1
|
Paulino ET. Development of the cardioprotective drugs class based on pathophysiology of myocardial infarction: A comprehensive review. Curr Probl Cardiol 2024; 49:102480. [PMID: 38395114 DOI: 10.1016/j.cpcardiol.2024.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
The cardiovascular system is mainly responsible for the transport of substances necessary to cellular metabolism. However, for the good performance of this function, there is need for adequate control of blood pressure levels of tissue perfusion and systemic arterial. Acute myocardial infarction is one of the complications of the cardiovascular system, that most affects the population around the world. This condition can be defined as a disease generated by an imbalance of oxygen concentrations used in cardiovascular metabolism, this change usually occurs because coronary occlusion, which prevents myocardial blood flow. The diagnosis is based on the set of clinical and laboratory investigations, which are in the release of cardiac enzyme biomarkers, cardiovascular and hemodynamic changes and cardiac accommodations. The treatment consists in the use of concomitant cardiovascular drugs, such as: antihypertensive, antiplatelet and hypolipidemic. Despite improvements in clinical and pharmacological management, acute myocardial infarction remains the leading cause of death worldwide. This finding encourages the scientific research of new drugs for the treatment of myocardial infarction or supporting therapies aimed at reducing the levels of deaths and comorbities generated by cardiovascular diseases.
Collapse
Affiliation(s)
- Emanuel Tenório Paulino
- Cardiovascular Pharmacology Laboratory, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Av. Lourival Melo Mota, S/N. Postal Box Code: 57.072.900, Brazil.
| |
Collapse
|
2
|
Chen B, Wang C, Li W. Serum albumin levels and risk of atrial fibrillation: a Mendelian randomization study. Front Cardiovasc Med 2024; 11:1385223. [PMID: 38655495 PMCID: PMC11035896 DOI: 10.3389/fcvm.2024.1385223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Objective Although several observational studies have linked serum albumin to cardiovascular disease and considered it as an important biomarker, little is known about whether increasing or maintaining serum albumin levels can effectively improve the prognosis of patients with atrial fibrillation. Therefore, this study aims to further explore the causal relationship between serum albumin and atrial fibrillation and its potential mechanism. Method Using data from large-scale genome-wide association studies, we conducted a two-sample Mendelian randomization (MR) analysis and a mediation MR analysis, using serum albumin as the exposure variable and atrial fibrillation as the outcome variable. We included 486 serum metabolites as potential mediating factors. To increase the robustness of the analysis, we applied five statistical methods, including inverse variance weighted, weighted median, MR-Egger, simple mode, and weighted mode. Validate the MR results using Bayesian weighted Mendelian randomization method. Result The results of the MR analysis indicate a significant inverse association between genetically predicted serum albumin concentration (g/L) and the risk of atrial fibrillation (Beta = -0.172, OR = 0.842, 95% CI: 0.753-0.941, p = 0.002). Further mediation MR analysis revealed that serum albumin may mediate the causal relationship with atrial fibrillation by affecting two serum metabolites, docosatrienoate and oleate/vaccenate, and the mediating effect was significant. In addition, all our instrumental variables showed no heterogeneity and level-multiplicity in the MR analysis. To verify the stability of the results, we also conducted a sensitivity analysis using the leave-one-out method, and the results further confirmed that our findings were robust and reliable. Finally, we conducted a validation using the Bayesian weighted Mendelian randomization method, which demonstrated the reliability of our causal inference results. Conclusion This study strongly demonstrates the causal relationship between serum albumin and reduced risk of atrial fibrillation through genetic methods, and reveals the key mediating role of two serum metabolites in this relationship. These findings not only provide a new perspective for our understanding of the role of serum albumin in atrial fibrillation, but also provide new ideas for the prevention and treatment strategies of atrial fibrillation.
