1
|
Wu H, Praveen P, Handley TNG, Chandrashekar C, Cummins SF, Bathgate RAD, Hossain MA. Total Chemical Synthesis of Aggregation-Prone Disulfide-Rich Starfish Peptides. Chemistry 2024; 30:e202400933. [PMID: 38609334 DOI: 10.1002/chem.202400933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
A relaxin-like gonad-stimulating peptide (RGP), Aso-RGP, featuring six cysteine residues, was identified in the Crown-of-Thorns Starfish (COTS, Acanthaster cf. solaris) and initially produced through recombinant yeast expression. This method yielded a single-chain peptide with an uncleaved C-peptide (His Tag) and suboptimal purity. Our objective was to chemically synthesize Aso-RGP in its mature form, comprising two chains (A and B) and three disulfide bridges, omitting the C-peptide. Furthermore, we aimed to synthesize a newly identified relaxin-like peptide, Aso-RLP2, from COTS, which had not been previously synthesized. This paper reports the first total chemical synthesis of Aso-RGP and Aso-RLP2. Aso-RGP synthesis proceeded without major issues, whereas the A-chain of Aso-RLP2, in its reduced and unfolded state with two free thiols, presented considerable challenges. These were initially marked by "messy" RP-HPLC profiles, typically indicative of synthesis failure. Surprisingly, oxidizing the A-chain significantly improved the RP-HPLC profile, revealing the main issue was not synthesis failure but the peptide's aggregation tendency, which initially obscured analysis. This discovery highlights the critical need to account for aggregation in peptide synthesis and analysis. Ultimately, our efforts led to the successful synthesis of both peptides with purities exceeding 95 %.
Collapse
Affiliation(s)
- Hongkang Wu
- The Florey, The University of Melbourne, Victoria, Australia
| | - Praveen Praveen
- The Florey, The University of Melbourne, Victoria, Australia
| | | | | | - Scott F Cummins
- Centre for Bioinnovation, University of the Sunshine Coast, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Queensland, Australia
| | - Ross A D Bathgate
- The Florey, The University of Melbourne, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Victoria, Australia
| | - Mohammed Akhter Hossain
- The Florey, The University of Melbourne, Victoria, Australia
- School of Chemistry, The University of Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Ali MR, Mahmud S, Faruque MO, Hossain MI, Hossain MA, Kibria KK. Investigation of the vaccine potential of an in silico designed FepA peptide vaccine against Shigella flexneri in mice model. Vaccine X 2024; 18:100493. [PMID: 38812954 PMCID: PMC11134883 DOI: 10.1016/j.jvacx.2024.100493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024] Open
Abstract
Background Shigellosis is one of the significant causes of diarrhea in Bangladesh. It is a global health problem; approximately 1.3 million people die yearly from Shigellosis. The current treatment method, using different antibiotics against Shigellosis is ineffective. Moreover, it becomes a worrying situation due to the emergence of antibiotic-resistant pathogenic microbes responsible for these diarrheal diseases. Methodology Previous immunoinformatics study predicted a potential peptide from the Ferric enterobactin protein (FepA) of Shigella spp. In this study, we have chemically synthesized the FepA peptide. As a highly immunogenic, FepA peptide conjugated with KLH has been tested in mice model with complete and incomplete adjuvants as a vaccine candidate. Results Immunological analysis showed that all vaccinated mice were immunologically boosted, which was statistically significant (P-value 0.0325) compared to control mice. Immunological analysis for bacterial neutralization test result was also statistically significant (P-value 0.0468), where each ELISA plate was coated with 1 × 107S. flexneri cells. The Challenge test with 1 × 1012S. flexneri cells to each vaccinated and controlled mice showed that 37.5 % of control (non-vaccinated) mice died within seven days after the challenge was given while 100 % of vaccinated mice remained strong and stout. The analyses of the post-challenge weight loss of the mice were also significant (P-value 0.0367) as the weight loss percentage in control mice was much higher than in the vaccinated mice. The pathological and phenotypic appearances of vaccinated mice were also clearly differentiable compared with control mice. Thus all these immunological analysis and pathological appearances directly supported our FepA peptide as a potential immune booster. Conclusion This study provides evidence that the FepA peptide is a highly immunogenic vaccine candidate against S. flexneri. Therefore, these findings inspire future trials for the evaluation of the suitability of this vaccine candidate against Shigellosis.
Collapse
Affiliation(s)
- Md. Rayhan Ali
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh
| | - Shahin Mahmud
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh
| | - Md. Omar Faruque
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh
| | - Md. Imam Hossain
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh
| | - Mohammed Akhter Hossain
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria 3052, Australia
| | - K.M. Kaderi Kibria
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh
| |
Collapse
|
3
|
Wu H, Handley TNG, Hoare BL, Hartono HA, Scott DJ, Chalmers DK, Bathgate RAD, Hossain MA. Developing insulin-like peptide 5-based antagonists for the G protein-coupled receptor, RXFP4. Biochem Pharmacol 2024; 224:116239. [PMID: 38679208 DOI: 10.1016/j.bcp.2024.116239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Human insulin-like peptide 5 (INSL5) is a gut hormone produced by colonic L-cells, and its biological functions are mediated by Relaxin Family Peptide Receptor 4 (RXFP4). Our preliminary data indicated that RXFP4 agonists are potential drug leads for the treatment of constipation. More recently, we designed and developed a novel RXFP4 antagonist, A13-nR that was shown to block agonist-induced activity in cells and animal models. We showed that A13-nR was able to block agonist-induced increases in colon motility in mice of both genders that express the receptor, RXFP4. Our data also showed that colorectal propulsion induced by intracolonic administration of short-chain fatty acids was antagonized by A13-nR. Therefore, A13-nR is an important research tool and potential drug lead for the treatment of colon motility disorders, such as bacterial diarrhea. However, A13-nR acted as a partial agonist at high concentrations in vitro and demonstrated modest antagonist potency (∼35 nM). Consequently, the primary objective of this study is to pinpoint novel modifications to A13-nR that eliminate partial agonist effects while preserving or augmenting antagonist potency. In this work, we detail the creation of a series of A13-nR-modified analogues, among which analogues 3, 4, and 6 demonstrated significantly improved RXFP4 affinity (∼3 nM) with reduced partial agonist activity, enhanced antagonist potency (∼10 nM) and maximum agonist inhibition (∼80 %) when compared with A13-nR. These compounds have potential as candidates for further preclinical evaluations, marking a significant stride toward innovative therapeutics for colon motility disorders.
