1
|
Kadoglou NPE, Stasinopoulou M, Velidakis N, Khattab E, Christodoulou E, Gkougkoudi E, Valsami G. The Complex Mechanisms and the Potential Effects of Statins on Vascular Calcification: A Narrative Review. Rev Cardiovasc Med 2024; 25:51. [PMID: 39077343 PMCID: PMC11263155 DOI: 10.31083/j.rcm2502051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 07/31/2024] Open
Abstract
Vascular calcification (VC) is a complex process of calcium deposition on the arterial wall and atherosclerotic plaques and involves interaction between vascular smooth muscle cells, inflammatory and VC mediators. The latter are independent predictors of cardiovascular morbidity and mortality and potential targets of pharmaceutical therapy. This paper is a narrative review of the complex mechanisms of VC development and in this context the potential anti-atherosclerotic effects of statins. At the initial stages of atherosclerosis VC correlates with atherosclerosis burden and in the long-term with cardiovascular morbidity and mortality. A plethora of animal and clinical studies have proposed statins as the cornerstone of primary and secondary prevention of atherosclerotic cardiovascular disease. Based on coronary computed tomography data, high doses of statins may have negligible or even positive effects on the progression of coronary artery calcification. Growing data support an increase in atherosclerotic plaque calcification in peripheral arteries (e.g., carotids), after long-term, statin-therapy. Despite the paradox of increasing VC, those effects of statins have been associated with higher plaque stability, reducing the risk of consequent adverse events. Statins seem to promote a "favorable" atherosclerotic calcification, suppressing atherosclerotic lesion expansion and their vulnerability. More studies are required to clarify the underlying mechanisms.
Collapse
Affiliation(s)
| | - Marianna Stasinopoulou
- Center of Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | | | - Elina Khattab
- Medical School, University of Cyprus, 2029 Nicosia, Cyprus
| | - Eirini Christodoulou
- Laboratory of Biopharmaceutics-Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National & Kapodistrian University of Athens, 15784 Athens, Greece
| | | | - Georgia Valsami
- Laboratory of Biopharmaceutics-Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National & Kapodistrian University of Athens, 15784 Athens, Greece
| |
Collapse
|
2
|
Choi SS, Jung J, Her SH, Kim K, Kim Y, Lee K, Yoo KD, Moon KW, Moon D, Lee SN, Jang WY, Choi IJ, Lee JH, Lee JH, Lee SR, Lee SW, Yun KH, Lee HJ. Comparative Analysis of High-Intensity versus Low-to-Moderate Intensity Statin Therapy in Patients Undergoing Rotational Atherectomy for Calcified Coronary Artery Disease. Life (Basel) 2023; 13:2232. [PMID: 38004373 PMCID: PMC10672288 DOI: 10.3390/life13112232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Background: Moderate-intensity statin therapy, when compared to high-intensity statin therapy in Asian populations, has shown no significant difference in cardiovascular prognosis in small studies. The aim of this study was to compare the prognosis of patients based on statin intensity following rotational atherectomy (RA) during high-complexity percutaneous coronary intervention (PCI). (2) Methods: The ROCK registry, a multicenter retrospective study, included patients who had undergone rotational atherectomy (RA) during percutaneous coronary intervention (PCI) at nine tertiary medical centers in South Korea between January 2010 and October 2019. The patients were divided into high-intensity statin (H-statin) and moderate/low-intensity statin (M/L-statin) therapy groups. The primary endpoint includes outcomes (cardiac death, target vessel myocardial infarction (MI), and target vessel revascularization (TVR)) within an 18-month follow-up period. (3) Results: In this registry, a total of 540 patients with 583 lesions were included. We excluded 39 lesions from the analysis due to the absence of statin usage. The H-statin group had 394 lesions and the M/L-statin group had 150 lesions. There were no significant differences in baseline characteristics, procedural adverse events without heart failure history, triglycerides, or medications between the two groups. The procedural success rate showed a significant difference between the two groups. Multivariate analysis did not show a significant association between M/L-statin therapy and an increased risk of the primary endpoint. In propensity score matching analysis, no significant difference was observed in the primary endpoint either. (4) Conclusions: In high-complex RA PCI, moderate/low-intensity statin therapy is not inferior to high-intensity statin therapy in Korea.
Collapse
Affiliation(s)
- Sang-Suk Choi
- Department of Cardiology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea; (S.-S.C.); (J.J.); (K.K.); (Y.K.); (K.-D.Y.); (K.-W.M.); (D.M.); (S.-N.L.); (W.-Y.J.)
| | - Jin Jung
- Department of Cardiology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea; (S.-S.C.); (J.J.); (K.K.); (Y.K.); (K.-D.Y.); (K.-W.M.); (D.M.); (S.-N.L.); (W.-Y.J.)
| | - Sung-Ho Her
- Department of Cardiology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea; (S.-S.C.); (J.J.); (K.K.); (Y.K.); (K.-D.Y.); (K.-W.M.); (D.M.); (S.-N.L.); (W.-Y.J.)
| | - Kyunyeon Kim
- Department of Cardiology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea; (S.-S.C.); (J.J.); (K.K.); (Y.K.); (K.-D.Y.); (K.-W.M.); (D.M.); (S.-N.L.); (W.-Y.J.)
| | - Youngmin Kim
- Department of Cardiology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea; (S.-S.C.); (J.J.); (K.K.); (Y.K.); (K.-D.Y.); (K.-W.M.); (D.M.); (S.-N.L.); (W.-Y.J.)
| | - Kyusup Lee
- Department of Cardiology, Daejeon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 34943, Republic of Korea;
| | - Ki-Dong Yoo
- Department of Cardiology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea; (S.-S.C.); (J.J.); (K.K.); (Y.K.); (K.-D.Y.); (K.-W.M.); (D.M.); (S.-N.L.); (W.-Y.J.)
| | - Keon-Woong Moon
- Department of Cardiology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea; (S.-S.C.); (J.J.); (K.K.); (Y.K.); (K.-D.Y.); (K.-W.M.); (D.M.); (S.-N.L.); (W.-Y.J.)
| | - Donggyu Moon
- Department of Cardiology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea; (S.-S.C.); (J.J.); (K.K.); (Y.K.); (K.-D.Y.); (K.-W.M.); (D.M.); (S.-N.L.); (W.-Y.J.)
| | - Su-Nam Lee
- Department of Cardiology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea; (S.-S.C.); (J.J.); (K.K.); (Y.K.); (K.-D.Y.); (K.-W.M.); (D.M.); (S.-N.L.); (W.-Y.J.)
