1
|
Lin B, Luo X, Liu Y, Jin X. A comprehensive review and comparison of existing computational methods for protein function prediction. Brief Bioinform 2024; 25:bbae289. [PMID: 39003530 PMCID: PMC11246557 DOI: 10.1093/bib/bbae289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/18/2024] [Indexed: 07/15/2024] Open
Abstract
Protein function prediction is critical for understanding the cellular physiological and biochemical processes, and it opens up new possibilities for advancements in fields such as disease research and drug discovery. During the past decades, with the exponential growth of protein sequence data, many computational methods for predicting protein function have been proposed. Therefore, a systematic review and comparison of these methods are necessary. In this study, we divide these methods into four different categories, including sequence-based methods, 3D structure-based methods, PPI network-based methods and hybrid information-based methods. Furthermore, their advantages and disadvantages are discussed, and then their performance is comprehensively evaluated and compared. Finally, we discuss the challenges and opportunities present in this field.
Collapse
Affiliation(s)
- Baohui Lin
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
| | - Xiaoling Luo
- Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies, Shenzhen, Guangdong, China
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong 518061, China
| | - Yumeng Liu
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
| | - Xiaopeng Jin
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
| |
Collapse
|
2
|
Vinci M, Kursula P, Greco D, Elia M, Vetri L, Schepis C, Chiavetta V, Donadio S, Roccella M, Carotenuto M, Romano V, Calì F. Exome sequencing in a child with neurodevelopmental disorder and epilepsy: Variant analysis of the AHNAK2 gene. Mol Genet Genomic Med 2022; 10:e2012. [PMID: 35789128 PMCID: PMC9482394 DOI: 10.1002/mgg3.2012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 11/28/2022] Open
Abstract
Background The AHNAK2 gene encodes a large nucleoprotein expressed in several tissues, including brain, squamous epithelia, smooth muscle, and neuropil. Its role in calcium signaling has been suggested and to date, clear evidence about its involvement in the pathogenesis of clinical disorders is still lacking. Methods Here, we report a female 24‐year‐old patient diagnosed with a cardio‐facio‐cutaneous‐like phenotype (CFC‐like), characterized by epilepsy, psychomotor development delay, atopic dermatitis, congenital heart disease, hypotonia, and facial dysmorphism, who is compound heterozygote for two missense mutations in the AHNAK2 gene detected by exome sequencing. Results This patient had no detectable variant in any of the genes known to be associated with the cardio‐facio‐cutaneous syndrome. Moreover, the mode of inheritance does not appear to be autosomal dominant, as it is in typical CFC syndrome. We have performed in silico assessment of mutation severity separately for each missense mutation, but this analysis excludes a severe effect on protein function. Protein structure predictions indicate the mutations are located in flexible regions possibly involved in molecular interactions. Conclusion We discuss an alternative interpretation on the potential involvement of the two missense mutations in the AHNAK2 gene on the expression of CFC‐like phenotype in this patient based on inter‐allelic complementation.
Collapse
Affiliation(s)
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Biocenter Oulu & Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | | | - Luigi Vetri
- Oasi Research Institute-IRCCS, Troina, Italy
| | | | | | - Serena Donadio
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Michele Roccella
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Marco Carotenuto
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Valentino Romano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | | |
Collapse
|
3
|
Roybal D, Hennessey JA, Marx SO. The quest to identify the mechanism underlying adrenergic regulation of cardiac Ca 2+ channels. Channels (Austin) 2020; 14:123-131. [PMID: 32195622 PMCID: PMC7153787 DOI: 10.1080/19336950.2020.1740502] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 11/25/2022] Open
Abstract
Activation of protein kinase A by cyclic AMP results in a multi-fold upregulation of CaV1.2 currents in the heart, as originally reported in the 1970's and 1980's. Despite considerable interest and much investment, the molecular mechanisms responsible for this signature modulation remained stubbornly elusive for over 40 years. A key manifestation of this lack of understanding is that while this regulation is readily apparent in heart cells, it has not been possible to reconstitute it in heterologous expression systems. In this review, we describe the efforts of many investigators over the past decades to identify the mechanisms responsible for the β-adrenergic mediated activation of voltage-gated Ca2+ channels in the heart and other tissues.