Collapse
Affiliation(s)
- Hongkang Wu
- The Florey, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Thomas N G Handley
- The Florey, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Bradley L Hoare
- The Florey, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Herodion A Hartono
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash Institute of Pharmaceutical Sciences, Victoria 3052, Australia
| | - Daniel J Scott
- The Florey, The University of Melbourne, Parkville, Victoria 3052, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - David K Chalmers
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash Institute of Pharmaceutical Sciences, Victoria 3052, Australia
| | - Ross A D Bathgate
- The Florey, The University of Melbourne, Parkville, Victoria 3052, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Mohammed Akhter Hossain
- The Florey, The University of Melbourne, Parkville, Victoria 3052, Australia; School of Chemistry, The University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
4
|
Hossain MA, Praveen P, Noorzi NA, Wu H, Harrison IP, Handley T, Selemidis S, Samuel CS, Bathgate RAD. Development of Novel High-Affinity Antagonists for the Relaxin Family Peptide Receptor 1. ACS Pharmacol Transl Sci 2023; 6:842-853. [PMID: 37200817 PMCID: PMC10186362 DOI: 10.1021/acsptsci.3c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Indexed: 05/20/2023]
Abstract
H2 relaxin is a peptide hormone that exerts its biological actions through the G protein-coupled receptor, RXFP1. The numerous important biological functions of H2 relaxin, including potent renal, vasodilatory, cardioprotective, and anti-fibrotic actions, have resulted in considerable interest in its use as a therapeutic for various cardiovascular diseases and other fibrotic indications. Interestingly though, H2 relaxin and RXFP1 have been shown to be overexpressed in prostate cancer, allowing for the downregulation or blocking of relaxin/RXFP1 to decrease prostate tumor growth. These findings suggest the application of an RXFP1 antagonist for the treatment of prostate cancer. However, these therapeutically relevant actions are still poorly understood and have been hindered by the lack of a high-affinity antagonist. In this study, we chemically synthesized three novel H2 relaxin analogues that have complex insulin-like structures with two chains (A and B) and three disulfide bridges. We report here the structure-activity relationship studies on H2 relaxin that resulted in the development of a novel high-affinity RXFP1 antagonist, H2 B-R13HR (∼40 nM), that has only one extra methylene group in the side chain of arginine 13 in the B-chain (ArgB13) of H2 relaxin. Most notably, the synthetic peptide was shown to be active in a mouse model of prostate tumor growth in vivo where it inhibited relaxin-mediated tumor growth. Our compound H2 B-R13HR will be an important research tool to understand relaxin actions through RXFP1 and may be a potential lead compound for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Mohammed Akhter Hossain
- Florey
Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
- School
of Chemistry, University of Melbourne, Parkville 3010, Victoria, Australia
- Department
of Biochemistry and Pharmacology, University
of Melbourne, Parkville 3010, Victoria, Australia
| | - Praveen Praveen
- Florey
Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Nurhayati Ahmad Noorzi
- Cardiovascular
Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
- Department
of Pharmacology, Monash University, Clayton 3800, Victoria, Australia
| | - Hongkang Wu
- Florey
Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
- Department
of Biochemistry and Pharmacology, University
of Melbourne, Parkville 3010, Victoria, Australia
| | - Ian P. Harrison
- Cardiovascular
Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
- Department
of Pharmacology, Monash University, Clayton 3800, Victoria, Australia
| | - Thomas Handley
- Florey
Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Stavros Selemidis
- School
of
Health and Biomedical Sciences, RMIT University, Bundoora 3083, Victoria, Australia
| | - Chrishan S. Samuel
- Cardiovascular
Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
- Department
of Pharmacology, Monash University, Clayton 3800, Victoria, Australia
| | - Ross A. D. Bathgate
- Florey
Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
- Department
of Biochemistry and Pharmacology, University
of Melbourne, Parkville 3010, Victoria, Australia
| |
Collapse
|
5
|
Liu M, Li Q, Delaine C, Wu H, Arsenakis Y, White BF, Forbes BE, Chandrashekar C, Hossain MA. Total Chemical Synthesis of Palmitoyl-Conjugated Insulin. ACS OMEGA 2023; 8:13715-13720. [PMID: 37091377 PMCID: PMC10116525 DOI: 10.1021/acsomega.2c07918] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Commercially available insulins are manufactured by recombinant methods for the treatment of diabetes. Long-acting insulin drugs (e.g., detemir and degludec) are obtained by fatty acid conjugation at LysB29 ε-amine of insulin via acid-amide coupling. There are three amine groups in insulin, and they all react with fatty acids in alkaline conditions. Due to the lack of selectivity, such conjugation reactions produce non-desired byproducts. We designed and chemically synthesized a novel thiol-insulin scaffold (CysB29-insulin II), by replacing the LysB29 residue in insulin with the CysB29 residue. Then, we conjugated a fatty acid moiety (palmitic acid, C16) to CysB29-insulin II by a highly efficient and selective thiol-maleimide conjugation reaction. We obtained the target peptide (palmitoyl-insulin) rapidly within 5 min without significant byproducts. The palmitoyl-insulin is shown to be structurally similar to insulin and biologically active both in vitro and in vivo. Importantly, unlike native insulin, palmitoyl-insulin is slow and long-acting.
Collapse
Affiliation(s)
- Mengjie Liu
- Monash
Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
- The
Florey Institute of Neuroscience and Mental Health, Parkville 3052, Australia
| | - Qingyang Li
- The
Florey Institute of Neuroscience and Mental Health, Parkville 3052, Australia
- Sinochem
Pharmaceutical Co., Ltd, 21 Floor Jincheng building, Longpanzhong road, 216, Nanjing 210002, China
| | - Carlie Delaine
- Discipline
of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia
| | - Hongkang Wu
- The
Florey Institute of Neuroscience and Mental Health, Parkville 3052, Australia
| | - Yanni Arsenakis
- Department
of Medicine (Austin Health), The University
of Melbourne, Heidelberg, Victoria 3084, Australia
| | - Barbara F. White
- Department
of Medicine (Austin Health), The University
of Melbourne, Heidelberg, Victoria 3084, Australia
| | - Briony E. Forbes
- Discipline
of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia
| | | | - Mohammed Akhter Hossain
- The
Florey Institute of Neuroscience and Mental Health, Parkville 3052, Australia
- School of
Chemistry, and Department of Biochemistry and Pharmacology, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
6
|
Kubra KT, Hasan MM, Hasan MN, Salman MS, Khaleque MA, Sheikh MC, Rehan AI, Rasee AI, Waliullah R, Awual ME, Hossain MS, Alsukaibi AK, Alshammari HM, Awual MR. The heavy lanthanide of Thulium(III) separation and recovery using specific ligand-based facial composite adsorbent. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
7
|
Hasan MN, Salman MS, Hasan MM, Kubra KT, Sheikh MC, Rehan AI, Rasee AI, Awual ME, Waliullah R, Hossain MS, Islam A, Khandaker S, Alsukaibi AK, Alshammari HM, Awual MR. Assessing sustainable Lutetium(III) ions adsorption and recovery using novel composite hybrid nanomaterials. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Improving copper(II) ion detection and adsorption from wastewater by the ligand-functionalized composite adsorbent. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
9
|
Hasan M, Tul Kubra K, Hasan N, Awual E, Salman S, Sheikh C, Islam Rehan A, Islam Rasee A, Waliullah R, Islam S, Khandaker S, Islam A, Sohrab Hossain M, Alsukaibi AK, Alshammari HM, Awual R. Sustainable ligand-modified based composite material for the selective and effective cadmium(II) capturing from wastewater. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Simultaneous toxic Cd(II) and Pb(II) encapsulation from contaminated water using Mg/Al-LDH composite materials. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Pustovit RV, Zhang X, Liew JJ, Praveen P, Liu M, Koo A, Oparija-Rogenmozere L, Ou Q, Kocan M, Nie S, Bathgate RA, Furness JB, Hossain MA. A Novel Antagonist Peptide Reveals a Physiological Role of Insulin-Like Peptide 5 in Control of Colorectal Function. ACS Pharmacol Transl Sci 2021; 4:1665-1674. [PMID: 34661082 DOI: 10.1021/acsptsci.1c00171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Indexed: 12/23/2022]
Abstract
Insulin-like peptide 5 (INSL5), the natural ligand for the relaxin family peptide receptor 4 (RXFP4), is a gut hormone that is exclusively produced by colonic L-cells. We have recently developed an analogue of INSL5, INSL5-A13, that acts as an RXFP4 agonist in vitro and stimulates colorectal propulsion in wild-type mice but not in RXFP4-knockout mice. These results suggest that INSL5 may have a physiological role in the control of colorectal motility. To investigate this possibility, in this study we designed and developed a novel INSL5 analogue, INSL5-A13NR. This compound is a potent antagonist, without significant agonist activity, in two in vitro assays. We report here for the first time that this novel antagonist peptide blocks agonist-induced increase in colon motility in mice that express RXFP4. Our data also show that colorectal propulsion induced by intracolonic administration of bacterial products (short-chain fatty acids, SCFAs) is antagonized by INSL5-A13NR. Therefore, INSL5-A13NR is an important research tool and potential drug lead for the treatment of colon motility disorders, such as bacterial diarrheas.