Collapse
Affiliation(s)
- Bohang Chen
- The First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Chuqiao Wang
- The First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Wenjie Li
- Department of Cardiovascular Medicine, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Traven L, Marinac-Pupavac S, Žurga P, Linšak Ž, Pavičić Žeželj S, Glad M, Vukić Lušić D. Assessment of health risks associated with heavy metal concentration in seafood from North-Western Croatia. Sci Rep 2023; 13:16414. [PMID: 37775550 PMCID: PMC10541896 DOI: 10.1038/s41598-023-43365-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023] Open
Abstract
The following study aims at assessing the health risks associated with the consumption of the most commonly consumed seafood in the north-western part of Croatia due to the presence of heavy metals. Samples of seafood were collected and analysed for lead (Pb), cadmium (Cd), and mercury (Hg) content. Analyses of Cd and Pb were carried out by inductively coupled plasma mass spectrometry (ICP-MS) whereas Hg content was measured using atomic absorption spectrometry (AAS). Metal concentrations were in the following order Hg > Pb > Cd for the gilthead seabream, European hake, sardines, and tuna fish whereas in the Patagonian squid cadmium (Cd) was the heavy metal with the highest concentration, with the order of other metals being Cd > Hg > Pb. The heavy metal concentrations have been used to address the health risks using the Estimated Weekly Intake (EWI), Target Hazard Quotients (THQ), and Hazard Indices (HI). The findings revealed that the concentrations of the tested heavy metals, expressed on a per wet weight basis, did not exceed the Maximum Residue Levels (MRL) for those compounds mandated by national Croatian legislation. However, the HI for Hg was above 1, indicating a risk of adverse health effects due to the presence of this heavy metal in the consumed seafood. We conclude that the consumption of certain type of seafood such as the tuna fish should be limited when sensitive segments of the population such as children, elderly and pregnant women are concerned. Our results strongly advocate for a more stringent seafood quality control in the region.
Collapse
Affiliation(s)
- Luka Traven
- Department of Environmental Medicine, Medical Faculty, University of Rijeka, Braće Branchetta 20/1, Rijeka, Croatia.
- Teaching Institute of Public Health, Krešimirova 52a, 51000, Rijeka, Croatia.
| | | | - Paula Žurga
- Teaching Institute of Public Health, Krešimirova 52a, 51000, Rijeka, Croatia
| | - Željko Linšak
- Department of Environmental Medicine, Medical Faculty, University of Rijeka, Braće Branchetta 20/1, Rijeka, Croatia
- Teaching Institute of Public Health, Krešimirova 52a, 51000, Rijeka, Croatia
| | - Sandra Pavičić Žeželj
- Department of Environmental Medicine, Medical Faculty, University of Rijeka, Braće Branchetta 20/1, Rijeka, Croatia
- Teaching Institute of Public Health, Krešimirova 52a, 51000, Rijeka, Croatia
| | - Marin Glad
- Department of Environmental Medicine, Medical Faculty, University of Rijeka, Braće Branchetta 20/1, Rijeka, Croatia
- Teaching Institute of Public Health, Krešimirova 52a, 51000, Rijeka, Croatia
| | - Darija Vukić Lušić
- Department of Environmental Medicine, Medical Faculty, University of Rijeka, Braće Branchetta 20/1, Rijeka, Croatia
- Teaching Institute of Public Health, Krešimirova 52a, 51000, Rijeka, Croatia
| |
Collapse
|
4
|
Andelova K, Bacova BS, Sykora M, Hlivak P, Barancik M, Tribulova N. Mechanisms Underlying Antiarrhythmic Properties of Cardioprotective Agents Impacting Inflammation and Oxidative Stress. Int J Mol Sci 2022; 23:1416. [PMID: 35163340 PMCID: PMC8835881 DOI: 10.3390/ijms23031416] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
The prevention of cardiac life-threatening ventricular fibrillation and stroke-provoking atrial fibrillation remains a serious global clinical issue, with ongoing need for novel approaches. Numerous experimental and clinical studies suggest that oxidative stress and inflammation are deleterious to cardiovascular health, and can increase heart susceptibility to arrhythmias. It is quite interesting, however, that various cardio-protective compounds with antiarrhythmic properties are potent anti-oxidative and anti-inflammatory agents. These most likely target the pro-arrhythmia primary mechanisms. This review and literature-based analysis presents a realistic view of antiarrhythmic efficacy and the molecular mechanisms of current pharmaceuticals in clinical use. These include the sodium-glucose cotransporter-2 inhibitors used in diabetes treatment, statins in dyslipidemia and naturally protective omega-3 fatty acids. This approach supports the hypothesis that prevention or attenuation of oxidative and inflammatory stress can abolish pro-arrhythmic factors and the development of an arrhythmia substrate. This could prove a powerful tool of reducing cardiac arrhythmia burden.