Collapse
Affiliation(s)
- Daniel Roybal
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, USA
- Department of Pharmacology, Columbia University, Vagelos College of Physicians and Surgeons
| | - Jessica A. Hennessey
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, USA
| | - Steven O. Marx
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, USA
- Department of Pharmacology, Columbia University, Vagelos College of Physicians and Surgeons
| |
Collapse
|
4
|
Wang DW, Zheng HZ, Cha N, Zhang XJ, Zheng M, Chen MM, Tian LX. Down-Regulation of AHNAK2 Inhibits Cell Proliferation, Migration and Invasion Through Inactivating the MAPK Pathway in Lung Adenocarcinoma. Technol Cancer Res Treat 2020; 19:1533033820957006. [PMID: 33000678 PMCID: PMC7533926 DOI: 10.1177/1533033820957006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AHNAK nucleoprotein 2 (AHNAK2) has been emerged as a crucial protein for neuroblast differentiation and cell migration, thereby involving in the development of various cancers. However, the specific molecular mechanism of AHNAK2 in lung adenocarcinoma is inconclusive. By accessing to the Oncomine dataset and GEPIA website, a higher expression level of AHNAK2 was observed in lung adenocarcinoma tissue samples. Overall survival (OS) curve plotted by Kaplan-Meier method showed that up-regulation of AHNAK2 was related with poor prognosis of lung adenocarcinoma patients. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis and western blot were conducted to examine the expression level of genes in lung adenocarcinoma cells. Through functional in vitro experiments, cell proliferation, migration and invasion were all suppressed after AHNAK2 knockdown using Cell counting kit-8 (CCK-8) assay, wound-healing and transwell analysis. Reduction of AHNAK2 decreased the apoptosis rate using flow cytometry analysis. Moreover, the key markers of MAPK pathway, p-MEK, p-ERK and p-P90RSK were decreased due to the transfection of si-AHNAK2 in A549 cells. U0126, a MEK inhibitor, showed the similar effects on MAPK-related protein levels with si-AHNAK2. To sum up, AHNAK2 is significantly increased in lung adenocarcinoma and plays a carcinogenic role by activating the MAPK signaling pathway, providing a novel insight and raising possibility for lung adenocarcinoma treatment.
Collapse
Affiliation(s)
- Dong-Wei Wang
- Department of Pathology, Changchun Obstetrics-Gynecology Hospital, Nanguan District, Changchun, Jilin, China
| | - Hai-Zheng Zheng
- Department of pathogen teaching and research of Changchun Medical College, Changchun Economic and Technological Development Zone, Changchun, Jilin, China
| | - Na Cha
- Department of Pathology, Changchun Obstetrics-Gynecology Hospital, Nanguan District, Changchun, Jilin, China
| | - Xiao-Jie Zhang
- Department of Obstetrics and Gynecology, Changchun Obstetrics-Gynecology Hospital, Nanguan District, Changchun, Jilin, China
| | - Min Zheng
- Department of Obstetrics and Gynecology, Changchun Obstetrics-Gynecology Hospital, Nanguan District, Changchun, Jilin, China
| | - Ming-Ming Chen
- Department of Obstetrics and Gynecology, Changchun Obstetrics-Gynecology Hospital, Nanguan District, Changchun, Jilin, China
| | - Li-Xiang Tian
- Department of Pathology, Changchun Obstetrics-Gynecology Hospital, Nanguan District, Changchun, Jilin, China
| |
Collapse
|
5
|
Intensive morphometric analysis of enormous alterations in skeletal bone system with micro-CT for AHNAK -/- mice. Anat Sci Int 2020; 95:323-333. [PMID: 32067190 DOI: 10.1007/s12565-020-00525-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 01/14/2020] [Indexed: 10/25/2022]
Abstract
AHNAK has been reported to be involved in actin cytoskeleton rearrangement of some cell types, calcium homeostasis, and activation of T cells. Although the functional role of AHNAK in muscle cells, epidermis, and brain has been determined, its association with apparent clinical impairment has not been found yet. During phenotypic analysis of AHNAK knock out (KO) mice for many years, we observed that AHNAK KO mice showed very slow growth. Snouts of these animals were very short, and their bones were easily broken compared to normal mice. It is known that AHNAK is closely related to calcium. However, intensive morphological studies on phenotypes of bone have yet been reported for AHNAK. Thus, the objective of the present study was to analyze the morphology of skull, mandibular, limbs, and caudal bones of AHNAK KO mice intensively using micro-CT with many factors for various ages of these mice (6 weeks, 18 weeks, and 40 weeks). As a result, it was found that the facial region of AHNAK KO mouse showed a large difference in mandible than skull. Their both femur and tibia were shortened, and bone strength was also significantly decreased compared to normal mice. Particularly, the tail bone of AHNAK KO mice exhibited morphological abnormality by age. Taken together, these results suggest that AHNAK plays an important role in bone shape, development, and metabolism. Although our results demonstrated that AHNAK has a distinct role in bone, further investigations are needed to determine various features of bone metabolism related to AHNAK in the future.