| | - Won-Young Jang
- Department of Cardiology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea; (S.-S.C.); (J.J.); (K.K.); (Y.K.); (K.-D.Y.); (K.-W.M.); (D.M.); (S.-N.L.); (W.-Y.J.)
| | - Ik-Jun Choi
- Department of Cardiology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon 21431, Republic of Korea;
| | - Jae-Hwan Lee
- Department of Cardiology in Internal Medicine, Chungnam National University School of Medicine, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea;
| | - Jang-Hoon Lee
- Department of Internal Medicine, Kyungpook National University Hospital, Daegu 41944, Republic of Korea;
| | - Sang-Rok Lee
- Department of Cardiology, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Seung-Whan Lee
- Department of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| | - Kyeong-Ho Yun
- Department of Cardiovascular Medicine, Regional Cardiocerebrovascular Center, Wonkwang University Hospital, Iksan 54538, Republic of Korea;
| | - Hyun-Jong Lee
- Department of Internal Medicine, Sejong General Hospital, Bucheon 14754, Republic of Korea
| |
Collapse
|
3
|
Song JH, Liu MY, Ma YX, Wan QQ, Li J, Diao XO, Niu LN. Inflammation-associated ectopic mineralization. FUNDAMENTAL RESEARCH 2023; 3:1025-1038. [PMID: 38933004 PMCID: PMC11197766 DOI: 10.1016/j.fmre.2022.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/06/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022] Open
Abstract
Ectopic mineralization refers to the deposition of mineralized complexes in the extracellular matrix of soft tissues. Calcific aortic valve disease, vascular calcification, gallstones, kidney stones, and abnormal mineralization in arthritis are common examples of ectopic mineralization. They are debilitating diseases and exhibit excess mortality, disability, and morbidity, which impose on patients with limited social or financial resources. Recent recognition that inflammation plays an important role in ectopic mineralization has attracted the attention of scientists from different research fields. In the present review, we summarize the origin of inflammation in ectopic mineralization and different channels whereby inflammation drives the initiation and progression of ectopic mineralization. The current knowledge of inflammatory milieu in pathological mineralization is reviewed, including how immune cells, pro-inflammatory mediators, and osteogenic signaling pathways induce the osteogenic transition of connective tissue cells, providing nucleating sites and assembly of aberrant minerals. Advances in the understanding of the underlying mechanisms involved in inflammatory-mediated ectopic mineralization enable novel strategies to be developed that may lead to the resolution of these enervating conditions.
Collapse
Affiliation(s)
| | | | | | - Qian-Qian Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Centre for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jing Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Centre for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiao-Ou Diao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Centre for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Li-Na Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Centre for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
4
|
Neels JG, Leftheriotis G, Chinetti G. Atherosclerosis Calcification: Focus on Lipoproteins. Metabolites 2023; 13:metabo13030457. [PMID: 36984897 PMCID: PMC10056669 DOI: 10.3390/metabo13030457] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids in the vessel wall, leading to the formation of an atheroma and eventually to the development of vascular calcification (VC). Lipoproteins play a central role in the development of atherosclerosis and VC. Both low- and very low-density lipoproteins (LDL and VLDL) and lipoprotein (a) (Lp(a)) stimulate, while high-density lipoproteins (HDL) reduce VC. Apolipoproteins, the protein component of lipoproteins, influence the development of VC in multiple ways. Apolipoprotein AI (apoAI), the main protein component of HDL, has anti-calcific properties, while apoB and apoCIII, the main protein components of LDL and VLDL, respectively, promote VC. The role of lipoproteins in VC is also related to their metabolism and modifications. Oxidized LDL (OxLDL) are more pro-calcific than native LDL. Oxidation also converts HDL from anti- to pro-calcific. Additionally, enzymes such as autotaxin (ATX) and proprotein convertase subtilisin/kexin type 9 (PCSK9), involved in lipoprotein metabolism, have a stimulatory role in VC. In summary, a better understanding of the mechanisms by which lipoproteins and apolipoproteins contribute to VC will be crucial in the development of effective preventive and therapeutic strategies for VC and its associated cardiovascular disease.
Collapse
Affiliation(s)
- Jaap G Neels
- Université Côte d'Azur, INSERM, C3M, 06200 Nice, France
| | | | - Giulia Chinetti
- Université Côte d'Azur, CHU, INSERM, C3M, 06200 Nice, France
| |
Collapse
|
5
|
Ceccherini E, Cecchettini A, Gisone I, Persiani E, Morales MA, Vozzi F. Vascular Calcification: In Vitro Models under the Magnifying Glass. Biomedicines 2022; 10:biomedicines10102491. [PMID: 36289753 DOI: 10.3390/biomedicines10102491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Vascular calcification is a systemic disease contributing to cardiovascular morbidity and mortality. The pathophysiology of vascular calcification involves calcium salt deposition by vascular smooth muscle cells that exhibit an osteoblast-like phenotype. Multiple conditions drive the phenotypic switch and calcium deposition in the vascular wall; however, the exact molecular mechanisms and the connection between vascular smooth muscle cells and other cell types are not fully elucidated. In this hazy landscape, effective treatment options are lacking. Due to the pathophysiological complexity, several research models are available to evaluate different aspects of the calcification process. This review gives an overview of the in vitro cell models used so far to study the molecular processes underlying vascular calcification. In addition, relevant natural and synthetic compounds that exerted anticalcifying properties in in vitro systems are discussed.
Collapse
Affiliation(s)
- Elisa Ceccherini
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| | - Antonella Cecchettini
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Ilaria Gisone
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| | - Elisa Persiani
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| | - Maria Aurora Morales
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| | - Federico Vozzi
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| |
Collapse
|
6
|
Bélanger AM, Akioyamen LE, Ruel I, Hales L, Genest J. Aortic stenosis in homozygous familial hypercholesterolaemia: a paradigm shift over a century. Eur Heart J 2022; 43:3227-3239. [PMID: 35776569 DOI: 10.1093/eurheartj/ehac339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/13/2022] [Accepted: 06/09/2022] [Indexed: 01/31/2023] Open
Abstract
AIMS Homozygous familial hypercholesterolaemia (HoFH) is an orphan disease defined by extreme elevations in low-density lipoprotein cholesterol, cutaneous xanthomas, and pre-mature atherosclerotic cardiovascular disease. Survival has more than doubled over the past three decades. Aortic stenosis (AS) [supravalvular aortic stenosis (SVAS) or valvular aortic stenosis (VAS)] is commonly encountered. There are no medical treatments available and complex high-risk surgeries represent the only available option in severe cases. A systematic review was performed to summarize the current evidence on AS in HoFH and to determine whether pharmacological treatment (statins) have had an impact on clinical presentation, phenotype and clinical course over the past nine decades (PROSPERO CRD42021250565). METHODS AND RESULTS MEDLINE, Embase Classic + Embase, Cochrane Central Register of Controlled Trials, PubMed, AfricaWide, and Scopus were searched from inception to 10 November 2021. Searches identified 381 publications, of which 19 were retained; they were cross-sectional or retrospective studies. Separately, 108 individual case reports were described. Within the 424 HoFH cases, AS was identified in 57% of patients in the pre-statin era vs. 35% in patients reported more recently (>2000, long-term statin period). With an increase in longevity due to statins and lipoprotein apheresis, a change in the proportion of patients with SVAS and VAS with a SVAS:VAS ratio of 47:53 and 10:90 for HoFH patients not on statin and on long-term statin, respectively, was noted. CONCLUSION These data suggest that SVAS and VAS are frequent in HoFH and that the phenotype has shifted towards calcific VAS as statins and lipoprotein apheresis improve survival in these patients.