Collapse
Affiliation(s)
- Ruslan V Pustovit
- The Florey Institute of Neuroscience and Mental Health; Department of Anatomy and Physiology; School of Biosciences, Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Institute; Department of Biochemistry and Pharmacology; School of Chemistry; The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Xiaozhou Zhang
- The Florey Institute of Neuroscience and Mental Health; Department of Anatomy and Physiology; School of Biosciences, Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Institute; Department of Biochemistry and Pharmacology; School of Chemistry; The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jamie Jm Liew
- The Florey Institute of Neuroscience and Mental Health; Department of Anatomy and Physiology; School of Biosciences, Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Institute; Department of Biochemistry and Pharmacology; School of Chemistry; The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Praveen Praveen
- The Florey Institute of Neuroscience and Mental Health; Department of Anatomy and Physiology; School of Biosciences, Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Institute; Department of Biochemistry and Pharmacology; School of Chemistry; The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Mengjie Liu
- The Florey Institute of Neuroscience and Mental Health; Department of Anatomy and Physiology; School of Biosciences, Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Institute; Department of Biochemistry and Pharmacology; School of Chemistry; The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Ada Koo
- The Florey Institute of Neuroscience and Mental Health; Department of Anatomy and Physiology; School of Biosciences, Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Institute; Department of Biochemistry and Pharmacology; School of Chemistry; The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Lalita Oparija-Rogenmozere
- The Florey Institute of Neuroscience and Mental Health; Department of Anatomy and Physiology; School of Biosciences, Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Institute; Department of Biochemistry and Pharmacology; School of Chemistry; The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Qinghao Ou
- The Florey Institute of Neuroscience and Mental Health; Department of Anatomy and Physiology; School of Biosciences, Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Institute; Department of Biochemistry and Pharmacology; School of Chemistry; The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Martina Kocan
- The Florey Institute of Neuroscience and Mental Health; Department of Anatomy and Physiology; School of Biosciences, Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Institute; Department of Biochemistry and Pharmacology; School of Chemistry; The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Shuai Nie
- The Florey Institute of Neuroscience and Mental Health; Department of Anatomy and Physiology; School of Biosciences, Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Institute; Department of Biochemistry and Pharmacology; School of Chemistry; The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Ross Ad Bathgate
- The Florey Institute of Neuroscience and Mental Health; Department of Anatomy and Physiology; School of Biosciences, Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Institute; Department of Biochemistry and Pharmacology; School of Chemistry; The University of Melbourne, Parkville, Victoria 3052, Australia
| | - John B Furness
- The Florey Institute of Neuroscience and Mental Health; Department of Anatomy and Physiology; School of Biosciences, Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Institute; Department of Biochemistry and Pharmacology; School of Chemistry; The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Mohammed Akhter Hossain
- The Florey Institute of Neuroscience and Mental Health; Department of Anatomy and Physiology; School of Biosciences, Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Institute; Department of Biochemistry and Pharmacology; School of Chemistry; The University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
12
|
Abstract
The pancreatic peptide hormone insulin, first discovered exactly 100 years ago, is essential for glycemic control and is used as a therapeutic for the treatment of type 1 and, increasingly, type 2 diabetes. With a worsening global diabetes epidemic and its significant health budget imposition, there is a great demand for new analogues possessing improved physical and functional properties. However, the chemical synthesis of insulin's intricate 51-amino acid, two-chain, three-disulfide bond structure, together with the poor physicochemical properties of both the individual chains and the hormone itself, has long represented a major challenge to organic chemists. This review provides a timely overview of the past efforts to chemically assemble this fascinating hormone using an array of strategies to enable both correct folding of the two chains and selective formation of disulfide bonds. These methods not only have contributed to general peptide synthesis chemistry and enabled access to the greatly growing numbers of insulin-like and cystine-rich peptides but also, today, enable the production of insulin at the synthetic efficiency levels of recombinant DNA expression methods. They have led to the production of a myriad of novel analogues with optimized structural and functional features and of the feasibility for their industrial manufacture.
Collapse
|
13
|
He R, Pan J, Mayer JP, Liu F. Stepwise Construction of Disulfides in Peptides. Chembiochem 2020; 21:1101-1111. [PMID: 31886929 DOI: 10.1002/cbic.201900717] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Indexed: 12/12/2022]
Abstract
The disulfide bond plays an important role in biological systems. It defines global conformation, and ultimately the biological activity and stability of the peptide or protein. It is frequently present, singly or multiply, in biologically important peptide hormones and toxins. Numerous disulfide-containing peptides have been approved by the regulatory agencies as marketed drugs. Chemical synthesis is one of the prerequisite tools needed to gain deep insights into the structure-function relationships of these biomolecules. Along with the development of solid-phase peptide synthesis, a number of methods of disulfide construction have been established. This minireview will focus on the regiospecific, stepwise construction of multiple disulfides used in the chemical synthesis of peptides. We intend for this article to serve a reference for peptide chemists conducting complex peptide syntheses and also hope to stimulate the future development of disulfide methodologies.
Collapse
Affiliation(s)
- Rongjun He
- Novo Nordisk Research Center Indianapolis, 5225 Exploration Drive, Indianapolis, IN, 46241, USA
| | - Jia Pan
- Novo Nordisk Research Center China, 20 Life Science Road, Beijing, 102206, P. R. China
| | - John P Mayer
- Department of Molecular, Developmental & Cell Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Fa Liu
- Novo Nordisk Research Center Seattle, 530 Fairview Avenue North, Seattle, WA, 98109, USA
| |
Collapse
|
14
|
Hossain MA, Wade JD. Novel Methods for the Chemical Synthesis of Insulin Superfamily Peptides and of Analogues Containing Disulfide Isosteres. Acc Chem Res 2017; 50:2116-2127. [PMID: 28829564 DOI: 10.1021/acs.accounts.7b00288] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The insulin superfamily of peptides is ubiquitous within vertebrates and invertebrates and is characterized by the presence of a set of three disulfide bonds in a unique disposition. With the exception of insulin-like growth factors I and II, which are single chain peptides, the remaining 8 members of the human insulin superfamily are two-chain peptides containing one intramolecular and two intermolecular disulfide bridges. These structural features have long made the chemical synthesis of the peptides a considerable challenge, in particular, including their correct disulfide bond pairing and formation. However, they have also afforded the opportunity to develop modern solid phase synthesis methods for the preparation of such peptides that incorporate novel or improved chemical methods for the controlled introduction of both disulfide bonds and their surrogates, both during and after peptide chain assembly. In turn, this has enabled a detailed probing of the structure and function relationship of this small but complex superfamily of peptides. After initially using and subsequently identifying significant limitations of the approach of simultaneous random chain combination and oxidative folding, our laboratory undertook to develop robust chemical synthesis strategies in concert with orthogonal cysteine S-protecting groups and corresponding regioselective disulfide bond formation. These have included the separate synthesis of each of the two chains or of the two chains linked by an artificial C-peptide that is removed following postoxidative folding. These, in turn, have enabled an increased ease of acquisition in a good yield of not only members of human insulin superfamily but other insulin-like peptides. Importantly, these successful methods have enabled, for the first time, a detailed analysis of the role that the disulfide bonds play in the structure and function of such peptides. This was achieved by selective removal of the disulfide bonds or by the judicious insertion of disulfide isosteres that possess structurally subtle variations in bond length, hydrophobicity, and angle. These include lactam, dicarba, and cystathionine, each of which has required modifications to the peptide synthesis protocols for their successful placement within the peptides. Together, these synthesis improvements and the novel chemical developments of cysteine/cystine analogues have greatly aided in the development of novel insulin-like peptide (INSL) analogues, principally with intra-A-chain disulfide isosteres, possessing not only improved functional properties such as increased receptor selectivity but also, with one important and unexpected exception, greater in vivo half-lives due to stability against disulfide reductases. Such analogues greatly will aid further biochemical and pharmacological analyses to delineate the structure-function relationships of INSLs and also future potential drug development.
