1
|
Hashemi ZS, Khalili S, Barough MS, Sarrami Forooshani R, Sanati H, Sarafrazi Esfandabadi F, Rasaee MJ, Nasirmoghadas P. Characterization of an engineered ACE2 protein for its improved biological features and its transduction into MSCs: A novel approach to combat COVID-19 infection. Int J Biol Macromol 2024; 277:134066. [PMID: 39059530 DOI: 10.1016/j.ijbiomac.2024.134066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/06/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Transduced MSCs that express engineered ACE2 could be highly beneficial to combat COVID-19. Engineered ACE2 can act as decoy targets for the virus, preventing its entry into healthy lung cells. To this end, genetic engineering techniques were used to integrate the ACE2 gene into the MSCs genome. The MSCs were evaluated for proper expression and functionality. The mutated form of ACE2 was characterized using various techniques such as protein expression analysis, binding affinity against spike protein, thermal stability assessment, and enzymatic activity assays. The functionality of the mACE2 was assessed on SARS-CoV-2 using the virus-neutralizing test. The obtained results indicated that by introducing specific mutations in the ACE2 gene, the resulting mutant ACE2 had enhanced interaction with viral spike protein, its thermal stability was increased, and its enzymatic function was inhibited as a decoy receptor. Moreover, the mACE2 protein showed higher efficacy in the neutralization of the SARS-CoV-2. In conclusion, this study proposes a novel approach with potential benefits such as targeted drug delivery and reduced side effects on healthy tissues. These transduced MSCs can also be used in combination with other anti-COVID-19 treatments. Design of similar engineered biomolecules with desired properties could also be used to target other diseases.
Collapse
Affiliation(s)
- Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran.
| | | | | | - Hassan Sanati
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | | | - Mohammad Javad Rasaee
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pourya Nasirmoghadas
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Huang SH, Chen YT, Lin XY, Ly YY, Lien ST, Chen PH, Wang CT, Wu SC, Chen CC, Lin CY. In silico prediction of immune-escaping hot spots for future COVID-19 vaccine design. Sci Rep 2023; 13:13468. [PMID: 37596329 PMCID: PMC10439115 DOI: 10.1038/s41598-023-40741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/16/2023] [Indexed: 08/20/2023] Open
Abstract
The COVID-19 pandemic has had a widespread impact on a global scale, and the evolution of considerable dominants has already taken place. Some variants contained certain key mutations located on the receptor binding domain (RBD) of spike protein, such as E484K and N501Y. It is increasingly worrying that these variants could impair the efficacy of current vaccines or therapies. Therefore, analyzing and predicting the high-risk mutations of SARS-CoV-2 spike glycoprotein is crucial to design future vaccines against the different variants. In this work, we proposed an in silico approach, immune-escaping score (IES), to predict high-risk immune-escaping hot spots on the receptor-binding domain (RBD), implemented through integrated delta binding free energy measured by computational mutagenesis of spike-antibody complexes and mutation frequency calculated from viral genome sequencing data. We identified 23 potentially immune-escaping mutations on the RBD by using IES, nine of which occurred in omicron variants (R346K, K417N, N440K, L452Q, L452R, S477N, T478K, F490S, and N501Y), despite our dataset being curated before the omicron first appeared. The highest immune-escaping score (IES = 1) was found for E484K, which agrees with recent studies stating that the mutation significantly reduced the efficacy of neutralization antibodies. Furthermore, our predicted delta binding free energy and IES show a high correlation with high-throughput deep mutational scanning data (Pearson's r = 0.70) and experimentally measured neutralization titers data (mean Pearson's r = -0.80). In summary, our work presents a new method to identify the potentially immune-escaping mutations on the RBD and provides valuable insights into future COVID-19 vaccine design.