Collapse
Affiliation(s)
- Alexandre M Bélanger
- Research Institute of the McGill University Health Centre, 1001, Boul. Décarie, Office EM1.2212, Montréal, Québec, Canada
| | - Leo E Akioyamen
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Isabelle Ruel
- Research Institute of the McGill University Health Centre, 1001, Boul. Décarie, Office EM1.2212, Montréal, Québec, Canada
| | - Lindsay Hales
- McGill University Health Centre Medical Libraries, Montréal, Québec, Canada
| | - Jacques Genest
- Research Institute of the McGill University Health Centre, 1001, Boul. Décarie, Office EM1.2212, Montréal, Québec, Canada
| |
Collapse
|
7
|
García-Fernández-Bravo I, Torres-Do-Rego A, López-Farré A, Galeano-Valle F, Demelo-Rodriguez P, Alvarez-Sala-Walther LA. Undertreatment or Overtreatment With Statins: Where Are We? Front Cardiovasc Med 2022; 9:808712. [PMID: 35571155 PMCID: PMC9105719 DOI: 10.3389/fcvm.2022.808712] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/29/2022] [Indexed: 12/26/2022] Open
Abstract
Statins, in addition to healthy lifestyle interventions, are the cornerstone of lipid-lowering therapy. Other low-density lipoprotein (LDL)-lowering drugs include ezetimibe, bile acid sequestrants, and PCSK9 inhibitors. As new evidence emerges from new clinical trials, therapeutic goals change, leading to renewed clinical guidelines. Nowadays, LDL goals are getting lower, leading to the "lower is better" paradigm in LDL-cholesterol (LDL-C) management. Several observational studies have shown that LDL-C control in real life is suboptimal in both primary and secondary preventions. It is critical to enhance the adherence to guideline recommendations through shared decision-making between clinicians and patients, with patient engagement in selecting interventions based on individual values, preferences, and associated conditions and comorbidities. This narrative review summarizes the evidence regarding the benefits of lipid-lowering drugs in reducing cardiovascular events, the pleiotropic effect of statins, real-world data on overtreatment and undertreatment of lipid-lowering therapies, and the changing LDL-C in targets in the clinical guidelines of dyslipidemias over the years.
Collapse
Affiliation(s)
| | - Ana Torres-Do-Rego
- Internal Medicine, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Grupo (departamento) de investigación Riesgo cardiovascular y lípidos, Instituto de investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Antonio López-Farré
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Galeano-Valle
- Internal Medicine, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Grupo (departamento) de investigación Riesgo cardiovascular y lípidos, Instituto de investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Pablo Demelo-Rodriguez
- Internal Medicine, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Grupo (departamento) de investigación Riesgo cardiovascular y lípidos, Instituto de investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis A. Alvarez-Sala-Walther
- Internal Medicine, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Grupo (departamento) de investigación Riesgo cardiovascular y lípidos, Instituto de investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Pharmacogenetic association of diabetes-associated genetic risk score with rapid progression of coronary artery calcification following treatment with HMG-CoA-reductase inhibitors -results of the Heinz Nixdorf Recall Study. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1713-1725. [PMID: 34021798 PMCID: PMC8298241 DOI: 10.1007/s00210-021-02100-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/06/2021] [Indexed: 11/02/2022]
Abstract
HMG-CoA-Reductase inhibitors (HMGRIs) are currently the most widely used group of drugs in patients with coronary artery disease (CAD) and are given preemptively to patients with high levels of cholesterol, including those with diabetes mellitus (DM). However, intake of HMGRIs also increases the progression of coronary artery calcification (CAC) and the risk of developing DM. This study aimed to investigate whether HMGRI intake interacts with the diabetes-associated genetic risk score (GRS) to affect CAC progression using data from the population-based Heinz Nixdorf Recall (HNR) study. CAC was measured in 3157 participants using electron-beam computed tomography twice, at baseline (CACb) and 5 years later (CAC5y). CAC progression was classified as slow, expected, or rapid based on predicted values. Weighted DM GRS was constructed using 100 diabetes mellitus-associated single nucleotide polymorphisms (SNPs). We used log-linear regression to evaluate the interaction of HMGRI intake with diabetes-associated GRS and individual SNPs on CAC progression (rapid vs. expected/slow), adjusting for age, sex, and log(CACb + 1). The prevalence of rapid CAC progression in the HNR study was 19.6%. We did not observe any association of the weighted diabetes mellitus GRS with the rapid progression of CAC (relative risk (RR) [95% confidence interval (95% CI)]: 1.01 [0.94; 1.10]). Furthermore, no indication of an interaction between GRS and HMGRI intake was observed (1.08 [0.83; 1.41]). Our analyses showed no indication that the impact of HMGRIs on CAC progression is significantly more severe in patients with a high genetic risk of developing DM than in those with a low GRS.
Collapse
|
9
|
Kurihara O, Kim HO, Russo M, Araki M, Nakajima A, Lee H, Takano M, Mizuno K, Jang IK. Relation of Low-Density Lipoprotein Cholesterol Level to Plaque Rupture. Am J Cardiol 2020; 134:48-54. [PMID: 32892992 DOI: 10.1016/j.amjcard.2020.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 01/28/2023]
Abstract
Statin therapy reduces low-density lipoprotein cholesterol (LDL-C), inflammation, and atherosclerotic cardiovascular disease. We investigated the association between LDL-C and statin therapy on the prevalence of plaque rupture (PR). Patients with acute coronary syndromes who underwent optical coherence tomography imaging of the culprit lesion were divided into 4 groups based on LDL-C level and statin use (Group 1: LDL-C ≤ 100 without statin; Group 2; LDL-C ≤ 100 with statin; Group 3: LDL-C > 100 with statin; Group 4: LDL-C > 100 without statin), and the prevalence of PR was compared between the groups. Among 896 patients, PR was diagnosed in 444 (49.6%) patients. The prevalence of PR was significantly different among the 4 groups (p = 0.007): it was highest in the high LDL-C without statin group and lowest in the low LDL-C without statin group (53.9% and 39.2%, respectively). Compared with the high LDL-C without statin group, the low LDL-C without statin and low LDL-C with statin groups had a significantly lower prevalence of PR (p = 0.001, p = 0.040, respectively), and the low LDL-C with statin group had a significantly higher prevalence of calcification (p = 0.037). The patients with naturally low LDL-C have the lowest risk of PR. The patients with low LDL-C achieved by statin therapy had a higher prevalence of calcification. When LDL-C level is elevated, early and aggressive treatment with statin may help to prevent PR by stabilizing plaques through calcification.