Collapse
|
6
|
Wang S, Li L, Tao R, Gao Y. Ion channelopathies associated genetic variants as the culprit for sudden unexplained death. Forensic Sci Int 2017; 275:128-137. [PMID: 28363160 DOI: 10.1016/j.forsciint.2017.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/23/2017] [Accepted: 03/13/2017] [Indexed: 11/29/2022]
Abstract
Forensic identification of sudden unexplained death (SUD) has always been a ticklish issue because it used to be defined as sudden death without a conclusive diagnosis after autopsy. However, benefiting from the developments in genome research, a growing body of evidence points to the importance of ion channelopathies associated genetic variants in the pathogenesis of SUD. Genetic diagnosis of the deceased is also a new trend in epidemiological studies, for it enables the undertaking for preventive approach in individuals with high risks. In this review, we briefly discuss the molecular structure of ion channels and the role of genetic variants in regulating their functions as well as the diverse mechanisms underlying the ion channelopathies at gene level.
Collapse
Affiliation(s)
- Shouyu Wang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Lijuan Li
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Ruiyang Tao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Yuzhen Gao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
7
|
Lodka D, Pahuja A, Geers-Knörr C, Scheibe RJ, Nowak M, Hamati J, Köhncke C, Purfürst B, Kanashova T, Schmidt S, Glass DJ, Morano I, Heuser A, Kraft T, Bassel-Duby R, Olson EN, Dittmar G, Sommer T, Fielitz J. Muscle RING-finger 2 and 3 maintain striated-muscle structure and function. J Cachexia Sarcopenia Muscle 2016; 7:165-80. [PMID: 27493870 PMCID: PMC4863828 DOI: 10.1002/jcsm.12057] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/24/2015] [Accepted: 06/04/2015] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The Muscle-specific RING-finger (MuRF) protein family of E3 ubiquitin ligases is important for maintenance of muscular structure and function. MuRF proteins mediate adaptation of striated muscles to stress. MuRF2 and MuRF3 bind to microtubules and are implicated in sarcomere formation with noticeable functional redundancy. However, if this redundancy is important for muscle function in vivo is unknown. Our objective was to investigate cooperative function of MuRF2 and MuRF3 in the skeletal muscle and the heart in vivo. METHODS MuRF2 and MuRF3 double knockout mice (DKO) were generated and phenotypically characterized. Skeletal muscle and the heart were investigated by morphological measurements, histological analyses, electron microscopy, immunoblotting, and real-time PCR. Isolated muscles were subjected to in vitro force measurements. Cardiac function was determined by echocardiography and working heart preparations. Function of cardiomyocytes was measured in vitro. Cell culture experiments and mass-spectrometry were used for mechanistic analyses. RESULTS DKO mice showed a protein aggregate myopathy in skeletal muscle. Maximal force development was reduced in DKO soleus and extensor digitorum longus. Additionally, a fibre type shift towards slow/type I fibres occurred in DKO soleus and extensor digitorum longus. MuRF2 and MuRF3-deficient hearts showed decreased systolic and diastolic function. Further analyses revealed an increased expression of the myosin heavy chain isoform beta/slow and disturbed calcium handling as potential causes for the phenotype in DKO hearts. CONCLUSIONS The redundant function of MuRF2 and MuRF3 is important for maintenance of skeletal muscle and cardiac structure and function in vivo.
