1
|
Gerazova-Efremova K, Kjovkarovska SD, Domazetovska S, Miova B. Nicotinamide and heat preconditioning - Effects on hepatic HSP70, carbohydrate and oxidative disturbances in STZ-induced diabetic rats. J Therm Biol 2020; 91:102645. [PMID: 32716886 DOI: 10.1016/j.jtherbio.2020.102645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/25/2020] [Accepted: 06/11/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Nicotinamide (NA) is known to have antioxidant potential and partially to protect insulin-secreting cells against diabetogenic agent STZ (streptozotocin). In a combination to heat stress (HS), NA is also known to induce heat-shock proteins (HSPs) production. Heat preconditioning (HP) and HSPs have cytoprotective effects against development of cellular injury caused by application of subsequent stressor. We aimed to determine if pretreatment with NA and HP (as HSP70 -inducers) can affect STZ-induced diabetic disturbances in rats. METHODS NA-pretreatment (250 mg/kg b.w., 7 days) and heat preconditioning (41 ± 1 °C, 45 min) of diabetic rats was performed. The changes in hepatic carbohydrate- and antioxidative-related enzymes and substrates were investigated. RESULTS NA-pretreatment, alone or in combination with HS, resulted in significant increase of HSP70 concentration in the liver of control and diabetic rats. Compared to diabetic controls, pretreatment with NA, in combination with HP, resulted in decrease of blood and liver glucose, increase of glycogen and glucose-6-phosphate level, increase of glycogenolytic/glycolytic enzymes, decrease of gluconeogenic enzymes, as well as an increase of glutathione content and glutathione peroxidase, decrease of glutathione reductase and catalase activities. CONCLUSIONS NA is a potent HSP70 coinducer, alone or in a combination with HS in the liver of both control and diabetic rats. Pretreatment with NA, accompanied by HP, has a pronounced corrective effect on STZ-induced diabetes disturbances in the key hepatic carbohydrate- and antioxidative-related parameters. It seems that this corrective effect is based on the increased production of hepatic HSP70.
Collapse
Affiliation(s)
| | - Suzana Dinevska- Kjovkarovska
- Department of Experimental Physiology and Biochemistry, Institute of Biology Faculty of Natural Sciences and Mathematics, University "St Cyril and Methodius", Skopje, R. North Macedonia.
| | - Saska Domazetovska
- PHI University Clinic of Clinical Biochemistry, Clinical Center Mother Theresa Skopje, R. North Macedonia.
| | - Biljana Miova
- Department of Experimental Physiology and Biochemistry, Institute of Biology Faculty of Natural Sciences and Mathematics, University "St Cyril and Methodius", Skopje, R. North Macedonia.
| |
Collapse
|
2
|
Burnstock G, Vaughn B, Robson SC. Purinergic signalling in the liver in health and disease. Purinergic Signal 2014; 10:51-70. [PMID: 24271096 PMCID: PMC3944046 DOI: 10.1007/s11302-013-9398-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/18/2022] Open
Abstract
Purinergic signalling is involved in both the physiology and pathophysiology of the liver. Hepatocytes, Kupffer cells, vascular endothelial cells and smooth muscle cells, stellate cells and cholangiocytes all express purinoceptor subtypes activated by adenosine, adenosine 5'-triphosphate, adenosine diphosphate, uridine 5'-triphosphate or UDP. Purinoceptors mediate bile secretion, glycogen and lipid metabolism and indirectly release of insulin. Mechanical stress results in release of ATP from hepatocytes and Kupffer cells and ATP is also released as a cotransmitter with noradrenaline from sympathetic nerves supplying the liver. Ecto-nucleotidases play important roles in the signalling process. Changes in purinergic signalling occur in vascular injury, inflammation, insulin resistance, hepatic fibrosis, cirrhosis, diabetes, hepatitis, liver regeneration following injury or transplantation and cancer. Purinergic therapeutic strategies for the treatment of these pathologies are being explored.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