Collapse
|
10
|
Quaglino D, Boraldi F, Lofaro FD. The biology of vascular calcification. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:261-353. [PMID: 32475476 DOI: 10.1016/bs.ircmb.2020.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vascular calcification (VC), characterized by different mineral deposits (i.e., carbonate apatite, whitlockite and hydroxyapatite) accumulating in blood vessels and valves, represents a relevant pathological process for the aging population and a life-threatening complication in acquired and in genetic diseases. Similarly to bone remodeling, VC is an actively regulated process in which many cells and molecules play a pivotal role. This review aims at: (i) describing the role of resident and circulating cells, of the extracellular environment and of positive and negative factors in driving the mineralization process; (ii) detailing the types of VC (i.e., intimal, medial and cardiac valve calcification); (iii) analyzing rare genetic diseases underlining the importance of altered pyrophosphate-dependent regulatory mechanisms; (iv) providing therapeutic options and perspectives.
Collapse
Affiliation(s)
- Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
11
|
Pharmacological and Nutritional Modulation of Vascular Calcification. Nutrients 2019; 12:nu12010100. [PMID: 31905884 PMCID: PMC7019601 DOI: 10.3390/nu12010100] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 12/15/2022] Open
Abstract
Vascular calcification is an independent predictor of cardiovascular disease, and therefore, inhibition or regression of this processes is of clinical importance. The standard care regarding prevention and treatment of cardiovascular disease at this moment mainly depends on drug therapy. In animal and preclinical studies, various forms of cardiovascular drug therapy seem to have a positive effect on vascular calcification. In particular, calcium channel blockers and inhibitors of the renin-angiotensin-aldosteron system slowed down arterial calcification in experimental animals. In humans, the results of trials with these drugs are far less pronounced and often contradictory. There is limited evidence that the development of new atherosclerotic lesions may be retarded in patients with coronary artery disease, but existing lesions can hardly be influenced. Although statin therapy has a proven role in the prevention and treatment of cardiovascular morbidity and mortality, it is associated with both regression and acceleration of the vascular calcification process. Recently, nutritional supplements have been recognized as a potential tool to reduce calcification. This is particularly true for vitamin K, which acts as an inhibitor of vascular calcification. In addition to vitamin K, other dietary supplements may also modulate vascular function. In this narrative review, we discuss the current state of knowledge regarding the pharmacological and nutritional possibilities to prevent the development and progression of vascular calcification.
Collapse
|
12
|
Chin DD, Wang J, Mel de Fontenay M, Plotkin A, Magee GA, Chung EJ. Hydroxyapatite-binding micelles for the detection of vascular calcification in atherosclerosis. J Mater Chem B 2019; 7:6449-6457. [PMID: 31553027 PMCID: PMC6812598 DOI: 10.1039/c9tb01918a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Atherosclerosis is a chronic disease characterized by the formation of calcified, arterial plaques. Microcalcifications (5 μm to 100 μm), mainly composed of hydroxyapatite (HA, Ca5(PO4)3(OH)), develop in the fibrous caps of atherosclerotic plaques and can trigger plaque rupture due to the loss of compliance and elasticity. Ultimately, plaque rupture can cause arterial occlusion and embolization and result in ischemic events such as strokes and myocardial infarctions. Unfortunately, current imaging technologies used to detect calcifications are limited by low signal-to-noise ratio or use invasive procedures that pose risk of arterial dissection. To mitigate these drawbacks, in our study, we developed a novel, fluorescently-labeled peptide amphiphile micelle (PAM) that uses a 12 amino acid HA-binding peptide (HABP) [SVSVGMKPSPRP] to target and detect atherosclerotic calcification (HA PAM). Our results show HA PAMs can successfully target HA microcrystals with a strong binding affinity (KD = 6.26 ± 1.2 μM) in vitro. In addition, HA PAMs detected HA mineralization (HA PAM vs. non-targeting micelle, p≤ 0.001; HA PAM vs. scrambled HABP PAM, p≤ 0.01) formed by calcifying mouse aortic vascular smooth muscle cells (MOVAS). Moreover, HA PAMs successfully detected calcifications in atherosclerotic mouse models as well as in patient-derived arteries. Our studies show that HA PAMs show promise as calcium-targeting nanoparticles for the detection of calcifications in atherosclerosis.
Collapse
Affiliation(s)
- Deborah D Chin
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
| | - Jonathan Wang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
| | - Margot Mel de Fontenay
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
| | - Anastasia Plotkin
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Gregory A Magee
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA. and Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA and Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA and Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA and Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
13
|
da Luz PL, Favarato D, Moriguchi EH, de Carli W, Bruscato N, Mochiduky RI, Schwartzman P, Rochitte CE, Laurindo FR. Red wine consumption, coronary calcification, and long-term clinical evolution. ACTA ACUST UNITED AC 2018; 51:e7703. [PMID: 30517265 PMCID: PMC6282067 DOI: 10.1590/1414-431x20187703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/28/2018] [Indexed: 01/23/2023]
Abstract
Coronary artery calcification (CAC) is associated with atherosclerotic complications. However, elevated CAC may not always imply a worse prognosis. Herein, we report the clinical evolution of long-term red wine (RW) drinkers in relation to CAC. We followed 200 healthy male habitual RW drinkers and compared them to 154 abstainers for a period of 5.5 years. The initial evaluation included coronary computed tomography angiography (CTA), clinical, demographics, and laboratory data. CAC was quantified by the Agatston score. The follow-up process was conducted by telephone calls and/or hospital record review. The composite end-point of total death, acute myocardial infarction (AMI), or coronary revascularization (or major adverse cardiac event - MACE) was assessed. The RW drinkers ingested 28.9±15 g of alcohol/day for 23.4±12.3 years. They had higher high-density lipoprotein and low-density lipoprotein, but lower C-reactive protein than abstainers. Age, total cholesterol, triglycerides, glucose, and liver enzymes were similar. History of diabetes was lower among drinkers, but other risk factors were similar. However, drinkers had higher CAC than abstainers; the mean value was 131.5±362 in drinkers vs 40.5±320 in abstainers (P<0.001). The median and interquartile range were 15 (0.0–131.5) in RW drinkers and 1 (0.0–40.5) in abstainers (P=0.003). During the follow-up, MACE was significantly lower in drinkers than in abstainers, despite their higher CAC. The difference was driven mainly by AMI (0 vs 6; P<0.03). Greater CAC values in this setting did not predict worse prognosis. A possible underlying mechanism is lesion calcification, which leads to plaque stabilization and less clinical events.