Collapse
Affiliation(s)
- Dörte Lodka
- Department of Molecular Cardiology, Experimental and Clinical Research Center (ECRC) Max Delbrück Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Campus Buch 13125 Berlin Germany
| | - Aanchal Pahuja
- Institute of Molecular and Cell Physiology Hannover Medical School 30625 Hannover Germany
| | - Cornelia Geers-Knörr
- Institute of Molecular and Cell Physiology Hannover Medical School 30625 Hannover Germany
| | - Renate J Scheibe
- Institute of Physiological Chemistry Hannover Medical School 30625 Hannover Germany
| | - Marcel Nowak
- Department of Molecular Cardiology, Experimental and Clinical Research Center (ECRC) Max Delbrück Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Campus Buch 13125 Berlin Germany; Department of Intracellular Proteolysis Max Delbrück Center for Molecular Medicine 13125 Berlin Germany
| | - Jida Hamati
- Department of Molecular Cardiology, Experimental and Clinical Research Center (ECRC) Max Delbrück Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Campus Buch 13125 Berlin Germany
| | - Clemens Köhncke
- Department of Molecular Muscle Physiology Max Delbrück Center for Molecular Medicine 13125 Berlin Germany
| | - Bettina Purfürst
- Department of Electron Microscopy Max Delbrück Center for Molecular Medicine 13125 Berlin Germany
| | - Tamara Kanashova
- Department of Mass Spectrometry Max Delbrück Center for Molecular Medicine 13125 Berlin Germany
| | - Sibylle Schmidt
- Department of Molecular Cardiology, Experimental and Clinical Research Center (ECRC) Max Delbrück Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Campus Buch 13125 Berlin Germany
| | - David J Glass
- Novartis Institutes for Biomedical Research Cambridge Massachusetts 02139 USA
| | - Ingo Morano
- Department of Molecular Muscle Physiology Max Delbrück Center for Molecular Medicine 13125 Berlin Germany
| | - Arnd Heuser
- Department of Cardiovascular Molecular Genetics Max Delbrück Center for Molecular Medicine 13125 Berlin Germany
| | - Theresia Kraft
- Institute of Molecular and Cell Physiology Hannover Medical School 30625 Hannover Germany
| | - Rhonda Bassel-Duby
- Department of Molecular Biology University of Texas Southwestern Medical Center Dallas Texas 75390-9148 USA
| | - Eric N Olson
- Department of Molecular Biology University of Texas Southwestern Medical Center Dallas Texas 75390-9148 USA
| | - Gunnar Dittmar
- Department of Mass Spectrometry Max Delbrück Center for Molecular Medicine 13125 Berlin Germany
| | - Thomas Sommer
- Department of Intracellular Proteolysis Max Delbrück Center for Molecular Medicine 13125 Berlin Germany
| | - Jens Fielitz
- Department of Molecular Cardiology, Experimental and Clinical Research Center (ECRC) Max Delbrück Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Campus Buch 13125 Berlin Germany; Department of Cardiology Charité Universitätsmedizin Berlin, Campus Virchow 13353 Berlin Germany
| |
Collapse
|
8
|
Cardiac voltage-gated calcium channel macromolecular complexes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1806-12. [PMID: 26707467 DOI: 10.1016/j.bbamcr.2015.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 11/21/2022]
Abstract
Over the past 20 years, a new field of research, called channelopathies, investigating diseases caused by ion channel dysfunction has emerged. Cardiac ion channels play an essential role in the generation of the cardiac action potential. Investigators have largely determined the physiological roles of different cardiac ion channels, but little is known about the molecular determinants of their regulation. The voltage-gated calcium channel Ca(v)1.2 shapes the plateau phase of the cardiac action potential and allows the influx of calcium leading to cardiomyocyte contraction. Studies suggest that the regulation of Ca(v)1.2 channels is not uniform in working cardiomyocytes. The notion of micro-domains containing Ca(v)1.2 channels and different calcium channel interacting proteins, called macro-molecular complex, has been proposed to explain these observations. The objective of this review is to summarize the currently known information on the Ca(v)1.2 macromolecular complexes in the cardiac cell and discuss their implication in cardiac function and disorder. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
