and injured tubules. In LLC-PK1 cells, a porcine proximal tubule cell line, stress induced by transforming growth factor-β1 (TGF-β1) leads to palladin upregulation. Knockdown of palladin in LLC-PK1 does not disrupt cell morphology but does lead to a defect in cell migration. Furthermore, TGF-β1 induced increase in the 75 kDa palladin isoform occurs in both the nucleus and the cytoplasm. These data suggest that palladin expression is induced in injured cells and contributes to proper migration of cells in proximal tubules, possibly by regulation of gene expression as part of the healing process after acute injury.
Collapse
Affiliation(s)
- Emily H Chang
- 1] UNC Kidney Center, Chapel Hill, NC [2] UNC Department of Cell Biology and Physiology, Chapel Hill, NC
| | - Adil H Gasim
- UNC Department of Pathology and Laboratory Medicine, Chapel Hill, NC
| | | | - Julie B Patel
- UNC Department of Cell Biology and Physiology, Chapel Hill, NC
| | | | | | - J Charles Jennette
- 1] UNC Kidney Center, Chapel Hill, NC [2] UNC Department of Pathology and Laboratory Medicine, Chapel Hill, NC
| | - Carol A Otey
- UNC Department of Cell Biology and Physiology, Chapel Hill, NC
| |
Collapse
|
13
|
Qiu J, Zheng Y, Hu J, Liao D, Gregersen H, Deng X, Fan Y, Wang G. Biomechanical regulation of vascular smooth muscle cell functions: from in vitro to in vivo understanding. J R Soc Interface 2013; 11:20130852. [PMID: 24152813 DOI: 10.1098/rsif.2013.0852] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) have critical functions in vascular diseases. Haemodynamic factors are important regulators of VSMC functions in vascular pathophysiology. VSMCs are physiologically active in the three-dimensional matrix and interact with the shear stress sensor of endothelial cells (ECs). The purpose of this review is to illustrate how haemodynamic factors regulate VSMC functions under two-dimensional conditions in vitro or three-dimensional co-culture conditions in vivo. Recent advances show that high shear stress induces VSMC apoptosis through endothelial-released nitric oxide and low shear stress upregulates VSMC proliferation and migration through platelet-derived growth factor released by ECs. This differential regulation emphasizes the need to construct more actual environments for future research on vascular diseases (such as atherosclerosis and hypertension) and cardiovascular tissue engineering.
Collapse
Affiliation(s)
- Juhui Qiu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing Engineering Laboratory in Vascular Implants, College of Bioengineering, Chongqing University, , Chongqing 400044, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Qu Z, Yu J, Ruan Q. TGF-β1-induced LPP expression dependant on Rho kinase during differentiation and migration of bone marrow-derived smooth muscle progenitor cells. ACTA ACUST UNITED AC 2012; 32:459-465. [PMID: 22886954 DOI: 10.1007/s11596-012-0080-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Indexed: 12/24/2022]
Abstract
Lipoma preferred partner (LPP) has been identified as a protein which is highly selective for smooth muscle progenitor cells (SMPCs) and regulates differentiation and migration of SMPCs, but mechanisms of LPP expression are not elucidated clearly. The aim of the present study was to discuss the mechanisms by which LPP expression is regulated in the differentiation and migration of SMPCs induced by TGF-β1. It was found that TGF-β1 could significantly increase the expression of LPP, smooth muscle α-actin, smooth muscle myosin heavy chain (SM-MHC), and smoothelin in SMPCs. Moreover, inactivation of Rho kinase (ROK) with ROK inhibitors significantly inhibited LPP mRNA expression in TGF-β1-treated SMPCs and mouse aortic smooth muscle cells (MAoSMCs). At the same time, LPP silencing with short interfering RNA significantly decreased SMPCs migration. In conclusion, LPP appears to be a ROK-dependant SMPCs differentiation marker that plays a role in regulating SMPCs migration.