Collapse
Affiliation(s)
- P L da Luz
- Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - D Favarato
- Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - E H Moriguchi
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - W de Carli
- Associação Veranense de Assistência em Saúde, Veranópolis, RS, Brasil
| | - N Bruscato
- Associação Veranense de Assistência em Saúde, Veranópolis, RS, Brasil
| | - R I Mochiduky
- Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | - C E Rochitte
- Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - F R Laurindo
- Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
14
|
Tintut Y, Hsu JJ, Demer LL. Lipoproteins in Cardiovascular Calcification: Potential Targets and Challenges. Front Cardiovasc Med 2018; 5:172. [PMID: 30533416 PMCID: PMC6265366 DOI: 10.3389/fcvm.2018.00172] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/08/2018] [Indexed: 12/16/2022] Open
Abstract
Previously considered a degenerative process, cardiovascular calcification is now established as an active process that is regulated in several ways by lipids, phospholipids, and lipoproteins. These compounds serve many of the same functions in vascular and valvular calcification as they do in skeletal bone calcification. Hyperlipidemia leads to accumulation of lipoproteins in the subendothelial space of cardiovascular tissues, which leads to formation of mildly oxidized phospholipids, which are known bioactive factors in vascular cell calcification. One lipoprotein of particular interest is Lp(a), which showed genome-wide significance for the presence of aortic valve calcification and stenosis. It carries an important enzyme, autotaxin, which produces lysophosphatidic acid (LPA), and thus has a key role in inflammation among other functions. Matrix vesicles, extruded from the plasma membrane of cells, are the sites of initiation of mineral formation. Phosphatidylserine, a phospholipid in the membranes of matrix vesicles, is believed to complex with calcium and phosphate ions, creating a nidus for hydroxyapatite crystal formation in cardiovascular as well as in skeletal bone mineralization. This review focuses on the contributions of lipids, phospholipids, lipoproteins, and autotaxin in cardiovascular calcification, and discusses possible therapeutic targets.
Collapse
Affiliation(s)
- Yin Tintut
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Physiology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jeffrey J Hsu
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Linda L Demer
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Physiology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
15
|
Andrews J, Psaltis PJ, Bartolo BAD, Nicholls SJ, Puri R. Coronary arterial calcification: A review of mechanisms, promoters and imaging. Trends Cardiovasc Med 2018; 28:491-501. [DOI: 10.1016/j.tcm.2018.04.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/03/2018] [Accepted: 04/25/2018] [Indexed: 01/03/2023]
|
16
|
Al-Huseini I, Ashida N, Kimura T. Deletion of IκB-Kinase β in Smooth Muscle Cells Induces Vascular Calcification Through β-Catenin-Runt-Related Transcription Factor 2 Signaling. J Am Heart Assoc 2018; 7:JAHA.117.007405. [PMID: 29301759 PMCID: PMC5778968 DOI: 10.1161/jaha.117.007405] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Vascular calcification was previously considered as an advanced phase of atherosclerosis; however, recent studies have indicated that such calcification can appear in different situations. Nevertheless, there has been a lack of mechanistic insight to explain the difference. For example, the roles of nuclear factor-κB, a major regulator of inflammation, in vascular calcification are poorly explored, although its roles in atherosclerosis were well documented. Herein, we investigated the roles of nuclear factor-κB signaling in vascular calcification. METHODS AND RESULTS We produced mice with deletion of IKKβ, an essential kinase for nuclear factor-κB activation, in vascular smooth muscle cells (VSMCs; KO mice) and subjected them to the CaCl2-induced aorta injury model. Unexpectedly, KO mice showed more calcification of the aorta than their wild-type littermates, despite the former's suppressed nuclear factor-κB activity. Cultured VSMCs from the aorta of KO mice also showed significant calcification in vitro. In the molecular analysis, we found that Runt-related transcription factor 2, a transcriptional factor accelerating bone formation, was upregulated in cultured VSMCs from KO mice, and its regulator β-catenin was more activated with suppressed ubiquitination in KO VSMCs. Furthermore, we examined VSMCs from mice in which kinase-active or kinase-dead IKKβ was overexpressed in VSMCs. We found that kinase-independent function of IKKβ is involved in suppression of calcification via inactivation of β-catenin, which leads to suppression of Runt-related transcription factor 2 and osteoblast marker genes. CONCLUSIONS IKKβ negatively regulates VSMC calcification through β-catenin-Runt-related transcription factor 2 signaling, which revealed a novel function of IKKβ on vascular calcification.
Collapse
Affiliation(s)
- Isehaq Al-Huseini
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Noboru Ashida
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
17
|
Chen Z, Qureshi AR, Parini P, Hurt-Camejo E, Ripsweden J, Brismar TB, Barany P, Jaminon AM, Schurgers LJ, Heimbürger O, Lindholm B, Stenvinkel P. Does statins promote vascular calcification in chronic kidney disease? Eur J Clin Invest 2017; 47:137-148. [PMID: 28036114 DOI: 10.1111/eci.12718] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/28/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND In end-stage renal disease (ESRD), coronary artery calcification (CAC) and inflammation contribute to cardiovascular disease (CVD). Statins do not improve survival in patients with ESRD, and their effect on vascular calcification is unclear. We explored associations between CAC, inflammatory biomarkers, statins and mortality in ESRD. MATERIALS AND METHODS In 240 patients with ESRD (63% males; median age 56 years) from cohorts including 86 recipients of living donor kidney transplant (LD-Rtx), 96 incident dialysis patients and 58 prevalent peritoneal dialysis patients, associations of CAC score (Agatston Units, AUs), interleukin-6 (IL-6) with high-sensitivity C-reactive protein (hsCRP), tumour necrosis factor (TNF), use of statins and all-cause mortality were analysed. Cardiac CT was repeated in 35 patients after 1·5 years of renal replacement therapy. In vitro, human vascular smooth muscle cells (hVSMCs) were used to measure vitamin K metabolism. RESULTS Among 240 patients, 129 (53%) had a CAC score > 100 AUs. Multivariate analysis revealed that independent predictors of 1-SD higher CAC score were age, male gender, diabetes and use of statins. The association between CAC score and mortality remained significant after adjustment for age, gender, diabetes, CVD, use of statins, protein-energy wasting and inflammation. Repeated CAC imaging in 35 patients showed that statin therapy was associated with greater progression of CAC. In vitro synthesis of menaquinone-4 by hVSMCs was significantly impaired by statins. CONCLUSION Elevated CAC score is a mortality risk factor in ESRD independent of inflammation. Future studies should resolve if statins promote vascular calcification and inhibition of vitamin K synthesis in the uremic milieu.