Collapse
Affiliation(s)
- Mohammed Akhter Hossain
- The Florey Institute of Neuroscience
and Mental Health and School
of Chemistry, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - John D. Wade
- The Florey Institute of Neuroscience
and Mental Health and School
of Chemistry, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
15
|
Liu F, Li P, Gelfanov V, Mayer J, DiMarchi R. Synthetic Advances in Insulin-like Peptides Enable Novel Bioactivity. Acc Chem Res 2017; 50:1855-1865. [PMID: 28771323 DOI: 10.1021/acs.accounts.7b00227] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Insulin is a miraculous hormone that has served a seminal role in the treatment of insulin-dependent diabetes for nearly a century. Insulin resides within in a superfamily of structurally related peptides that are distinguished by three invariant disulfide bonds that anchor the three-dimensional conformation of the hormone. The additional family members include the insulin-like growth factors (IGF) and the relaxin-related set of peptides that includes the so-called insulin-like peptides. Advances in peptide chemistry and rDNA-based synthesis have enabled the preparation of multiple insulin analogues. The translation of these methods from insulin to related peptides has presented unique challenges that pertain to differing biophysical properties and unique amino acid compositions. This Account presents a historical context for the advances in the chemical synthesis of insulin and the related peptides, with division into two general categories where disulfide bond formation is facilitated by native conformational folding or alternatively orthogonal chemical reactivity. The inherent differences in biophysical properties of insulin-like peptides, and in particular within synthetic intermediates, have constituted a central limitation to achieving high yield synthesis of properly folded peptides. Various synthetic approaches have been advanced in the past decade to successfully address this challenge. The use of chemical ligation and metastable amide bond surrogates are two of the more important synthetic advances in the preparation of high quality synthetic precursors to high potency peptides. The discovery and application of biomimetic connecting peptides simplifies proper disulfide formation and the subsequent traceless removal by chemical methods dramatically simplifies the total synthesis of virtually any two-chain insulin-like peptide. We report the application of these higher synthetic yield methodologies to the preparation of insulin-like peptides in support of exploratory in vivo studies requiring a large quantity of peptide. Tangentially, we demonstrate the use of these methods to study the relative importance of the IGF-1 connecting peptide to its biological activity. We report the translation of these finding in search of an insulin analog that might be comparably enhanced by a suitable connecting peptide for interaction with the insulin receptor, as occurs with IGF-1 and its receptor. The results identify a unique receptor site in the IGF-1 receptor from which this enhancement derives. The selective substitution of this specific IGF-1 receptor sequence into the homologous site in the insulin receptor generated a chimeric receptor that was equally capable of signaling with insulin or IGF-1. This novel receptor proved to enhance the potency of lower affinity insulin ligands when they were supplemented with the IGF-1 connecting peptide that similarly enhanced IGF-1 activity at its receptor. The chimeric insulin receptor demonstrated no further enhancement of potency for native insulin when it was similarly prepared as a single-chain analogue with a native IGF-1 connecting peptide. These results suggest a more highly evolved insulin receptor structure where the requirement for an additional structural element to achieve high potency interaction as demonstrated for IGF-1 is no longer required.
Collapse
Affiliation(s)
- Fa Liu
- Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - Pengyun Li
- Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - Vasily Gelfanov
- Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - John Mayer
- Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - Richard DiMarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
16
|
Thalluri K, Kou B, Yang X, Zaykov AN, Mayer JP, Gelfanov VM, Liu F, DiMarchi RD. Synthesis of relaxin‐2 and insulin‐like peptide 5 enabled by novel tethering and traceless chemical excision. J Pept Sci 2017; 23:455-465. [DOI: 10.1002/psc.3010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Kishore Thalluri
- Department of ChemistryIndiana University Bloomington IN 47405 USA
| | - Binbin Kou
- Novo Nordisk Research Center Indianapolis 5225 Exploration Drive Indianapolis IN 46241 USA
| | - Xu Yang
- Department of ChemistryIndiana University Bloomington IN 47405 USA
| | - Alexander N. Zaykov
- Novo Nordisk Research Center Indianapolis 5225 Exploration Drive Indianapolis IN 46241 USA
| | - John P. Mayer
- Novo Nordisk Research Center Indianapolis 5225 Exploration Drive Indianapolis IN 46241 USA
| | - Vasily M. Gelfanov
- Novo Nordisk Research Center Indianapolis 5225 Exploration Drive Indianapolis IN 46241 USA
| | - Fa Liu
- Novo Nordisk Research Center Indianapolis 5225 Exploration Drive Indianapolis IN 46241 USA
| | | |
Collapse
|
17
|
Yang X, Gelfanov V, Liu F, DiMarchi R. Synthetic Route to Human Relaxin-2 via Iodine-Free Sequential Disulfide Bond Formation. Org Lett 2016; 18:5516-5519. [DOI: 10.1021/acs.orglett.6b02751] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xu Yang
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Vasily Gelfanov
- Novo Nordisk
Research
Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - Fa Liu
- Novo Nordisk
Research
Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - Richard DiMarchi
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
- Novo Nordisk
Research
Center Indianapolis, Indianapolis, Indiana 46241, United States
| |
Collapse
|
18
|
Liu F, Zaykov AN, Levy JJ, DiMarchi RD, Mayer JP. Chemical synthesis of peptides within the insulin superfamily. J Pept Sci 2016; 22:260-70. [PMID: 26910514 DOI: 10.1002/psc.2863] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/07/2016] [Accepted: 01/13/2016] [Indexed: 12/21/2022]
Abstract
The synthesis of insulin has inspired fundamental advances in the art of peptide science while simultaneously revealing the structure-function relationship of this centrally important metabolic hormone. This review highlights milestones in the chemical synthesis of insulin that can be divided into two separate approaches: (i) disulfide bond formation driven by protein folding and (ii) chemical reactivity-directed sequential disulfide bond formation. Common to the two approaches are the persistent challenges presented by the hydrophobic nature of the individual A-chain and B-chain and the need for selective disulfide formation under mildly oxidative conditions. The extension and elaboration of these synthetic approaches have been ongoing within the broader insulin superfamily. These structurally similar peptides include the insulin-like growth factors and also the related peptides such as relaxin that signal through G-protein-coupled receptors. After a half-century of advances in insulin chemistry, we have reached a point where synthesis is no longer limiting structural and biological investigation within this family of peptide hormones. The future will increasingly focus on the refinement of structure to meet medicinal purposes that have long been pursued, such as the development of a glucose-sensitive insulin. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Fa Liu
- Calibrium LLC, 11711 N. Meridian Street, Carmel, IN, 46032, USA
| | - Alexander N Zaykov
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Jay J Levy
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Richard D DiMarchi
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - John P Mayer
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| |
Collapse
|
19
|
Patil NA, Bathgate RAD, Kocan M, Ang SY, Tailhades J, Separovic F, Summers R, Grosse J, Hughes RA, Wade JD, Hossain MA. The C-terminus of the B-chain of human insulin-like peptide 5 is critical for cognate RXFP4 receptor activity. Amino Acids 2015; 48:987-992. [PMID: 26661035 DOI: 10.1007/s00726-015-2144-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/22/2015] [Indexed: 11/26/2022]
Abstract
Insulin-like peptide 5 (INSL5) is an orexigenic peptide hormone belonging to the relaxin family of peptides. It is expressed primarily in the L-cells of the colon and has a postulated key role in regulating food intake. Its G protein-coupled receptor, RXFP4, is a potential drug target for treating obesity and anorexia. We studied the effect of modification of the C-terminus of the A and B-chains of human INSL5 on RXFP4 binding and activation. Three variants of human INSL5 were prepared using solid phase peptide synthesis and subsequent sequential regioselective disulfide bond formation. The peptides were synthesized as C-terminal acids (both A- and B-chains with free C-termini, i.e., the native form), amides (both chains as the C-terminal amide) and one analog with the C-terminus of its A-chain as the amide and the C-terminus of the B-chain as the acid. The results showed that C-terminus of the B-chain is more important than that of the A-chain for RXFP4 binding and activity. Amidation of the A-chain C-terminus does not have any effect on the INSL5 activity. The difference in RXFP4 binding and activation between the three peptides is believed to be due to electrostatic interaction of the free carboxylate of INSL5 with a positively charged residue (s), either situated within the INSL5 molecule itself or in the receptor extracellular loops.