Collapse
Affiliation(s)
| | | | | | - Yi-Yi Ly
- Graphen Inc., New York, NY, 10110, USA
| | | | | | | | - Suh-Chin Wu
- Adimmune Corp., Taichung City, 427003, Taiwan
| | | | | |
Collapse
|
3
|
Ahmadvand M, Barough MS, Hashemi ZS, Sanati H, Abbasvandi F, Yunesian M, Majidzadeh-A K, Makarem J, Aghayan HR, Abedini A, Ghavamzadeh A, Forooshani RS. Safety and feasibility study of ex vivo expanded allogeneic-NK cells infusion in patients with acute pneumonia caused by COVID-19. Pilot Feasibility Stud 2023; 9:137. [PMID: 37542307 PMCID: PMC10401743 DOI: 10.1186/s40814-023-01355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 06/16/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND NK cells are the most active innate immune cells in antiviral immunity, which are impaired by SARS-COV2 infection. Infusion of allogeneic NK cells might be a complementary treatment to boost immune system function in COVID-19 patients. In this project, we focused on COVID-19 patients with low inspiratory capacity (LIC). This project aims to evaluate the feasibility and safety of allogeneic NK cell infusion as an intervention for respiratory viral disease. METHODS A non-blind two arms pilot study was designed and conducted after signing the consent form. Ten matched patients, in terms of vital signs and clinical features, were enrolled in the control and intervention groups. Approximately 2 × 10^6 cells/kg of NK cells were prepared under GCP (good clinical practice) conditions for each patient in the intervention group. The control group was under the same conditions and drug regimen except for the treatment with the prepared cells. Then, infused intravenously during 20 min in the ICU ward of Masih Daneshvari Hospital. The clinical signs, serological parameters, and CTCAE (Common Terminology Criteria for Adverse Events) were recorded for safety evaluation and the feasibility of project management were evaluated via designed checklist based on CONSORT. RESULTS There were no symptoms of anaphylaxis, hypersensitivity, significant changes in blood pressure, cardiovascular complications, and fever from injection time up to 48 h after cell infusion. The mean hospitalization period in the control and intervention groups was 10 and 8 days, respectively. The blood O2 saturation level was raised after cell infusion, and a significantly lower mean level of inflammatory enzymes was observed in the intervention group following discharge compared to the control group (p < 0.05). The inflammatory parameters differences at the discharge date in cell therapy group were highly negative. CONCLUSION Intravenous infusion of ex vivo-expanded allogeneic NK cells was safe and feasible. However, the efficacy of this approach to reducing the severity of disease in COVID-19 patients with LIC could not be determined. TRIAL REGISTRATION Name of the registry: NKCTC. IRCT20200621047859N2. December 29, 2020. URL of trial registry record: https://www.irct.ir/trial/49382.
Collapse
Affiliation(s)
- Mohammad Ahmadvand
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran, Iran
| | | | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Hassan Sanati
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fereshteh Abbasvandi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Keivan Majidzadeh-A
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Jalil Makarem
- Department of Anesthesiology and Critical Care, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Atefeh Abedini
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ardeshir Ghavamzadeh
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | | |
Collapse
|
4
|
Fallah A, Sedighian H, Behzadi E, Havaei SA, Kachuei R, Imani Fooladi AA. The role of serum circulating microbial toxins in severity and cytokine storm of COVID positive patients. Microb Pathog 2023; 174:105888. [PMID: 36402345 PMCID: PMC9671676 DOI: 10.1016/j.micpath.2022.105888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
The emergence of Coronavirus disease 2019 (Covid-19) is a global problem nowadays, causing health difficulty with increasing mortality rates, which doesn't have a verified treatment. SARS-CoV-2 infection has various pathological and epidemiological characteristics, one of them is increased amounts of cytokine production, which in order activate an abnormal unrestricted response called "cytokine storm". This event contributes to severe acute respiratory distress syndrome (ARDS), which results in respiratory failure and pneumonia and is the great cause of death associated with Covid-19. Endotoxemia and the release of bacterial lipopolysaccharides (endotoxins) from the lumen into the bloodstream enhance proinflammatory cytokines. SARS-CoV-2 can straightly interplay with endotoxins via its S protein, leading to the extremely elevating release of cytokines and consequently increase the harshness of Covid-19. In this review, we will discuss the possible role of viral-bacterial interaction that occurs through the transfer of bacterial products such as lipopolysaccharide (LPS) from the intestine into the bloodstream, exacerbating the severity of Covid-19 and cytokine storms.