|
9
|
Abriel H, Rougier JS, Jalife J. Ion channel macromolecular complexes in cardiomyocytes: roles in sudden cardiac death. Circ Res 2015; 116:1971-88. [PMID: 26044251 DOI: 10.1161/circresaha.116.305017] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The movement of ions across specific channels embedded on the membrane of individual cardiomyocytes is crucial for the generation and propagation of the cardiac electric impulse. Emerging evidence over the past 20 years strongly suggests that the normal electric function of the heart is the result of dynamic interactions of membrane ion channels working in an orchestrated fashion as part of complex molecular networks. Such networks work together with exquisite temporal precision to generate each action potential and contraction. Macromolecular complexes play crucial roles in transcription, translation, oligomerization, trafficking, membrane retention, glycosylation, post-translational modification, turnover, function, and degradation of all cardiac ion channels known to date. In addition, the accurate timing of each cardiac beat and contraction demands, a comparable precision on the assembly and organizations of sodium, calcium, and potassium channel complexes within specific subcellular microdomains, where physical proximity allows for prompt and efficient interaction. This review article, part of the Compendium on Sudden Cardiac Death, discusses the major issues related to the role of ion channel macromolecular assemblies in normal cardiac electric function and the mechanisms of arrhythmias leading to sudden cardiac death. It provides an idea of how these issues are being addressed in the laboratory and in the clinic, which important questions remain unanswered, and what future research will be needed to improve knowledge and advance therapy.
Collapse
Affiliation(s)
- Hugues Abriel
- From the Department of Clinical Research, University of Bern, Bern, Switzerland (H.A., J.-S.R.); Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor (J.J.); and Area of Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.J.)
| | - Jean-Sébastien Rougier
- From the Department of Clinical Research, University of Bern, Bern, Switzerland (H.A., J.-S.R.); Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor (J.J.); and Area of Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.J.)
| | - José Jalife
- From the Department of Clinical Research, University of Bern, Bern, Switzerland (H.A., J.-S.R.); Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor (J.J.); and Area of Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.J.).
| |
Collapse
|
10
|
Striessnig J, Pinggera A, Kaur G, Bock G, Tuluc P. L-type Ca 2+ channels in heart and brain. ACTA ACUST UNITED AC 2014; 3:15-38. [PMID: 24683526 PMCID: PMC3968275 DOI: 10.1002/wmts.102] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
L-type calcium channels (Cav1) represent one of the three major classes (Cav1–3) of voltage-gated calcium channels. They were identified as the target of clinically used calcium channel blockers (CCBs; so-called calcium antagonists) and were the first class accessible to biochemical characterization. Four of the 10 known α1 subunits (Cav1.1–Cav1.4) form the pore of L-type calcium channels (LTCCs) and contain the high-affinity drug-binding sites for dihydropyridines and other chemical classes of organic CCBs. In essentially all electrically excitable cells one or more of these LTCC isoforms is expressed, and therefore it is not surprising that many body functions including muscle, brain, endocrine, and sensory function depend on proper LTCC activity. Gene knockouts and inherited human diseases have allowed detailed insight into the physiological and pathophysiological role of these channels. Genome-wide association studies and analysis of human genomes are currently providing even more hints that even small changes of channel expression or activity may be associated with disease, such as psychiatric disease or cardiac arrhythmias. Therefore, it is important to understand the structure–function relationship of LTCC isoforms, their differential contribution to physiological function, as well as their fine-tuning by modulatory cellular processes.