Collapse
Affiliation(s)
- Nitin A Patil
- Howard Florey Research Laboratories, Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Ross A D Bathgate
- Howard Florey Research Laboratories, Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Martina Kocan
- Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Sheng Yu Ang
- Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Julien Tailhades
- Howard Florey Research Laboratories, Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Roger Summers
- Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | | | - Richard A Hughes
- Department of Pharmacology, University of Melbourne, Melbourne, VIC, Australia
| | - John D Wade
- Howard Florey Research Laboratories, Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia.
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, VIC, Australia.
| | - Mohammed Akhter Hossain
- Howard Florey Research Laboratories, Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia.
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
20
|
Hossain MA, Haugaard-Kedström LM, Rosengren KJ, Bathgate RAD, Wade JD. Chemically synthesized dicarba H2 relaxin analogues retain strong RXFP1 receptor activity but show an unexpected loss of in vitro serum stability. Org Biomol Chem 2015; 13:10895-903. [PMID: 26368576 DOI: 10.1039/c5ob01539a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Peptides and proteins are now acknowledged as viable alternatives to small molecules as potential therapeutic agents. A primary limitation to their more widespread acceptance is their generally short in vivo half-lives due to serum enzyme susceptibility and rapid renal clearance. Numerous chemical approaches to address this concern have been undertaken in recent years. The replacement of disulfide bonds with non-reducible elements has been demonstrated to be one effective means by eliminating the deleterious effect of serum reductases. In particular, substitution with dicarba bonds via ring closure metathesis has been increasingly applied to many bioactive cystine-rich peptides. We used this approach for the replacement of the A-chain intramolecular disulfide bond of human relaxin 2 (H2 relaxin), an insulin-like peptide that has important regulatory roles in cardiovascular and connective tissue homeostasis that has led to successful Phase IIIa clinical trials for the treatment of acute heart failure. Use of efficient solid phase synthesis of the two peptide chains was followed by on-resin ring closure metathesis and formation of the dicarba bond within the A-chain and then by off-resin combination with the B-chain via sequential directed inter-chain disulfide bond formation. After purification and comprehensive chemical characterization, the two isomeric synthetic H2 relaxin analogues were shown to retain near-equipotent RXFP1 receptor binding and activation propensity. Unexpectedly, the in vitro serum stability of the analogues was greatly reduced compared with the native peptide. Circular dichroism spectroscopy studies showed subtle differences in the secondary structures between dicarba analogues and H2 relaxin suggesting that, although the overall fold is retained, it may be destabilized which could account for rapid degradation of dicarba analogues in serum. Caution is therefore recommended when using ring closure metathesis as a general approach to enhance peptide stability.
Collapse
Affiliation(s)
- Mohammed Akhter Hossain
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia.
| | | | | | | | | |
Collapse
|
21
|
Diepenhorst NA, Petrie EJ, Chen CZ, Wang A, Hossain MA, Bathgate RAD, Gooley PR. Investigation of interactions at the extracellular loops of the relaxin family peptide receptor 1 (RXFP1). J Biol Chem 2014; 289:34938-52. [PMID: 25352603 DOI: 10.1074/jbc.m114.600882] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Relaxin, an emerging pharmaceutical treatment for acute heart failure, activates the relaxin family peptide receptor (RXFP1), which is a class A G-protein-coupled receptor. In addition to the classic transmembrane (TM) domain, RXFP1 possesses a large extracellular domain consisting of 10 leucine-rich repeats and an N-terminal low density lipoprotein class A (LDLa) module. Relaxin-mediated activation of RXFP1 requires multiple coordinated interactions between the ligand and various receptor domains including a high affinity interaction involving the leucine-rich repeats and a predicted lower affinity interaction involving the extracellular loops (ELs). The LDLa is essential for signal activation; therefore the ELs/TM may additionally present an interaction site to facilitate this LDLa-mediated signaling. To overcome the many challenges of investigating relaxin and the LDLa module interactions with the ELs, we engineered the EL1 and EL2 loops onto a soluble protein scaffold, mapping specific ligand and loop interactions using nuclear magnetic resonance spectroscopy. Key EL residues were subsequently mutated in RXFP1, and changes in function and relaxin binding were assessed alongside the RXFP1 agonist ML290 to monitor the functional integrity of the TM domain of these mutant receptors. The outcomes of this work make an important contribution to understanding the mechanism of RXFP1 activation and will aid future development of small molecule RXFP1 agonists/antagonists.