Collapse
Affiliation(s)
- Arezoo Fallah
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elham Behzadi
- Academy of Medical Sciences of the I.R. of Iran, Tehran, Iran
| | - Seyed Asghar Havaei
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Kachuei
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran,Corresponding author. 14359-44711, Tehran, Iran
| |
Collapse
|
5
|
Rahbar MR, Mubarak SMH, Hessami A, Khalesi B, Pourzardosht N, Khalili S, Zanoos KA, Jahangiri A. A unique antigen against SARS-CoV-2, Acinetobacter baumannii, and Pseudomonas aeruginosa. Sci Rep 2022; 12:10852. [PMID: 35760825 PMCID: PMC9237110 DOI: 10.1038/s41598-022-14877-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023] Open
Abstract
The recent outbreak of COVID-19 has increased hospital admissions, which could elevate the risk of nosocomial infections, such as A. baumannii and P. aeruginosa infections. Although effective vaccines have been developed against SARS-CoV-2, no approved treatment option is still available against antimicrobial-resistant strains of A. baumannii and P. aeruginosa. In the current study, an all-in-one antigen was designed based on an innovative, state-of-the-art strategy. In this regard, experimentally validated linear epitopes of spike protein (SARS-CoV-2), OmpA (A. baumannii), and OprF (P. aeruginosa) were selected to be harbored by mature OmpA as a scaffold. The selected epitopes were used to replace the loops and turns of the barrel domain in OmpA; OprF311–341 replaced the most similar sequence within the OmpA, and three validated epitopes of OmpA were retained intact. The obtained antigen encompasses five antigenic peptides of spike protein, which are involved in SARS-CoV-2 pathogenicity. One of these epitopes, viz. QTQTNSPRRARSV could trigger antibodies preventing super-antigenic characteristics of spike and alleviating probable autoimmune responses. The designed antigen could raise antibodies neutralizing emerging variants of SARS-CoV-2 since at least two epitopes are consensus. In conclusion, the designed antigen is expected to raise protective antibodies against SARS-CoV-2, A. baumannii, and P. aeruginosa.
Collapse
Affiliation(s)
- Mohammad Reza Rahbar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shaden M H Mubarak
- Department of Clinical Laboratory Science, Faculty of Pharmacy, University of Kufa, Najaf, Iraq
| | - Anahita Hessami
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran
| | - Navid Pourzardosht
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Kobra Ahmadi Zanoos
- Young Researchers Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Vanak Sq. Molasadra St., P.O. Box 1435915371, Tehran, Iran.
| |
Collapse
|
6
|
Ao D, Lan T, He X, Liu J, Chen L, Baptista‐Hon DT, Zhang K, Wei X. SARS-CoV-2 Omicron variant: Immune escape and vaccine development. MedComm (Beijing) 2022; 3:e126. [PMID: 35317190 PMCID: PMC8925644 DOI: 10.1002/mco2.126] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 02/05/2023] Open
Abstract
New genetic variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) constantly emerge through unmitigated spread of the virus in the ongoing Coronavirus disease 2019 pandemic. Omicron (B.1.1.529), the latest variant of concern (VOC), has so far shown exceptional spread and infectivity and has established itself as the dominant variant in recent months. The SARS-CoV-2 spike glycoprotein is a key component for the recognition and binding to host cell angiotensin-converting enzyme 2 receptors. The Omicron variant harbors a cluster of substitutions/deletions/insertions, and more than 30 mutations are located in spike. Some noticeable mutations, including K417N, T478K, N501Y, and P681H, are shared with the previous VOCs Alpha, Beta, Gamma, or Delta variants and have been proven to be associated with higher transmissibility, viral infectivity, and immune evasion potential. Studies have revealed that the Omicron variant is partially resistant to the neutralizing activity of therapeutic antibodies and convalescent sera, which poses significant challenges for the clinical effectiveness of the current vaccines and therapeutic antibodies. We provide a comprehensive analysis and summary of the epidemiology and immune escape mechanisms of the Omicron variant. We also suggest some therapeutic strategies against the Omicron variant. This review, therefore, aims to provide information for further research efforts to prevent and contain the impact of new VOCs during the ongoing pandemic.
Collapse
Affiliation(s)
- Danyi Ao
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduSichuanChina
| | - Tianxia Lan
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduSichuanChina
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jian Liu
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduSichuanChina
| | - Li Chen
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduSichuanChina
| | - Daniel T. Baptista‐Hon
- Center for Biomedicine and InnovationsFaculty of MedicineMacau University of Science and TechnologyMacauChina
| | - Kang Zhang
- Center for Biomedicine and InnovationsFaculty of MedicineMacau University of Science and TechnologyMacauChina
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|