3
|
Pittelli M, Felici R, Pitozzi V, Giovannelli L, Bigagli E, Cialdai F, Romano G, Moroni F, Chiarugi A. Pharmacological effects of exogenous NAD on mitochondrial bioenergetics, DNA repair, and apoptosis. Mol Pharmacol 2011; 80:1136-46. [PMID: 21917911 DOI: 10.1124/mol.111.073916] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
During the last several years, evidence that various enzymes hydrolyze NAD into bioactive products prompted scientists to revisit or design strategies able to increase intracellular availability of the dinucleotide. However, plasma membrane permeability to NAD and the mitochondrial origin of the dinucleotide still wait to be clearly defined. Here, we report that intracellular NAD contents increased upon exposure of cell lines or primary cultures to exogenous NAD (eNAD). NAD precursors could not reproduce the effects of eNAD, and they were not found in the incubating medium containing eNAD, thereby suggesting direct cellular eNAD uptake. We found that in mitochondria of cells exposed to eNAD, NAD and NADH as well as oxygen consumption and ATP production were increased. Conversely, DNA repair, a well known NAD-dependent process, was unaltered upon eNAD exposure. We also report that eNAD conferred significant cytoprotection from apoptosis triggered by staurosporine, C2-ceramide, or N-methyl-N'-nitro-N-nitrosoguanidine. In particular, eNAD reduced staurosporine-induced loss of mitochondrial membrane potential and ensuing caspase activation. Of importance, pharmacological inhibition or silencing of the NAD-dependent enzyme SIRT1 abrogated the ability of eNAD to provide protection from staurosporine, having no effect on eNAD-dependent protection from C2-ceramide or N-methyl-N'-nitro-N-nitrosoguanidine. Taken together, our findings, on the one hand, strengthen the hypothesis that eNAD crosses the plasma membrane intact and, on the other hand, provide evidence that increased NAD contents significantly affects mitochondrial bioenergetics and sensitivity to apoptosis.
Collapse
Affiliation(s)
- Maria Pittelli
- Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Tuckey NPL, Forster ME, Gieseg SP. Effects of rested harvesting on muscle metabolite concentrations and K-values in Chinook salmon (Oncorhynchus tshawytscha) fillets during storage at 15 degrees C. J Food Sci 2010; 75:C459-64. [PMID: 20629868 DOI: 10.1111/j.1750-3841.2010.01648.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Improvement of harvesting procedures in aquaculture may also improve the quality and storage properties of the fish. The use of an anesthetic allows fish to be harvested with reduced stress and exhaustion, which affect fillet properties. We report here on the effects of rested harvesting on the postharvest metabolic profiles and K-values in Chinook salmon (Oncorhynchus tshawytscha) fillets stored near to the fish's acclimation temperature at 15 degrees C for 36 h. Fresh rested fillets were obtained by anesthesia with AQUI-S. They had high cut surface pHs (7.63) and high concentrations of adenosine triphosphate (ATP) and creatine phosphate (3.75 and 8.73 micromol g(-1) respectively), which depleted over 12 h. In contrast, fresh exhausted fillets had low cut surface pHs (6.66) and ATP and creatine phosphate were depleted. Adenosine diphosphate (ADP) and beta-nicotinamide adenine dinucleotide (NAD(+)) concentrations also remained significantly higher during the first 12 h of storage in rested fillets. In fresh rested fillets inosine monophosphate (IMP) concentrations reached maximum after 12 h storage (4.78 micromol g(-1)), whereas maximum IMP concentrations occurred immediately postharvest in the exhausted fillets (6.42 micromol g(-1)). After 36 h storage, K-values in exhausted fillets reached 52.11% compared to 19.27% in rested fillets. Rested harvesting of Chinook salmon improved the fillets' metabolic potential postharvest, extending metabolite depletion times, changing IMP concentrations and reducing K-values.