Collapse
Affiliation(s)
- Katarina Andelova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Dúbravská Cesta 9, 84104 Bratislava, Slovakia; (K.A.); (M.S.); (M.B.)
| | - Barbara Szeiffova Bacova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Dúbravská Cesta 9, 84104 Bratislava, Slovakia; (K.A.); (M.S.); (M.B.)
| | - Matus Sykora
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Dúbravská Cesta 9, 84104 Bratislava, Slovakia; (K.A.); (M.S.); (M.B.)
| | - Peter Hlivak
- Department of Arrhythmias and Pacing, National Institute of Cardiovascular Diseases, Pod Krásnou Hôrkou 1, 83348 Bratislava, Slovakia;
| | - Miroslav Barancik
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Dúbravská Cesta 9, 84104 Bratislava, Slovakia; (K.A.); (M.S.); (M.B.)
| | - Narcis Tribulova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Dúbravská Cesta 9, 84104 Bratislava, Slovakia; (K.A.); (M.S.); (M.B.)
| |
Collapse
|
5
|
Docosahexaenoic acid nanoencapsulated with anti-PECAM-1 as co-therapy for atherosclerosis regression. Eur J Pharm Biopharm 2020; 159:99-107. [PMID: 33358940 DOI: 10.1016/j.ejpb.2020.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/26/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022]
Abstract
Atherosclerosis is a non-resolving inflammatory condition that underlies major cardiovascular diseases.Recent clinical trial using an anti-inflammatory drug has showna reduction of cardiovascular mortality, but increased the susceptibility to infections. For this reason, tissue target anti-inflammatory therapies can represent a better option to regress atherosclerotic plaques. Docosahexaenoic acid (DHA) is a natural omega 3 fatty acidcomponentof algae oil and acts asaprecursor of several anti-inflammatory compounds, such the specialized proresolving lipid mediators(SPMs). During the atherosclerosis process, the inflammatory condition of the endothelium leads to the higher expression of adhesion molecules, such as Endothelial Cell Adhesion Molecule Plate 1 (PECAM-1 or CD31), as part of the innate immune response. Thus, the objective of this study was to develop lipid-core nanocapsules with DHA constituting the nucleus and anti-PECAM-1 on their surface and drive this structure to the inflamed endothelium. Nanocapsules were prepared by interfacial deposition of pre-formed polymer method. Zinc-II was added to bind anti-PECAM-1 to the nanocapsule surface by forming an organometallic complex. Swelling experiment showed that the algae oil act as non-solvent for the polymer (weight constant weight for 60 days, p > 0.428) indicating an adequate material to produce kinetically stable lipid-core nanocapsules (LNC). Five formulations were synthesized: Lipid-core nanocapsules containing DHA (LNC-DHA) or containing Medium-chain triglycerides (LNC-MCT), multi-wall nanocapsules containing DHA (MLNC-DHA) or containing MCT (MLNC-MCT) and the surface-functionalized (anti-PECAM-1) metal-complex multi-wall nanocapsules containing DHA (MCMN-DHA-a1). All formulations showed homogeneous macroscopic aspects without aggregation. The mean size of the nanocapsules measured by laser diffraction did not show difference among the samples (p = 0.241). Multi-wall nanocapsules (MLNC) showed a slight increase in the mean diameter and polydispersity index (PDI) measured by DLS, lower pH and an inversion in the zeta-potential (ξP) compared to LNCs. Conjugation test for anti-PECAM-1 showed 94.80% of efficiency. The mean diameter of the formulation had slightly increased from 160 nm (LCN-DHA) and 162 nm (MLNC-DHA) to 164 nm (MCMN-DHA-a1) indicating that the surface functionalization did not induce aggregation of the nanocapsules. Biological assays showed that the MCMN-DHA-a1 were uptaken by the HUVEC cells and did not decrease their viability. The surface-functionalized (anti- PECAM-1) metal-complex multi-wall nanocapsules containing DHA (MCMN-DHA-a1) can be considered adequate for pharmaceutical approaches.