Collapse
Affiliation(s)
- Zhiling Qu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun Yu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiurong Ruan
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
15
|
Hooper CL, Dash PR, Boateng SY. Lipoma preferred partner is a mechanosensitive protein regulated by nitric oxide in the heart. FEBS Open Bio 2012; 2:135-44. [PMID: 23650592 PMCID: PMC3642136 DOI: 10.1016/j.fob.2012.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 05/27/2012] [Accepted: 05/29/2012] [Indexed: 12/17/2022] Open
Abstract
Adaptor proteins play an important role in signaling pathways by providing a platform on which many other proteins can interact. Malfunction or mislocalization of these proteins may play a role in the development of disease. Lipoma preferred partner (LPP) is a nucleocytoplasmic shuttling adaptor protein. Previous work shows that LPP plays a role in the function of smooth muscle cells and in atherosclerosis. In this study we wanted to determine whether LPP has a role in the myocardium. LPP expression increased by 56% in hearts from pressure overload aortic-banded rats (p < 0.05 n = 4), but not after myocardial infarction, suggesting hemodynamic load regulates its expression. In vitro, LPP expression was 87% higher in cardiac fibroblasts than myocytes (p < 0.05 n = 3). LPP expression was downregulated in the absence of the actin cytoskeleton but not when microtubules were disassembled. We mechanically stretched cardiac fibroblasts using the Flexcell 4000 for 48 h (1 Hz, 5% maximum strain), which decreased total LPP total expression and membrane localization in subcellular fractions (p < 0.05, n = 5). However, L-NAME, an inhibitor of nitric oxide synthase (NOS), significantly upregulated LPP expression. These findings suggest that LPP is regulated by a complex interplay between NO and mechanical cues and may play a role in heart failure induced by increased hemodynamic load.
Collapse
Affiliation(s)
- Charlotte L Hooper
- Institute of Cardiovascular and Metabolic Research. The Schools of Biological Sciences and Pharmacy, University of Reading, Reading Berkshire, United Kingdom
| | | | | |
Collapse
|
16
|
Pietrangelo T, Mancinelli R, Doria C, Di Tano G, Loffredo B, Fanò-Illic G, Fulle S. Endurance and resistance training modifies the transcriptional profile of the vastus lateralis skeletal muscle in healthy elderly subjects. SPORT SCIENCES FOR HEALTH 2012. [DOI: 10.1007/s11332-012-0107-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Thompson O, Moghraby JS, Ayscough KR, Winder SJ. Depletion of the actin bundling protein SM22/transgelin increases actin dynamics and enhances the tumourigenic phenotypes of cells. BMC Cell Biol 2012; 13:1. [PMID: 22257561 PMCID: PMC3280177 DOI: 10.1186/1471-2121-13-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 01/18/2012] [Indexed: 12/15/2022] Open
Abstract
Background SM22 has long been studied as an actin-associated protein. Interestingly, levels of SM22 are often reduced in tumour cell lines, while they are increased during senescence possibly indicating a role for SM22 in cell fate decisions via its interaction with actin. In this study we aimed to determine whether reducing levels of SM22 could actively contribute to a tumourigenic phenotype. Results We demonstrate that in REF52 fibroblasts, decreased levels of SM22 disrupt normal actin organization leading to changes in the motile behaviour of cells. Interestingly, SM22 depletion also led to an increase in the capacity of cells to spontaneously form podosomes with a concomitant increase in the ability to invade Matrigel. In PC3 prostate epithelial cancer cells by contrast, where SM22 is undetectable, re-expression of SM22 reduced the ability to invade Matrigel. Furthermore SM22 depleted cells also had reduced levels of reactive oxygen species when under serum starvation stress. Conclusions These findings suggest that depletion of SM22 could contribute to tumourigenic properties of cells. Reduction in SM22 levels would tend to promote cell survival when cells are under stress, such as in a hypoxic tumour environment, and may also contribute to increases in actin dynamics that favour metastatic potential.
Collapse
Affiliation(s)
- Oliver Thompson
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | | | | | | |
Collapse
|
18
|
Cell Adhesion and Transcriptional Activity - Defining the Role of the Novel Protooncogene LPP. Transl Oncol 2011; 2:107-16. [PMID: 19701494 DOI: 10.1593/tlo.09112] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 02/20/2009] [Accepted: 02/25/2009] [Indexed: 12/13/2022] Open
Abstract
Integrating signals from the extracellular matrix through the cell surface into the nucleus is an essential feature of metazoan life. To date, many signal transducers known as shuttle proteins have been identified to act as both a cytoskeletal and a signaling protein. Among them, the most prominent representatives are zyxin and lipoma preferred (translocation) partner (LPP). These proteins belong to the LIM domain protein family and are associated with cell migration, proliferation, and transcription. LPP was first identified in benign human lipomas and was subsequently found to be overexpressed in human malignancies such as lung carcinoma, soft tissue sarcoma, and leukemia. This review portrays LPP in the context of human neoplasia based on a study of the literature to define its important role as a novel protooncogene in carcinogenesis.