Collapse
Affiliation(s)
- Jörg Striessnig
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center of Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Alexandra Pinggera
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center of Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Gurjot Kaur
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center of Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Gabriella Bock
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center of Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Petronel Tuluc
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center of Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
Weiss S, Oz S, Benmocha A, Dascal N. Regulation of cardiac L-type Ca²⁺ channel CaV1.2 via the β-adrenergic-cAMP-protein kinase A pathway: old dogmas, advances, and new uncertainties. Circ Res 2013; 113:617-31. [PMID: 23948586 DOI: 10.1161/circresaha.113.301781] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the heart, adrenergic stimulation activates the β-adrenergic receptors coupled to the heterotrimeric stimulatory Gs protein, followed by subsequent activation of adenylyl cyclase, elevation of cyclic AMP levels, and protein kinase A (PKA) activation. One of the main targets for PKA modulation is the cardiac L-type Ca²⁺ channel (CaV1.2) located in the plasma membrane and along the T-tubules, which mediates Ca²⁺ entry into cardiomyocytes. β-Adrenergic receptor activation increases the Ca²⁺ current via CaV1.2 channels and is responsible for the positive ionotropic effect of adrenergic stimulation. Despite decades of research, the molecular mechanism underlying this modulation has not been fully resolved. On the contrary, initial reports of identification of key components in this modulation were later refuted using advanced model systems, especially transgenic animals. Some of the cardinal debated issues include details of specific subunits and residues in CaV1.2 phosphorylated by PKA, the nature, extent, and role of post-translational processing of CaV1.2, and the role of auxiliary proteins (such as A kinase anchoring proteins) involved in PKA regulation. In addition, the previously proposed crucial role of PKA in modulation of unstimulated Ca²⁺ current in the absence of β-adrenergic receptor stimulation and in voltage-dependent facilitation of CaV1.2 remains uncertain. Full reconstitution of the β-adrenergic receptor signaling pathway in heterologous expression systems remains an unmet challenge. This review summarizes the past and new findings, the mechanisms proposed and later proven, rejected or disputed, and emphasizes the essential issues that remain unresolved.
Collapse
Affiliation(s)
- Sharon Weiss
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel.
| | | | | | | |
Collapse
|
12
|
Maddala R, Nagendran T, de Ridder GG, Schey KL, Rao PV. L-type calcium channels play a critical role in maintaining lens transparency by regulating phosphorylation of aquaporin-0 and myosin light chain and expression of connexins. PLoS One 2013; 8:e64676. [PMID: 23734214 PMCID: PMC3667166 DOI: 10.1371/journal.pone.0064676] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/17/2013] [Indexed: 01/18/2023] Open
Abstract
Homeostasis of intracellular calcium is crucial for lens cytoarchitecture and transparency, however, the identity of specific channel proteins regulating calcium influx within the lens is not completely understood. Here we examined the expression and distribution profiles of L-type calcium channels (LTCCs) and explored their role in morphological integrity and transparency of the mouse lens, using cDNA microarray, RT-PCR, immunoblot, pharmacological inhibitors and immunofluorescence analyses. The results revealed that Ca (V) 1.2 and 1.3 channels are expressed and distributed in both the epithelium and cortical fiber cells in mouse lens. Inhibition of LTCCs with felodipine or nifedipine induces progressive cortical cataract formation with time, in association with decreased lens weight in ex-vivo mouse lenses. Histological analyses of felodipine treated lenses revealed extensive disorganization and swelling of cortical fiber cells resembling the phenotype reported for altered aquaporin-0 activity without detectable cytotoxic effects. Analysis of both soluble and membrane rich fractions from felodipine treated lenses by SDS-PAGE in conjunction with mass spectrometry and immunoblot analyses revealed decreases in β-B1-crystallin, Hsp-90, spectrin and filensin. Significantly, loss of transparency in the felodipine treated lenses was preceded by an increase in aquaporin-0 serine-235 phosphorylation and levels of connexin-50, together with decreases in myosin light chain phosphorylation and the levels of 14-3-3ε, a phosphoprotein-binding regulatory protein. Felodipine treatment led to a significant increase in gene expression of connexin-50 and 46 in the mouse lens. Additionally, felodipine inhibition of LTCCs in primary cultures of mouse lens epithelial cells resulted in decreased intracellular calcium, and decreased actin stress fibers and myosin light chain phosphorylation, without detectable cytotoxic response. Taken together, these observations reveal a crucial role for LTCCs in regulation of expression, activity and stability of aquaporin-0, connexins, cytoskeletal proteins, and the mechanical properties of lens, all of which have a vital role in maintaining lens function and cytoarchitecture.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Tharkika Nagendran