Collapse
Affiliation(s)
- Nicholas P L Tuckey
- The New Zealand Inst. for Plant and Food Research Limited, P.O. Box 5114, Port Nelson, Nelson 7043, New Zealand.
| | | | | |
Collapse
|
5
|
de Oliveira AL, Eler GJ, Bracht A, Peralta RM. Purinergic effects of a hydroalcoholic Agaricus brasiliensis (A. blazei) extract on liver functions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:7202-7210. [PMID: 20507067 DOI: 10.1021/jf100804k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The effects of a hydroalcoholic extract of Agaricus brasiliensis (A. blazei) on functional parameters in the perfused rat liver were examined with emphasis on its content of nucleotides and nucleosides. Several nucleosides and nucleotides were identified in the A. brasiliensis extract, which was active on several liver functions. A significant part of the effects is the result of the purinergic action of nucleosides and nucleotides: pressure increment, glycogenolysis stimulation, transient inhibition of oxygen consumption, and redox state changes. Other phenomena such as the stimulation of gluconeogenesis, ureogenesis, and oxygen consumption are more likely consequences of the metabolic transformation of substrates contained within the extract, especially amino acids. It seems apparent that consumption of A. brasiliensis represents not only the ingestion of metabolic precursors but also the ingestion of substances that, even at low concentrations, can exert important signaling functions in the liver as well as in the organism as a whole.
Collapse
|
6
|
Broetto-Biazon AC, Bracht F, Bracht L, Kelmer-Bracht AM, Bracht A. Transformation and action of extracellular NAD+ in perfused rat and mouse livers. Acta Pharmacol Sin 2009; 30:90-7. [PMID: 19079292 DOI: 10.1038/aps.2008.7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
AIM Transformation and possible metabolic effects of extracellular NAD+ were investigated in the livers of mice (Mus musculus; Swiss strain) and rats (Rattus novergicus; Holtzman and Wistar strains). METHODS The livers were perfused in an open system using oxygen-saturated Krebs/Henseleit-bicarbonate buffer (pH 7.4) as the perfusion fluid. The transformation of NAD+ was monitored using high-performance liquid chromatography. RESULTS In the mouse liver, the single-pass metabolism of 100 micromol/L NAD+ was almost complete; ADP-ribose and nicotinamide were the main products in the outflowing perfusate. In the livers of both Holtzman and Wistar rats, the main transformation products were ADP-ribose, uric acid and nicotinamide; significant amounts of inosine and AMP were also identified. On a weight basis, the transformation of NAD+ was more efficient in the mouse liver. In the rat liver, 100 micromol/L NAD+ transiently inhibited gluconeogenesis and oxygen uptake. Inhibition was followed by a transient stimulation. Inhibition was more pronounced in the Wistar strain and stimulation was more pronounced in the Holtzman strain. In the mouse liver, no clear effects on gluconeogenesis and oxygen uptake were found even at 500 micromol/L NAD+. CONCLUSION It can be concluded that the functions of extracellular NAD+ are species-dependent and that observations in one species are strictly valid for that species. Interspecies extrapolations should thus be made very carefully. Actually, even variants of the same species can demonstrate considerably different responses.
Collapse
|
7
|
Buelow B, Song Y, Scharenberg AM. The Poly(ADP-ribose) polymerase PARP-1 is required for oxidative stress-induced TRPM2 activation in lymphocytes. J Biol Chem 2008; 283:24571-83. [PMID: 18599483 PMCID: PMC3259813 DOI: 10.1074/jbc.m802673200] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
TRPM2 cation channels are widely expressed in the immune system and are thought to play a role in immune cell responses to oxidative stress. Patch clamp analyses suggest that TRPM2 channel activation can occur through a direct action of oxidants on TRPM2 channels or indirectly through the actions of a related group of adenine nucleotide 2nd messengers. However, the contribution of each gating mechanism to oxidative stress-induced TRPM2 activation in lymphocytes remains undefined. To better understand the molecular events leading to TRPM2 activation in lymphocytes, we analyzed oxidative stress-induced turnover of intracellular NAD, the metabolic precursor of adenine nucleotide 2nd messengers implicated in TRPM2 gating, and oxidative stress-induced TRPM2-mediated currents and Ca2+ transients in DT40 B cells. TRPM2-dependent Ca2+ entry did not influence the extent or time course of oxidative stress-induced turnover of NAD. Furthermore, expression of oxidative stress-activated poly(ADP-ribose) polymerases (PARPs) was required for oxidative stress-induced NAD turnover, TRPM2 currents, and TRPM2-dependent Ca2+ transients; no oxidant-induced activation of TRPM2 channels could be detected in PARP-deficient cells. Together, our results suggest that during conditions of oxidative stress in lymphocytes, TRPM2 acts as a downstream effector of the PARP/poly(ADP-ribose) glycohydrolase pathway through PARP-dependent formation of ADP-ribose.