Collapse
|
6
|
Oppedisano F, Macrì R, Gliozzi M, Musolino V, Carresi C, Maiuolo J, Bosco F, Nucera S, Caterina Zito M, Guarnieri L, Scarano F, Nicita C, Coppoletta AR, Ruga S, Scicchitano M, Mollace R, Palma E, Mollace V. The Anti-Inflammatory and Antioxidant Properties of n-3 PUFAs: Their Role in Cardiovascular Protection. Biomedicines 2020; 8:biomedicines8090306. [PMID: 32854210 PMCID: PMC7554783 DOI: 10.3390/biomedicines8090306] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Polyunsaturated fatty acids (n-3 PUFAs) are long-chain polyunsaturated fatty acids with 18, 20 or 22 carbon atoms, which have been found able to counteract cardiovascular diseases. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in particular, have been found to produce both vaso- and cardio-protective response via modulation of membrane phospholipids thereby improving cardiac mitochondrial functions and energy production. However, antioxidant properties of n-3 PUFAs, along with their anti-inflammatory effect in both blood vessels and cardiac cells, seem to exert beneficial effects in cardiovascular impairment. In fact, dietary supplementation with n-3 PUFAs has been demonstrated to reduce oxidative stress-related mitochondrial dysfunction and endothelial cell apoptosis, an effect occurring via an increased activity of endogenous antioxidant enzymes. On the other hand, n-3 PUFAs have been shown to counteract the release of pro-inflammatory cytokines in both vascular tissues and in the myocardium, thereby restoring vascular reactivity and myocardial performance. Here we summarize the molecular mechanisms underlying the anti-oxidant and anti-inflammatory effect of n-3 PUFAs in vascular and cardiac tissues and their implication in the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Francesca Oppedisano
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Roberta Macrì
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Micaela Gliozzi
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Vincenzo Musolino
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Cristina Carresi
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Jessica Maiuolo
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Francesca Bosco
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Saverio Nucera
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Maria Caterina Zito
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Lorenza Guarnieri
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Federica Scarano
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Caterina Nicita
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Anna Rita Coppoletta
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Stefano Ruga
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Miriam Scicchitano
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Rocco Mollace
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
- Division of Cardiology, University Hospital Policlinico Tor Vergata, 00133 Rome, Italy
| | - Ernesto Palma
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
| | - Vincenzo Mollace
- Institute of Research for Food Safety and Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (F.O.); (R.M.); (M.G.); (V.M.); (C.C.); (J.M.); (F.B.); (S.N.); (M.C.Z.); (L.G.); (F.S.); (C.N.); (A.R.C.); (S.R.); (M.S.); (R.M.); (E.P.)
- IRCCS San Raffaele Pisana, 00163 Roma, Italy
- Correspondence:
| |
Collapse
|
7
|
Bahey NG, Abd Elaziz HO, Elsayed Gadalla KK. Potential Toxic Effect of Bisphenol A on the Cardiac Muscle of Adult Rat and the Possible Protective Effect of Omega-3: A Histological and Immunohistochemical Study. J Microsc Ultrastruct 2019; 7:1-8. [PMID: 31008050 PMCID: PMC6442328 DOI: 10.4103/jmau.jmau_53_18] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bisphenol A (BPA) is intensely used in the production of polycarbonate plastics and epoxy resins. Recently, BPA has been receiving increased attention due to its link to various health problems that develop after direct or indirect human exposure. Previous studies have shown the harmful effect of high doses of BPA; however, the effect of small doses of BPA on disease development is controversial. The aim of this study was to investigate the effect of a low dose of BPA on the rat myocardium and to explore the outcome of coadministration of Omega-3 fatty acid (FA). Thirty adult male rats were divided equally into control group, BPA-treated group (1.2 mg/kg/day, intraperitoneally for 3 weeks), and BPA and Omega-3-treated group (received BPA as before plus Omega-3 at a daily dose of 300 mg/kg/day orally) for 3 weeks. Exposure to BPA resulted in structural anomalies in the rat myocardium in the form of disarrangement of myofibers, hypertrophy of myocytes, myocardial fibrosis, and dilatation of intramyocardial arterioles. On the other hand, mast cell density and media-to-lumen area ratio were not significantly altered. Interestingly, concomitant administration of Omega-3 FAs with BPA significantly reduced BPA-induced changes and provided a protective effect to the myocardium. In conclusion, exposure to a low dose of BPA could potentially lead to pathological alterations in the myocardium, which could be prevented by administration of Omega-3 FA.