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Gustaaf G. de Ridder
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Kevin L. Schey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Ponugoti Vasantha Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
13
|
Mosqueira M, Zeiger U, Förderer M, Brinkmeier H, Fink RHA. Cardiac and respiratory dysfunction in Duchenne muscular dystrophy and the role of second messengers. Med Res Rev 2013; 33:1174-213. [PMID: 23633235 DOI: 10.1002/med.21279] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Duchenne muscular dystrophy (DMD) affects young boys and is characterized by the absence of dystrophin, a large cytoskeletal protein present in skeletal and cardiac muscle cells and neurons. The heart and diaphragm become necrotic in DMD patients and animal models of DMD, resulting in cardiorespiratory failure as the leading cause of death. The major consequences of the absence of dystrophin are high levels of intracellular Ca(2+) and the unbalanced production of NO that can finally trigger protein degradation and cell death. Cytoplasmic increase in Ca(2+) concentration directly and indirectly triggers different processes such as necrosis, fibrosis, and activation of macrophages. The absence of the neuronal isoform of nitric oxide synthase (nNOS) and the overproduction of NO by the inducible isoform (iNOS) further increase the intracellular Ca(2+) via a hypernitrosylation of the ryanodine receptor. NO overproduction, which further induces the expression of iNOS but decreases the expression of the endothelial isoform (eNOS), deregulates the muscle tissue blood flow creating an ischemic situation. The high levels of Ca(2+) in dystrophic muscles and the ischemic state of the muscle tissue would culminate in a positive feedback loop. While efforts continue toward optimizing cardiac and respiratory care of DMD patients, both Ca(2+) and NO in cardiac and respiratory muscle pathways have been shown to be important to the etiology of the disease. Understanding the mechanisms behind the fine regulation of Ca(2+) -NO may be important for a noninterventional and noninvasive supportive approach to treat DMD patients, improving the quality of life and natural history of DMD patients.
Collapse
Affiliation(s)
- Matias Mosqueira
- Medical Biophysics Unit, Institute of Physiology and Pathophysiology, INF326, Heidelberg University, 69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
14
|
Pankonien I, Otto A, Dascal N, Morano I, Haase H. Ahnak1 interaction is affected by phosphorylation of Ser-296 on Cavβ₂. Biochem Biophys Res Commun 2012; 421:184-9. [PMID: 22497893 DOI: 10.1016/j.bbrc.2012.03.132] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 03/26/2012] [Indexed: 10/28/2022]
Abstract
Ahnak1 has been implicated in protein kinase A (PKA)-mediated control of cardiac L-type Ca(2+) channels (Cav1.2) through its interaction with the Cavβ(2) regulatory channel subunit. Here we corroborate this functional linkage by immunocytochemistry on isolated cardiomyocytes showing co-localization of ahnak1 and Cavβ(2) in the T-tubule system. In previous studies Cavβ(2) attachment sites which impacted the channel's PKA regulation have been located to ahnak1's proximal C-terminus (ahnak1(4889-5535), ahnak1(5462-5535)). In this study, we mapped the ahnak1-interacting regions in Cavβ(2) and investigated whether Cavβ(2) phosphorylation affects its binding behavior. In vitro binding assays with Cavβ(2) truncation mutants and ahnak1(4889-5535) revealed that the core region of Cavβ(2) consisting of Src-homology 3 (SH3), HOOK, and guanylate kinase (GK) domains was important for ahnak1 interaction while the C- and N-terminal regions were dispensable. Furthermore, Ser-296 in the GK domain of Cavβ(2) was identified as novel PKA phosphorylation site by mass spectrometry. Surface plasmon resonance (SPR) binding analysis showed that Ser-296 phosphorylation did not affect the high affinity interaction (K(D)≈35 nM) between Cavβ(2) and the α(1C) I-II linker, but affected ahnak1 interaction in a complex manner. SPR experiments with ahnak1(5462-5535) revealed that PKA phosphorylation of Cavβ(2) significantly increased the binding affinity and, in parallel, it reduced the binding capacity. Intriguingly, the phosphorylation mimic substitution Glu-296 fully reproduced both effects, increased the affinity by ≈2.4-fold and reduced the capacity by ≈60%. Our results are indicative for the release of a population of low affinity interaction sites following Cavβ(2) phosphorylation on Ser-296. We propose that this phosphorylation event is one mechanism underlying ahnak1's modulator function on Cav1.2 channel activity.
Collapse
Affiliation(s)
- Ines Pankonien
- Max Delbrück Center for Molecular Medicine, Department of Molecular Muscle Physiology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.
| | | | | | | | | |
Collapse
|