Collapse
Affiliation(s)
- Zhimin Chen
- Kidney Disease Center, First Affiliated Hospital College of Medicine, Zhejiang University, Hangzhou, China.,Division of Renal Medicine and Baxter Novum, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Abdul Rashid Qureshi
- Division of Renal Medicine and Baxter Novum, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Parini
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Metabolism Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eva Hurt-Camejo
- Translational Science, CVMD iMed, AstraZeneca R&D, Gothenburg, Sweden
| | - Jonaz Ripsweden
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden.,Department of Radiology, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Torkel B Brismar
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden.,Department of Radiology, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Peter Barany
- Division of Renal Medicine and Baxter Novum, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Armand M Jaminon
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Olof Heimbürger
- Division of Renal Medicine and Baxter Novum, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Lindholm
- Division of Renal Medicine and Baxter Novum, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Mansi IA, Frei CR, Halm EA, Mortensen EM. Association of statins with aortic, peripheral, and visceral artery aneurysm development. Vascular 2016; 25:372-381. [DOI: 10.1177/1708538116684942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Objectives Prior studies examining the effects of statins on arterial aneurysm development and progression yielded conflicting results due to their smaller size and presence of residual confounders. The objective of this study is to examine the association of statins with risk of being diagnosed with aortic, peripheral, and visceral artery aneurysm. Methods This was a retrospective cohort study of Tricare enrollees (from 1 October 2003 to 31 March 2012). Main outcomes were diagnosis of aortic, peripheral, or visceral artery aneurysm and undergoing aortic aneurysm repair procedure during follow-up period. Using 115 baseline characteristics, we generated a propensity score to match statin users and nonusers and examine the odds of outcomes (primary analysis). Secondary analysis examined outcomes at various subcohorts. Results Out of 10,910 statin users and 49,545 nonusers, we propensity score-matched 6728 pairs of statin users and nonusers. Statin users and nonusers had similar odds of being diagnosed with aortic, peripheral, and visceral artery aneurysms (odds ratio [OR]: 1.06, 95% confidence interval [95% CI]: 0.85–1.33) and of undergoing aortic aneurysm repair procedures (OR: 0.54, 95% CI: 0.22–1.35). Secondary analysis showed a tendency toward fewer aortic aneurysm procedures among statin users that did not reach statistical significance. However, high-intensity statin users in comparison to non-intensive statin users had higher adjusted odds of aortic, peripheral, and visceral artery aneurysms (OR: 1.76, 95% CI: 1.37–2.25, p < .0001). Conclusions This study does not support a clinically significant benefit or harm from statins regarding development of arterial aneurysm. However, secondary analyses may support the hypothesis proposed by previous research proposing a bidirectional role for statins.
Collapse
Affiliation(s)
- Ishak A Mansi
- Department of Medicine, VA North Texas Health Care System, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christopher R Frei
- College of Pharmacy, The University of Texas at Austin, San Antonio, TX, USA
- Department of Medicine, School of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Ethan A Halm
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eric M Mortensen
- Department of Medicine, VA North Texas Health Care System, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
19
|
O'Rourke C, Shelton G, Hutcheson JD, Burke MF, Martyn T, Thayer TE, Shakartzi HR, Buswell MD, Tainsh RE, Yu B, Bagchi A, Rhee DK, Wu C, Derwall M, Buys ES, Yu PB, Bloch KD, Aikawa E, Bloch DB, Malhotra R. Calcification of Vascular Smooth Muscle Cells and Imaging of Aortic Calcification and Inflammation. J Vis Exp 2016. [PMID: 27284788 DOI: 10.3791/54017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in the world. Atherosclerotic plaques, consisting of lipid-laden macrophages and calcification, develop in the coronary arteries, aortic valve, aorta, and peripheral conduit arteries and are the hallmark of cardiovascular disease. In humans, imaging with computed tomography allows for the quantification of vascular calcification; the presence of vascular calcification is a strong predictor of future cardiovascular events. Development of novel therapies in cardiovascular disease relies critically on improving our understanding of the underlying molecular mechanisms of atherosclerosis. Advancing our knowledge of atherosclerotic mechanisms relies on murine and cell-based models. Here, a method for imaging aortic calcification and macrophage infiltration using two spectrally distinct near-infrared fluorescent imaging probes is detailed. Near-infrared fluorescent imaging allows for the ex vivo quantification of calcification and macrophage accumulation in the entire aorta and can be used to further our understanding of the mechanistic relationship between inflammation and calcification in atherosclerosis. Additionally, a method for isolating and culturing animal aortic vascular smooth muscle cells and a protocol for inducing calcification in cultured smooth muscle cells from either murine aortas or from human coronary arteries is described. This in vitro method of modeling vascular calcification can be used to identify and characterize the signaling pathways likely important for the development of vascular disease, in the hopes of discovering novel targets for therapy.