Collapse
|
19
|
Golledge J, Clancy P, Maguire J, Lincz L, Koblar S. The role of tenascin C in cardiovascular disease. Cardiovasc Res 2011; 92:19-28. [PMID: 21712412 DOI: 10.1093/cvr/cvr183] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The extracellular matrix protein tenascin C (TnC) is expressed in a variety of embryonic tissues, but its expression in adult arteries is co-incident with sites of vascular disease. TnC expression has been linked to the development and complications of intimal hyperplasia, pulmonary artery hypertension, atherosclerosis, myocardial infarction, and heart failure. This review identifies the growing collection of evidence linking TnC with cardiovascular disease development. The transient upregulation of this extracellular matrix protein at sites of vascular disease could provide a means to target TnC in the development of diagnostics and new therapies. Studies in TnC-deficient mice have implicated this protein in the development of intimal hyperplasia. Further animal and human studies are required to thoroughly assess the role of TnC in some of the other pathologies it has been linked with, such as atherosclerosis and pulmonary hypertension. Large population studies are also warranted to clarify the diagnostic value of this extracellular matrix protein in cardiovascular disease, for example by targeting its expression using radiolabelled antibodies or measuring circulating concentrations of TnC.
Collapse
Affiliation(s)
- Jonathan Golledge
- Vascular Biology Unit, Department of Surgery, School of Medicine and Dentistry, James Cook University, Townsville QLD 4811, Australia.
| | | | | | | | | |
Collapse
|
20
|
Jin L. The actin associated protein palladin in smooth muscle and in the development of diseases of the cardiovasculature and in cancer. J Muscle Res Cell Motil 2011; 32:7-17. [PMID: 21455759 DOI: 10.1007/s10974-011-9246-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Accepted: 03/22/2011] [Indexed: 02/06/2023]
Abstract
Palladin is an actin associated protein serving as a cytoskeleton scaffold, and actin cross linker, localizing at stress fibers, focal adhesions, and other actin based structures. Recent studies showed that palladin plays a critical role in smooth muscle differentiation, migration, contraction, and more importantly contributes to embryonic development. This review will focus on the functions and possible mechanisms of palladin in smooth muscle and in pathological conditions such as cardiovascular diseases and cancers.
Collapse
Affiliation(s)
- Li Jin
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
21
|
Jin L, Gan Q, Zieba BJ, Goicoechea SM, Owens GK, Otey CA, Somlyo AV. The actin associated protein palladin is important for the early smooth muscle cell differentiation. PLoS One 2010; 5:e12823. [PMID: 20877641 PMCID: PMC2943901 DOI: 10.1371/journal.pone.0012823] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Accepted: 08/24/2010] [Indexed: 11/18/2022] Open
Abstract
Palladin, an actin associated protein, plays a significant role in regulating cell adhesion and cell motility. Palladin is important for development, as knockdown in mice is embryonic lethal, yet its role in the development of the vasculature is unknown. We have shown that palladin is essential for the expression of smooth muscle cells (SMC) marker genes and force development in response to agonist stimulation in palladin deficient SMCs. The goal of the study was to determine the molecular mechanisms underlying palladin's ability to regulate the expression of SMC marker genes. Results showed that palladin expression was rapidly induced in an A404 cell line upon retinoic acid (RA) induced differentiation. Suppression of palladin expression with siRNAs inhibited the expression of RA induced SMC differentiation genes, SM α-actin (SMA) and SM22, whereas over-expression of palladin induced SMC gene expression. Chromatin immunoprecipitation assays provided evidence that palladin bound to SMC genes, whereas co-immunoprecipitation assays also showed binding of palladin to myocardin related transcription factors (MRTFs). Endogenous palladin was imaged in the nucleus, increased with leptomycin treatment and the carboxyl-termini of palladin co-localized with MRTFs in the nucleus. Results support a model wherein palladin contributes to SMC differentiation through regulation of CArG-SRF-MRTF dependent transcription of SMC marker genes and as previously published, also through actin dynamics. Finally, in E11.5 palladin null mouse embryos, the expression of SMA and SM22 mRNA and protein is decreased in the vessel wall. Taken together, our findings suggest that palladin plays a key role in the differentiation of SMCs in the developing vasculature.
Collapse
Affiliation(s)
- Li Jin
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Qiong Gan
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Bartosz J. Zieba
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Silvia M. Goicoechea
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Gary K. Owens
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Carol A. Otey
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Avril V. Somlyo
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|