Collapse
Affiliation(s)
- Natalie A Diepenhorst
- From the Florey Institute of Neuroscience and Mental Health, the Department of Biochemistry and Molecular Biology, and
| | - Emma J Petrie
- the Department of Biochemistry and Molecular Biology, and
| | - Catherine Z Chen
- the National Center for Advancing Translational Sciences, Division of Preclinical Innovation, National Institutes of Health, Rockville, Maryland 20850
| | - Amy Wang
- the National Center for Advancing Translational Sciences, Division of Preclinical Innovation, National Institutes of Health, Rockville, Maryland 20850
| | - Mohammed Akhter Hossain
- From the Florey Institute of Neuroscience and Mental Health, the School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia and
| | - Ross A D Bathgate
- From the Florey Institute of Neuroscience and Mental Health, the Department of Biochemistry and Molecular Biology, and
| | - Paul R Gooley
- the Department of Biochemistry and Molecular Biology, and
| |
Collapse
|
22
|
Hossain MA, Wade JD. Synthetic relaxins. Curr Opin Chem Biol 2014; 22:47-55. [DOI: 10.1016/j.cbpa.2014.09.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/12/2014] [Accepted: 09/12/2014] [Indexed: 12/01/2022]
|
23
|
Shabanpoor F, Bathgate RAD, Wade JD, Hossain MA. C-terminus of the B-chain of relaxin-3 is important for receptor activity. PLoS One 2013; 8:e82567. [PMID: 24349312 PMCID: PMC3859608 DOI: 10.1371/journal.pone.0082567] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/24/2013] [Indexed: 01/23/2023] Open
Abstract
Human relaxin-3 is a neuropeptide that is structurally similar to human insulin with two chains (A and B) connected by three disulfide bonds. It is expressed primarily in the brain and has modulatory roles in stress and anxiety, feeding and metabolism, and arousal and behavioural activation. Structure-activity relationship studies have shown that relaxin-3 interacts with its cognate receptor RXFP3 primarily through its B-chain and that its A-chain does not have any functional role. In this study, we have investigated the effect of modification of the B-chain C-terminus on the binding and activity of the peptide. We have chemically synthesised and characterized H3 relaxin as C-termini acid (both A and B chains having free C-termini; native form) and amide forms (both chains’ C-termini were amidated). We have confirmed that the acid form of the peptide is more potent than its amide form at both RXFP3 and RXFP4 receptors. We further investigated the effects of amidation at the C-terminus of individual chains. We report here for the first time that amidation at the C-terminus of the B-chain of H3 relaxin leads to significant drop in the binding and activity of the peptide at RXFP3/RXFP4 receptors. However, modification of the A-chain C-terminus does not have any effect on the activity. We have confirmed using circular dichroism spectroscopy that there is no secondary structural change between the acid and amide form of the peptide, and it is likely that it is the local C-terminal carboxyl group orientation that is crucial for interacting with the receptors.
Collapse
Affiliation(s)
- Fazel Shabanpoor
- Florey Institute for Neuroscience & Mental Health, University of Melbourne, Melbourne, Victoria, Australia
- School of Chemistry, University of Melbourne, Melbourne, Victoria, Australia
| | - Ross A. D. Bathgate
- Florey Institute for Neuroscience & Mental Health, University of Melbourne, Melbourne, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - John D. Wade
- Florey Institute for Neuroscience & Mental Health, University of Melbourne, Melbourne, Victoria, Australia
- School of Chemistry, University of Melbourne, Melbourne, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
- * E-mail: (MAH); (JDW)
| | - Mohammed Akhter Hossain
- Florey Institute for Neuroscience & Mental Health, University of Melbourne, Melbourne, Victoria, Australia
- School of Chemistry, University of Melbourne, Melbourne, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
- * E-mail: (MAH); (JDW)
| |
Collapse
|
24
|
Lin F, Tailhades J, Chan LJ, Bathgate RA, Hossain MA, Wade JD. Preparation of canine relaxin by Fmoc-solid phase synthesis and regioselective disulfide bond formation within the A- and B-chains. ACTA ACUST UNITED AC 2013. [DOI: 10.7243/2052-9341-1-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Shabanpoor F, Hossain MA, Lin F, Wade JD. Sequential formation of regioselective disulfide bonds in synthetic peptides with multiple disulfide bonds. Methods Mol Biol 2013; 1047:81-87. [PMID: 23943479 DOI: 10.1007/978-1-62703-544-6_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Numerous methods have been developed for the formation of disulfide bonds in recombinant DNA-derived and chemically synthesized peptides and proteins, but only a few have found widespread acceptance. The choice of method(s) for formation of disulfide in synthetic peptides and proteins needs to be tailored for each individual polypeptide in such a way so that the reaction conditions are selective, efficient, and safe and give the maximum yield. Here we describe the sequential formation of three disulfide bonds regioselectively which has been optimized for the synthesis of two-chained, heterodimeric polypeptide members of the insulin-relaxin superfamily.
Collapse
Affiliation(s)
- Fazel Shabanpoor
- Florey Neuroscience Institutes, School of Chemistry, The University of Melbourne, Parkville, VIC, Australia
| | | | | | | |
Collapse
|
26
|
The Importance of Tryptophan B28 in H2 Relaxin for RXFP2 Binding and Activation. Int J Pept Res Ther 2012. [DOI: 10.1007/s10989-012-9332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Chan LJ, Rosengren KJ, Layfield SL, Bathgate RAD, Separovic F, Samuel CS, Hossain MA, Wade JD. Identification of key residues essential for the structural fold and receptor selectivity within the A-chain of human gene-2 (H2) relaxin. J Biol Chem 2012; 287:41152-64. [PMID: 23024363 DOI: 10.1074/jbc.m112.409284] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human gene-2 (H2) relaxin is currently in Phase III clinical trials for the treatment of acute heart failure. It is a 53-amino acid insulin-like peptide comprising two chains and three disulfide bonds. It interacts with two of the relaxin family peptide (RXFP) receptors. Although its cognate receptor is RXFP1, it is also able to cross-react with RXFP2, the native receptor for a related peptide, insulin-like peptide 3. In order to understand the basis of this cross-reactivity, it is important to elucidate both binding and activation mechanisms of this peptide. The primary binding mechanism of this hormone has been extensively studied and well defined. H2 relaxin binds to the leucine-rich repeats of RXFP1 and RXFP2 using B-chain-specific residues. However, little is known about the secondary interaction that involves the A-chain of H2 relaxin and transmembrane exoloops of the receptors. We demonstrate here through extensive mutation of the A-chain that the secondary interaction between H2 relaxin and RXFP1 is not driven by any single amino acid, although residues Tyr-3, Leu-20, and Phe-23 appear to contribute. Interestingly, these same three residues are important drivers of the affinity and activity of H2 relaxin for RXFP2 with additional minor contributions from Lys-9, His-12, Lys-17, Arg-18, and Arg-22. Our results provide new insights into the mechanism of secondary activation interaction of RXFP1 and RXFP2 by H2 relaxin, leading to a potent and RXFP1-selective analog, H2:A(4-24)(F23A), which was tested in vitro and in vivo and found to significantly inhibit collagen deposition similar to native H2 relaxin.