Collapse
Affiliation(s)
- Caitlin O'Rourke
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital
| | - Georgia Shelton
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital; Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital
| | - Joshua D Hutcheson
- Cardiovascular Division, Brigham and Women's Hospital; Harvard Medical School
| | - Megan F Burke
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital
| | - Trejeeve Martyn
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital
| | - Timothy E Thayer
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital
| | - Hannah R Shakartzi
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital
| | - Mary D Buswell
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital
| | - Robert E Tainsh
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital
| | - Binglan Yu
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital; Harvard Medical School
| | - Aranya Bagchi
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital; Harvard Medical School
| | - David K Rhee
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital; Harvard Medical School
| | - Connie Wu
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital; Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital; Harvard Medical School
| | - Matthias Derwall
- Department of Anesthesiology, Uniklinik RWTH Aachen, RWTH Aachen University
| | - Emmanuel S Buys
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital; Harvard Medical School
| | - Paul B Yu
- Cardiovascular Division, Brigham and Women's Hospital; Harvard Medical School
| | - Kenneth D Bloch
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital; Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital; Harvard Medical School
| | - Elena Aikawa
- Cardiovascular Division, Brigham and Women's Hospital; Harvard Medical School
| | - Donald B Bloch
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital; Department of Anesthesiology, Uniklinik RWTH Aachen, RWTH Aachen University; Center for Immunology and Inflammatory Diseases and the Division of Rheumatology, Allergy, and Immunology of the Department of Medicine, Massachusetts General Hospital
| | - Rajeev Malhotra
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital; Harvard Medical School;
| |
Collapse
|
20
|
MDM2 E3 ligase-mediated ubiquitination and degradation of HDAC1 in vascular calcification. Nat Commun 2016; 7:10492. [PMID: 26832969 PMCID: PMC4740400 DOI: 10.1038/ncomms10492] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 12/04/2015] [Indexed: 12/15/2022] Open
Abstract
Vascular calcification (VC) is often associated with cardiovascular and metabolic diseases. However, the molecular mechanisms linking VC to these diseases have yet to be elucidated. Here we report that MDM2-induced ubiquitination of histone deacetylase 1 (HDAC1) mediates VC. Loss of HDAC1 activity via either chemical inhibitor or genetic ablation enhances VC. HDAC1 protein, but not mRNA, is reduced in cell and animal calcification models and in human calcified coronary artery. Under calcification-inducing conditions, proteasomal degradation of HDAC1 precedes VC and it is mediated by MDM2 E3 ubiquitin ligase that initiates HDAC1 K74 ubiquitination. Overexpression of MDM2 enhances VC, whereas loss of MDM2 blunts it. Decoy peptide spanning HDAC1 K74 and RG 7112, an MDM2 inhibitor, prevent VC in vivo and in vitro. These results uncover a previously unappreciated ubiquitination pathway and suggest MDM2-mediated HDAC1 ubiquitination as a new therapeutic target in VC. Vascular calcification (VC) increases morbidity and mortality in cardiovascular and metabolic diseases. Here, Kwon et al. show that calcification stimuli induce MDM2- mediated ubiquitination and proteasomal degradation of HDAC1, suggesting a possible therapeutic strategy for treatment of VC patients.
Collapse
|
21
|
Rat aorta as a pharmacological tool for in vitro and in vivo studies. Life Sci 2016; 145:190-204. [DOI: 10.1016/j.lfs.2015.12.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 11/26/2015] [Accepted: 12/24/2015] [Indexed: 11/24/2022]
|
22
|
Terao Y, Satomi-Kobayashi S, Hirata KI, Rikitake Y. Involvement of Rho-associated protein kinase (ROCK) and bone morphogenetic protein-binding endothelial cell precursor-derived regulator (BMPER) in high glucose-increased alkaline phosphatase expression and activity in human coronary artery smooth muscle cells. Cardiovasc Diabetol 2015; 14:104. [PMID: 26264461 PMCID: PMC4534147 DOI: 10.1186/s12933-015-0271-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/01/2015] [Indexed: 12/21/2022] Open
Abstract
Background Vascular calcification is an independent risk factor for cardiovascular disease. Diabetes mellitus increases the incidence of vascular calcification; however, detailed molecular mechanisms of vascular calcification in diabetes mellitus remain unknown. We recently reported that bone morphogenetic protein-binding endothelial cell precursor-derived regulator (BMPER) regulates osteoblast-like trans-differentiation of human coronary artery smooth muscle cells (HCASMCs). Methods We investigated the effect of a hydroxymethylglutaryl-coenzyme A reductase inhibitor (statin), commonly used in patients with atherosclerotic diseases and diabetes mellitus, on alkaline phosphatase (ALP) mRNA expression in aortas of streptozotocin-induced diabetic mice. We also investigated the effects of the statin, Rho-associated protein kinase (ROCK) inhibitors and BMPER knockdown on ALP mRNA expression and activity in HCASMCs cultured in high glucose-containing media. Results Alkaline phosphatase mRNA expression was increased in aortas of streptozotocin-induced diabetic mice, and the increase was inhibited by rosuvastatin. ALP mRNA expression and activity were increased in HCASMCs cultured in high glucose-containing media, and the increases were suppressed by rosuvastatin. This suppression was reversed by the addition of mevalonate or geranylgeranyl pyrophosphate, but not farnesyl pyrophosphate. High glucose-increased ALP mRNA expression and activity were suppressed by ROCK inhibitors. Moreover, BMPER mRNA expression was increased in diabetic mouse aortas and in HCASMCs cultured in high glucose-containing media, but was not inhibited by rosuvastatin or ROCK inhibitors. Knockdown of BMPER suppressed high glucose-increased ALP activity, but not ROCK activity in HCASMCs. Conclusions There are at least two independent pathways in high glucose-induced ALP activation in HCASMCs: the Rho–ROCK signaling pathway and the BMPER-dependent pathway.
Collapse
Affiliation(s)
- Yuya Terao
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Seimi Satomi-Kobayashi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Ken-ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Yoshiyuki Rikitake
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan. .,Division of Signal Transduction, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
23
|
Impact of Statins on Serial Coronary Calcification During Atheroma Progression and Regression. J Am Coll Cardiol 2015; 65:1273-1282. [DOI: 10.1016/j.jacc.2015.01.036] [Citation(s) in RCA: 422] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/13/2015] [Accepted: 01/20/2015] [Indexed: 12/18/2022]
|
24
|
Pikilidou MI, Yavropoulou MP, Scuteri A. Can antihypertensive medication interfere with the vicious cycle between hypertension and vascular calcification? Cardiovasc Drugs Ther 2014; 28:61-71. [PMID: 24091855 DOI: 10.1007/s10557-013-6494-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular calcification is a phenomenon of disturbed calcium deposition, as part of the calcium that is supposed to be deposited to our bones, is lodged to our vessels. There are two forms of vascular calcification, each with a distinct anatomical distribution and clinical relevance, namely the intimal and medial calcification. Studies have demonstrated that hypertension may cause vascular calcification but also that both types of calcification, especially medial, promote arterial rigidity and hence hypertension. Implications of this two-way road are largely unknown as there is no consensus yet on their exact clinical value. However, several antihypertensive medications seem to be able to interfere with the cycle of high blood pressure and vascular calcium deposits. The present review summarizes the up-to-date data regarding the effect of antihypertensive medication on vascular calcification.