Collapse
Affiliation(s)
- Ben Buelow
- Department of Pediatrics and Immunology, University of Washington, Seattle, Washington 98103, USA
| | | | | |
Collapse
|
8
|
Broetto-Biazon AC, Kangussu MM, Padilha F, Bracht F, Kelmer-Bracht AM, Bracht A. Transformation and actions of extracellular NADP(+) in the rat liver. Mol Cell Biochem 2008; 317:85-95. [PMID: 18548198 DOI: 10.1007/s11010-008-9834-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 06/03/2008] [Indexed: 11/28/2022]
Abstract
The possible actions and transformation of extracellular NADP(+) in the rat liver have not yet been studied. Considering the various effects of its analogue NAD(+) in the liver, however, effects of NADP(+) can equally be expected. In the present work, this question was approached in the isolated perfused rat liver to get a preliminary picture of the action of extracellular NADP(+) in this organ. NADP(+) (100 microM) produced transient increases in the portal perfusion pressure. Glucose release (glycogenolysis) and lactate production from endogenous glycogen were transiently increased in antegrade and retrograde perfusion. Oxygen uptake was stimulated after a transient inhibition in antegrade perfusion, which was practically absent in retrograde perfusion. Pyruvate production was transiently inhibited. In the absence of Ca(2+), all of these effects were no longer observed. Bromophenacyl bromide, an inhibitor of eicosanoid synthesis, almost abolished all effects. Suramin, a non-specific purinergic P2(YX) antagonist, also inhibited the action of NADP(+). Single pass transformation of 75 microM NADP(+) was equal to 92%. Besides nicotinamide, at least two additional transformation products were detected: 2'-phospho-ADP-ribose and a non-identified component, the former being more important (67% of the transformed NADP(+)). Nicotinic acid adenine dinucleotide phosphate (NAADP) was not found in the outflowing perfusate. It was concluded that NADP(+), like NAD(+), acts on perfusion pressure and glycogen catabolism in the liver mainly via eicosanoid synthesis mediated by purinergic P2(YX) receptors.
Collapse
Affiliation(s)
- Ana Carla Broetto-Biazon
- Laboratory of Liver Metabolism, Department of Biochemistry, University of Maringá, 87020900, Maringa, Brazil
| | | | | | | | | | | |
Collapse
|
9
|
de Sá-Nakanishi AB, Bracht F, Yamamoto NS, Padilha F, Kelmer-Bracht AM, Bracht A. The action of extracellular NAD+ in the liver of healthy and tumor-bearing rats: model analysis of the tumor-induced modified response. Exp Mol Pathol 2008; 84:218-25. [PMID: 18387605 DOI: 10.1016/j.yexmp.2008.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Revised: 01/30/2008] [Accepted: 02/01/2008] [Indexed: 10/22/2022]
Abstract
The chronic inflammatory state induced by cancer is expected to affect the actions of extracellular NAD(+) in the liver because these are largely mediated by eicosanoids. Under this assumption the present work was planned to investigate the influence of the Walker-256 tumor on the action of extracellular NAD(+) on metabolism and hemodynamics in the perfused rat liver. The experiments were done with livers from healthy and tumor-bearing rats with measurements of gluconeogenesis from lactate, pyruvate production, oxygen consumption and portal pressure. A model describing the biphasic effects of NAD(+) was proposed as an auxiliary worktool for interpretation. The Walker-256 tumor modified the responses of metabolism to extracellular NAD(+) by delaying the peak of maximal responses and by prolonging the inhibitory effects. The transient increase in portal perfusion pressure caused by NAD(+) was enhanced and delayed. The model was constructed assuming the mediation of a down-regulator (inhibition), an up-regulator (stimulation) and receptor dessensitization. Analysis suggested that the productions of both the down- and up-regulators were substantially increased and delayed in time in the tumor-bearing condition. Since the regulators are probably eicosanoids, this analysis is consistent with the increased capacity of producing these agents in the chronic inflammatory state induced by cancer.
Collapse
|