Collapse
Affiliation(s)
- Linda J Chan
- Florey Neuroscience Institutes, University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Hossain MA, Chow Suet Man B, Zhao C, Xu Q, Du XJ, Wade JD, Samuel CS. H3 Relaxin Demonstrates Antifibrotic Properties via the RXFP1 Receptor. Biochemistry 2011; 50:1368-75. [DOI: 10.1021/bi1013968] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | - Qi Xu
- Baker IDI Heart and Diabetes Institute, St. Kilda Road Central, Melbourne, Victoria 8008, Australia
| | - Xiao-Jun Du
- Baker IDI Heart and Diabetes Institute, St. Kilda Road Central, Melbourne, Victoria 8008, Australia
| | | | | |
Collapse
|
29
|
Zhang S, Hughes RA, Bathgate RAD, Shabanpoor F, Hossain MA, Lin F, van Lierop B, Robinson AJ, Wade JD. Role of the intra-A-chain disulfide bond of insulin-like peptide 3 in binding and activation of its receptor, RXFP2. Peptides 2010; 31:1730-6. [PMID: 20570702 DOI: 10.1016/j.peptides.2010.05.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 05/29/2010] [Accepted: 05/29/2010] [Indexed: 10/19/2022]
Abstract
INSL3 is a member of the insulin-IGF-relaxin superfamily and plays a key role in male fetal development and in adult germ cell maturation. It is the cognate ligand for RXFP2, a leucine-rich repeat containing G-protein coupled receptor. To date, and in contrast to our current knowledge of the key structural features that are required for the binding of INSL3 to RXFP2, comparatively little is known about the key residues that are required to elicit receptor activation and downstream cell signaling. Early evidence suggests that these are contained principally within the A-chain. To further explore this hypothesis, we have undertaken an examination of the functional role of the intra-A-chain disulfide bond. Using solid-phase peptide synthesis together with regioselective disulfide bond formation, two analogs of human INSL3 were prepared in which the intra-chain disulfide bond was replaced, one in which the corresponding Cys residues were substituted with the isosteric Ser and the other in which the Cys were removed altogether. Both of these peptides retained nearly full RXFP2 receptor binding but were devoid of cAMP activity (receptor activation), indicating that the intra-A-chain disulfide bond makes a significant contribution to the ability of INSL3 to act as an RXFP2 agonist. Replacement of the disulfide bond with a metabolically stable dicarba bond yielded two isomers of INSL3 that each exhibited bioactivity similar to native INSL3. This study highlights the critical structural role played by the intra-A-chain disulfide bond of INSL3 in mediating agonist actions through the RXFP2 receptor.
Collapse
Affiliation(s)
- Suode Zhang
- Howard Florey Institute, University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Solid Phase Synthesis of an Analogue of Insulin, A0:R glargine, That Exhibits Decreased Mitogenic Activity. Int J Pept Res Ther 2010. [DOI: 10.1007/s10989-010-9218-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Wade JD, Lin F, Hossain MA, Shabanpoor F, Zhang S, Tregear GW. The chemical synthesis of relaxin and related peptides. Ann N Y Acad Sci 2009; 1160:11-5. [PMID: 19416151 DOI: 10.1111/j.1749-6632.2009.03951.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Successful methods for the chemical assembly of insulin-like peptides allow the detailed study of their structure and function relationships. However, the two-chain, three-disulfide bond structure of this family of peptides, which includes relaxin, has long represented a significant challenge with respect to their chemical synthesis. Early efforts involved the random combination of the two synthetic S-reduced chains under oxidizing conditions to spontaneously form the three disulfide bonds. Such an approach, while generally effective for native sequences, is critically dependent upon the presence of intact secondary structures within the individual chains which guide the subsequent folding and oxidation pathway. This limitation prevents the use of this approach for the preparation of analogs in which these secondary elements are either absent or modified. Nowadays, the use of highly efficient solid-phase peptide synthesis methodologies together with selective S-thiol-protecting groups allows the acquisition of individual chains that can be combined by effective sequential chemically directed formation of each of the three disulfide bonds. These approaches have allowed the high-yield assembly of an array of insulin-like peptides which, in turn, has provided considerable and valuable structural and biological information.
Collapse
Affiliation(s)
- John D Wade
- Howard Florey Institute, School of Chemistry, University of Melbourne, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
32
|
Hossain MA, Rosengren KJ, Zhang S, Bathgate RAD, Tregear GW, van Lierop BJ, Robinson AJ, Wade JD. Solid phase synthesis and structural analysis of novel A-chain dicarba analogs of human relaxin-3 (INSL7) that exhibit full biological activity. Org Biomol Chem 2009; 7:1547-53. [PMID: 19343240 DOI: 10.1039/b821882j] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Replacement of disulfide bonds with non-reducible isosteres can be a useful means of increasing the in vivo stability of a protein. We describe the replacement of the A-chain intramolecular disulfide bond of human relaxin-3 (H3 relaxin, INSL7), an insulin-like peptide that has potential applications in the treatment of stress and obesity, with the physiologically stable dicarba bond. Solid phase peptide synthesis was used to prepare an A-chain analogue in which the two cysteine residues that form the intramolecular bond were replaced with allylglycine. On-resin microwave-mediated ring closing metathesis was then employed to generate the dicarba bridge. Subsequent cleavage of the peptide from the solid support, purification of two isomers and their combination with the B-chain via two intermolecular disulfide bonds, then furnished two isomers of dicarba-H3 relaxin. These were characterized by CD spectroscopy, which suggested a structural similarity to the native peptide. Additional analysis by solution NMR spectroscopy also identified the likely cis/trans form of the analogs. Both peptides demonstrated binding affinities that were equivalent to native H3 relaxin on RXFP1 and RXFP3 expressing cells. However, although the cAMP activity of the analogs on RXFP3 expressing cells was similar to the native peptide, the potency on RXFP1 expressing cells was slightly lower. The data confirmed the use of a dicarba bond as a useful isosteric replacement of the disulfide bond.
Collapse
|
33
|
Hossain MA, Bathgate RAD, Rosengren KJ, Shabanpoor F, Zhang S, Lin F, Tregear GW, Wade JD. The structural and functional role of the B-chain C-terminal arginine in the relaxin-3 peptide antagonist, R3(BDelta23-27)R/I5. Chem Biol Drug Des 2009; 73:46-52. [PMID: 19152634 DOI: 10.1111/j.1747-0285.2008.00756.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Relaxin-3, a member of the insulin superfamily, is involved in regulating stress and feeding behavior. It is highly expressed in the brain and is the endogenous ligand for the receptor RXFP3. As relaxin-3 also interacts with the relaxin receptor RXFP1, selective agonists and antagonists are crucial for studying the physiological function(s) of the relaxin-3/RXFP3 pair. The analog R3(BDelta23-27)R/I5, in which a C-terminally truncated human relaxin-3 (H3) B-chain is combined with the INSL5 A-chain, is a potent selective RXFP3 antagonist and has an Arg residue remaining on the B-chain C-terminus as a consequence of the recombinant protein production process. To investigate the role of this residue in the RXFP3 receptor binding and activation, the analogs R3(BDelta23-27)R/I5 and R3(BDelta23-27)R containing the B-chain C-terminal Arg as well as R3(BDelta23-27)/I5 and R3(BDelta23-27), both lacking the Arg, were chemically assembled and their secondary structure and receptor activity assessed. The peptides generally had a similar conformation but those with the extra Arg residue displayed a significantly increased affinity for the RXFP3. Interestingly, in contrast to R3(BDelta23-27)R and R3(BDelta23-27)R/I5, the peptide R3(BDelta23-27) is a weak agonist. This suggests that the C-terminal Arg, although increasing the affinity, alters the manner in which the peptide binds to the receptor and thereby prevents activation, giving R3(BDelta23-27)R/I5 its potent antagonistic activity.