Collapse
Affiliation(s)
- Noha Gamal Bahey
- Department of Histology and Cell Biology, Faculty of Medicine, Tanta University, Egypt
| | | | - Kamal Kamal Elsayed Gadalla
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt.,Center for Discovery Brain Science, Edinburgh University, United Kingdom
| |
Collapse
|
8
|
Galano JM, Roy J, Durand T, Lee JCY, Le Guennec JY, Oger C, Demion M. Biological activities of non-enzymatic oxygenated metabolites of polyunsaturated fatty acids (NEO-PUFAs) derived from EPA and DHA: New anti-arrhythmic compounds? Mol Aspects Med 2018; 64:161-168. [PMID: 29572110 DOI: 10.1016/j.mam.2018.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/13/2018] [Accepted: 03/18/2018] [Indexed: 12/13/2022]
Abstract
ω3 Polyunsaturated fatty acids (ω3 PUFAs) have several biological properties including anti-arrhythmic effects. However, there are some evidences that it is not solely ω3 PUFAs per se that are biologically active but the non-enzymatic oxygenated metabolites of polyunsaturated fatty acids (NEO-PUFAs) like isoprostanes and neuroprostanes. Recent question arises how these molecules take part in physiological homeostasis, show biological bioactivities and anti-inflammatory properties. Furthermore, they are involved in the circulations of childbirth, by inducing the closure of the ductus arteriosus. In addition, oxidative stress which can be beneficial for the heart in given environmental conditions such as the presence of ω3 PUFAs on the site of the stress and the signaling pathways involved are also explained in this review.
Collapse
Affiliation(s)
| | - Jérôme Roy
- Université de Montpellier, CNRS, Inserm, PhyMedExp, Montpellier, France
| | - Thierry Durand
- Université de Montpellier, CNRS, IBMM, Montpellier, France
| | | | | | - Camille Oger
- Université de Montpellier, CNRS, IBMM, Montpellier, France
| | - Marie Demion
- Université de Montpellier, CNRS, Inserm, PhyMedExp, Montpellier, France
| |
Collapse
|
9
|
Elkin RG, Kukorowski AN, Ying Y, Harvatine KJ. Dietary High-Oleic Acid Soybean Oil Dose Dependently Attenuates Egg Yolk Content of n-3 Polyunsaturated Fatty Acids in Laying Hens Fed Supplemental Flaxseed Oil. Lipids 2018; 53:235-249. [PMID: 29569243 DOI: 10.1002/lipd.12016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/01/2017] [Accepted: 12/08/2017] [Indexed: 12/16/2022]
Abstract
Chickens can hepatically synthesize eicosapentaenoic acid (20:5 n-3) and docosahexaenoic acid (22:6 n-3) from α-linolenic acid (ALA; 18:3 n-3); however, the process is inefficient and competitively inhibited by dietary linoleic acid (LNA; 18:2 n-6). In the present study, the influence of dietary high-oleic acid (OLA; 18:1 n-9) soybean oil (HOSO) on egg and tissue deposition of ALA and n-3 polyunsaturated fatty acids (PUFA) synthesized from dietary ALA was investigated in laying hens fed a reduced-LNA base diet supplemented with high-ALA flaxseed oil (FLAX). We hypothesized that reducing the dietary level of LNA would promote greater hepatic conversion of ALA to very long-chain (VLC; >20C) n-3 PUFA, while supplemental dietary HOSO would simultaneously further enrich eggs with OLA without influencing egg n-3 PUFA contents. Nine 51-week-old hens each were fed 0, 10, 20, or 40 g HOSO/kg diet for 12 weeks. Within each group, supplemental dietary FLAX was increased every 3 weeks from 0 to 10 to 20 to 40 g/kg diet. Compared to controls, dietary FLAX maximally enriched the total n-3 and VLC n-3 PUFA contents in egg yolk by 9.4-fold and 2.2-fold, respectively, while feeding hens 40 g HOSO/kg diet maximally attenuated the yolk deposition of ALA, VLC n-3 PUFA, and total n-3 PUFA by 37, 15, and 32%, respectively. These results suggest that dietary OLA is not neutral with regard to the overall process by which dietary ALA is absorbed, metabolized, and deposited into egg yolk, either intact or in the form of longer-chain/more unsaturated n-3 PUFA derivatives.