Collapse
|
34
|
Akhter Hossain M, Bathgate RAD, Kong CK, Shabanpoor F, Zhang S, Haugaard-Jönsson LM, Rosengren KJ, Tregear GW, Wade JD. Synthesis, conformation, and activity of human insulin-like peptide 5 (INSL5). Chembiochem 2008; 9:1816-22. [PMID: 18576448 PMCID: PMC2699039 DOI: 10.1002/cbic.200800113] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Insulin-like peptide 5 (INSL5) was first identified through searches of the expressed sequence tags (EST) databases. Primary sequence analysis showed it to be a prepropeptide that was predicted to be processed in vivo to yield a two-chain sequence (A and B) that contained the insulin-like disulfide cross-links. The high affinity interaction between INSL5 and the receptor RXFP4 (GPCR142) coupled with their apparent coevolution and partially overlapping tissue expression patterns strongly suggest that INSL5 is an endogenous ligand for RXFP4. Given that the primary function of the INSL5–RXFP4 pair remains unknown, an effective means of producing sufficient quantities of this peptide and its analogues is needed to systematically investigate its structural and biological properties. A combination of solid-phase peptide synthesis methods together with regioselective disulfide bond formation were used to obtain INSL5. Both chains were unusually resistant to standard synthesis protocols and required highly optimized conditions for their acquisition. In particular, the use of a strong tertiary amidine, DBU, as Nα-deprotection base was required for the successful assembly of the B chain; this highlights the need to consider incomplete deprotection rather than acylation as a cause of failed synthesis. Following sequential disulfide bond formation and chain combination, the resulting synthetic INSL5, which was obtained in good overall yield, was shown to possess a similar secondary structure to human relaxin-3 (H3 relaxin). The peptide was able to inhibit cAMP activity in SK-N-MC cells that expressed the human RXFP4 receptor with a similar activity to H3 relaxin. In contrast, it had no activity on the human RXFP3 receptor. Synthetic INSL5 demonstrates equivalent activity to the recombinant-derived peptide, and will be an important tool for the determination of its biological function.
Collapse
|
35
|
Zhang S, Lin F, Hossain MA, Shabanpoor F, Tregear GW, Wade JD. Simultaneous Post-cysteine(S-Acm) Group Removal Quenching of Iodine and Isolation of Peptide by One Step Ether Precipitation. Int J Pept Res Ther 2008. [DOI: 10.1007/s10989-008-9148-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Haugaard-Jönsson LM, Hossain MA, Daly NL, Bathgate RAD, Wade JD, Craik DJ, Rosengren KJ. Structure of the R3/I5 chimeric relaxin peptide, a selective GPCR135 and GPCR142 agonist. J Biol Chem 2008; 283:23811-8. [PMID: 18577524 DOI: 10.1074/jbc.m800489200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human relaxin family comprises seven peptide hormones with various biological functions mediated through interactions with G-protein-coupled receptors. Interestingly, among the hitherto characterized receptors there is no absolute selectivity toward their primary ligand. The most striking example of this is the relaxin family ancestor, relaxin-3, which is an agonist for three of the four currently known relaxin receptors: GPCR135, GPCR142, and LGR7. Relaxin-3 and its endogenous receptor GPCR135 are both expressed predominantly in the brain and have been linked to regulation of stress and feeding. However, to fully understand the role of relaxin-3 in neurological signaling, the development of selective GPCR135 agonists and antagonists for in vivo studies is crucial. Recent reports have demonstrated that such selective ligands can be achieved by making chimeric peptides comprising the relaxin-3 B-chain combined with the INSL5 A-chain. To obtain structural insights into the consequences of combining A- and B-chains from different relaxins we have determined the NMR solution structure of a human relaxin-3/INSL5 chimeric peptide. The structure reveals that the INSL5 A-chain adopts a conformation similar to the relaxin-3 A-chain, and thus has the ability to structurally support a native-like conformation of the relaxin-3 B-chain. These findings suggest that the decrease in activity at the LGR7 receptor seen for this peptide is a result of the removal of a secondary LGR7 binding site present in the relaxin-3 A-chain, rather than conformational changes in the primary B-chain receptor binding site.
Collapse
|
37
|
Shabanpoor F, Hughes RA, Bathgate RAD, Zhang S, Scanlon DB, Lin F, Hossain MA, Separovic F, Wade JD. Solid-Phase Synthesis of Europium-Labeled Human INSL3 as a Novel Probe for the Study of Ligand−Receptor Interactions. Bioconjug Chem 2008; 19:1456-63. [DOI: 10.1021/bc800127p] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fazel Shabanpoor
- Howard Florey Institute, School of Chemistry, Department of Pharmacology, Department of Biochemistry and Molecular Biology, and Bio21 Institute, The University of Melbourne, Victoria 3010, Australia
| | - Richard A. Hughes
- Howard Florey Institute, School of Chemistry, Department of Pharmacology, Department of Biochemistry and Molecular Biology, and Bio21 Institute, The University of Melbourne, Victoria 3010, Australia
| | - Ross A. D. Bathgate
- Howard Florey Institute, School of Chemistry, Department of Pharmacology, Department of Biochemistry and Molecular Biology, and Bio21 Institute, The University of Melbourne, Victoria 3010, Australia
| | - Suode Zhang
- Howard Florey Institute, School of Chemistry, Department of Pharmacology, Department of Biochemistry and Molecular Biology, and Bio21 Institute, The University of Melbourne, Victoria 3010, Australia
| | - Denis B. Scanlon
- Howard Florey Institute, School of Chemistry, Department of Pharmacology, Department of Biochemistry and Molecular Biology, and Bio21 Institute, The University of Melbourne, Victoria 3010, Australia
| | - Feng Lin
- Howard Florey Institute, School of Chemistry, Department of Pharmacology, Department of Biochemistry and Molecular Biology, and Bio21 Institute, The University of Melbourne, Victoria 3010, Australia
| | - Mohammed Akhter Hossain
- Howard Florey Institute, School of Chemistry, Department of Pharmacology, Department of Biochemistry and Molecular Biology, and Bio21 Institute, The University of Melbourne, Victoria 3010, Australia
| | - Frances Separovic
- Howard Florey Institute, School of Chemistry, Department of Pharmacology, Department of Biochemistry and Molecular Biology, and Bio21 Institute, The University of Melbourne, Victoria 3010, Australia
| | - John D. Wade
- Howard Florey Institute, School of Chemistry, Department of Pharmacology, Department of Biochemistry and Molecular Biology, and Bio21 Institute, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
38
|
Samuel CS, Lin F, Hossain MA, Zhao C, Ferraro T, Bathgate RAD, Tregear GW, Wade JD. Improved chemical synthesis and demonstration of the relaxin receptor binding affinity and biological activity of mouse relaxin. Biochemistry 2007; 46:5374-81. [PMID: 17425335 DOI: 10.1021/bi700238h] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The primary stored and circulating form of relaxin in humans, human gene-2 (H2) relaxin, has potent antifibrotic properties with rapidly occurring efficacy. However, when administered to experimental models of fibrosis, H2 relaxin can only be applied over short-term (2-4 week) periods, due to rodents mounting an antibody response to the exogenous human relaxin, resulting in delayed clearance and, hence, increased and variable circulating levels. To overcome this problem, the current study investigated the therapeutic potential of mouse relaxin over long-term exposure in vivo. Mouse relaxin is unique among the known relaxins in that it possesses an extra residue within the C-terminal region of its A-chain. To enable a detailed assessment of its receptor interaction and biological properties, it was chemically synthesized in good overall yield by the separate preparation of each of its A- and B-chains followed by regioselective formation of each of the intramolecular and two intermolecular disulfide bonds. Murine relaxin was shown to bind with high affinity to the human, mouse, and rat RXFP1 (primary relaxin) receptor but with a slightly lower affinity to that of H2 relaxin. When administered to relaxin-deficient mice (which undergo an age-dependent progression of organ fibrosis) over a 4 month treatment period, mouse relaxin was able to significantly inhibit the progression of collagen accumulation in several organs including the lung, kidney, testis, and skin (all p < 0.05 vs untreated group), consistent with the actions of H2 relaxin. These combined data demonstrate that mouse relaxin can effectively inhibit collagen deposition and accumulation (fibrosis) over long-term treatment periods.
Collapse
Affiliation(s)
- Chrishan S Samuel
- Howard Florey Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|