Collapse
Affiliation(s)
- Robert G Elkin
- Department of Animal Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Alexandra N Kukorowski
- Department of Animal Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yun Ying
- Department of Animal Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kevin J Harvatine
- Department of Animal Science, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
10
|
Sonti S, Duclos RI, Tolia M, Gatley SJ. N-Docosahexaenoylethanolamine (synaptamide): Carbon-14 radiolabeling and metabolic studies. Chem Phys Lipids 2017; 210:90-97. [PMID: 29126855 DOI: 10.1016/j.chemphyslip.2017.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/13/2017] [Accepted: 11/03/2017] [Indexed: 12/18/2022]
Abstract
N-Docosahexaenoylethanolamine (synaptamide) is structurally similar to the endocannabinoid N-arachidonoylethanolamine (anandamide), but incorporates the omega-3 22:6 fatty acid docosahexaenoic acid (DHA) in place of the omega-6 20:4 fatty acid arachidonic acid (AA). Some brain membrane lipid effects may be mediated via synaptamide. In competition experiments with mouse brain homogenate in vitro, we found that synaptamide was an order-of-magnitude poorer inhibitor of radioactive anandamide hydrolysis than was anandamide itself. Also, enzyme-mediated hydrolysis of synaptamide was observed to occur at a slower rate than for anandamide. We have synthesized synaptamide radiolabeled with carbon-14 in both the ethanolamine ([α,β-14C2]synaptamide) and in the DHA ([1-14C]synaptamide) moieties. The brain penetration, distribution, and metabolism of radiolabeled synaptamide were studied in mice in vivo relative to anandamide, DHA, and AA. Brain uptake of labeled synaptamide was greater than for labeled DHA, consistent with previous studies of labeled anandamide and AA in our laboratory. After administering either isotopomer of radiolabeled synaptamide, radiolabeled phospholipids were found in mouse brain. Pretreatment of mice with PF3845, a potent, specific inhibitor of fatty acid amide hydrolase (FAAH), eliminated formation of labeled phospholipids measured after 15min, suggesting that synaptamide is hydrolyzed nearly exclusively by FAAH, though it is a poorer substrate for FAAH than anandamide.
Collapse
Affiliation(s)
- Shilpa Sonti
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| | - Richard I Duclos
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| | - Mansi Tolia
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| | - Samuel J Gatley
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States.
| |
Collapse
|
11
|
Omega-3 Index and Anti-Arrhythmic Potential of Omega-3 PUFAs. Nutrients 2017; 9:nu9111191. [PMID: 29084142 PMCID: PMC5707663 DOI: 10.3390/nu9111191] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/18/2017] [Accepted: 10/23/2017] [Indexed: 01/22/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs), namely eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are permanent subjects of interest in relation to the protection of cardiovascular health and the prevention of the incidence of both ventricular and atrial arrhythmias. The purpose of this updated review is to focus on the novel cellular and molecular effects of omega-3 PUFAs, in the context of the mechanisms and factors involved in the development of cardiac arrhythmias; to provide results of the most recent studies on the omega-3 PUFA anti-arrhythmic efficacy and to discuss the lack of the benefit in relation to omega-3 PUFA status. The evidence is in the favor of omega-3 PUFA acute and long-term treatment, perhaps with mitochondria-targeted antioxidants. However, for a more objective evaluation of the anti-arrhythmic potential of omega-3 PUFAs in clinical trials, it is necessary to monitor the basal pre-interventional omega-3 status of individuals, i.e., red blood cell content, omega-3 index and free plasma levels. In the view of evidence-based medicine, it seems to be crucial to aim to establish new approaches in the prevention of cardiac arrhythmias and associated morbidity and mortality that comes with these conditions.
Collapse
|
12
|
Cazorla O, Matecki S. Insight into muscle physiology through understanding mechanisms of muscle pathology. J Muscle Res Cell Motil 2017; 38:1-2. [PMID: 28852922 DOI: 10.1007/s10974-017-9479-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/10/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Olivier Cazorla
- INSERM U1046, CNRS UMR9214, University of Montpellier, Montpellier, France.
| | - Stefan Matecki
- INSERM U1046, CNRS UMR9214, University of Montpellier, Montpellier, France
| |
Collapse
|