Collapse
Affiliation(s)
- Maria I Pikilidou
- Hypertension Excellence Center, 1st Department of Internal Medicine, AHEPA University Hospital, St. Kiriakidi 1, 54636, Thessaloniki, Greece,
| | | | | |
Collapse
|
25
|
|
26
|
Saremi A, Bahn G, Reaven PD. Progression of vascular calcification is increased with statin use in the Veterans Affairs Diabetes Trial (VADT). Diabetes Care 2012; 35:2390-2. [PMID: 22875226 PMCID: PMC3476911 DOI: 10.2337/dc12-0464] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To determine the effect of statin use on progression of vascular calcification in type 2 diabetes (T2DM). RESEARCH DESIGN AND METHODS Progression of coronary artery calcification (CAC) and abdominal aortic artery calcification (AAC) was assessed according to the frequency of statin use in 197 participants with T2DM. RESULTS After adjustment for baseline CAC and other confounders, progression of CAC was significantly higher in more frequent statin users than in less frequent users (mean ± SE, 8.2 ± 0.5 mm(3) vs. 4.2 ± 1.1 mm(3); P < 0.01). AAC progression was in general not significantly increased with more frequent statin use; in a subgroup of participants initially not receiving statins, however, progression of both CAC and AAC was significantly increased in frequent statin users. CONCLUSIONS More frequent statin use is associated with accelerated CAC in T2DM patients with advanced atherosclerosis.
Collapse
|
27
|
Jiang L, Zhang J, Monticone RE, Telljohann R, Wu J, Wang M, Lakatta EG. Calpain-1 regulation of matrix metalloproteinase 2 activity in vascular smooth muscle cells facilitates age-associated aortic wall calcification and fibrosis. Hypertension 2012; 60:1192-9. [PMID: 23006733 PMCID: PMC3487400 DOI: 10.1161/hypertensionaha.112.196840] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 08/22/2012] [Indexed: 12/11/2022]
Abstract
Age-associated central arterial wall stiffness is linked to extracellular matrix remodeling, including fibrosis and vascular calcification. Angiotensin II induces both matrix metalloproteinase 2 (MMP2) and calpain-1 expression and activity in the arterial wall. However, the role of calpain-1 in MMP2 activation and extracellular matrix remodeling remains unknown. Dual histo-immunolabeling demonstrates colocalization of calpain-1 and MMP2 within old rat vascular smooth muscle cells. Overexpression of calpain-1 induces MMP2 transcripts, protein levels, and activity, in part, by increasing the ratio of membrane type 1 MMPs to tissue inhibitor of metalloproteinases 2. These effects of calpain-1 overexpression-induced MMP2 activation are linked to increased collagen I and III production and vascular calcification. In addition, overexpression of calpain-1 also induces transforming growth factor-β1/Smad signaling, elastin degradation, alkaline phosphatase activation, and total calcium content but reduces the expression of calcification inhibitors, osteopontin, and osteonectin, in cultured vascular smooth muscle cells in vitro and in carotid artery rings ex vivo. Furthermore, both calpain-1 and collagen II increase with aging within human aortic intima. Interestingly, in aged human aortic wall, both calpain-1 and collagen II are highly expressed in artherosclerotic plaque areas compared with grossly normal areas. Cross-talk of 2 proteases, calpain-1 and MMP2, leads to secretion of active MMP2, which modulates extracellular matrix remodeling via enhancing collagen production and facilitating vascular calcification. These results establish calpain-1 as a novel molecular candidate to retard age-associated extracellular matrix remodeling and its attendant risk for hypertension and atherosclerosis.
Collapse
Affiliation(s)
- Liqun Jiang
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Jing Zhang
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Robert E. Monticone
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Richard Telljohann
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - James Wu
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Edward G. Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| |
Collapse
|
28
|
Ciceri P, Volpi E, Brenna I, Arnaboldi L, Neri L, Brancaccio D, Cozzolino M. Combined effects of ascorbic acid and phosphate on rat VSMC osteoblastic differentiation. Nephrol Dial Transplant 2011; 27:122-7. [DOI: 10.1093/ndt/gfr284] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
29
|
Siddals KW, Allen J, Sinha S, Canfield AE, Kalra PA, Gibson JM. Apposite insulin-like growth factor (IGF) receptor glycosylation is critical to the maintenance of vascular smooth muscle phenotype in the presence of factors promoting osteogenic differentiation and mineralization. J Biol Chem 2011; 286:16623-30. [PMID: 21454560 PMCID: PMC3089505 DOI: 10.1074/jbc.m110.202929] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 03/15/2011] [Indexed: 11/06/2022] Open
Abstract
Vascular calcification is strongly linked with increased morbidity and mortality from cardiovascular disease. Vascular calcification is an active cell-mediated process that involves the differentiation of vascular smooth muscle cells (VSMCs) to an osteoblast-like phenotype. Several inhibitors of this process have been identified, including insulin-like growth factor-I (IGF-I). In this study, we examined the role of the IGF receptor (IGFR) and the importance of IGFR glycosylation in the maintenance of the VSMC phenotype in the face of factors known to promote osteogenic conversion. IGF-I (25 ng/ml) significantly protected VSMCs from β-glycerophosphate-induced osteogenic differentiation (p < 0.005) and mineral deposition (p < 0.01). Mevalonic acid depletion (induced by 100 nm cerivastatin) significantly inhibited these IGF protective effects (p < 0.01). Mevalonic acid depletion impaired IGFR processing, decreased the expression of mature IGFRs at the cell surface, and inhibited the downstream activation of Akt and MAPK. Inhibitors of N-linked glycosylation (tunicamycin, deoxymannojirimycin, and deoxynojirimycin) also markedly attenuated the inhibitory effect of IGF-I on β-glycerophosphate-induced mineralization (p < 0.05) and activation of Akt and MAPK. These results demonstrate that alterations in the glycosylation of the IGFR disrupt the ability of IGF-I to protect against the osteogenic differentiation and mineralization of VSMCs by several interrelated mechanisms: decreased IGFR processing, reduced IGFR cell-surface expression, and reduced downstream signaling via the Akt and MAPK pathways. IGF-I thus occupies a critical position in the maintenance of normal VSMC phenotype and protection from factors known to stimulate vascular calcification.
Collapse
Affiliation(s)
- Kirk W Siddals
- Imaging, Genomics, and Proteomics Group, School of Cancer and Enabling Sciences, University of Manchester, Oxford Road, Manchester M13 9PY, United Kingdom.
| | | | | | | | | | | |
Collapse
|
30
|
Li H, Tao HR, Hu T, Fan YH, Zhang RQ, Jia G, Wang HC. Atorvastatin Reduces Calcification in Rat Arteries and Vascular Smooth Muscle Cells. Basic Clin Pharmacol Toxicol 2010; 107:798-802. [DOI: 10.1111/j.1742-7843.2010.00580.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Zhang F, Sun AS, Yu LM, Wu Q, Gong QH. Effects of isorhynchophylline on angiotensin II-induced proliferation in rat vascular smooth muscle cells. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.60.12.0014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Proliferation of vascular smooth muscle cells (VSMCs) is a crucial event in cardiovascular diseases. Isorhynchophylline, an alkaloid from a traditional Chinese medicine Gambirplant, has been used to treat cardiovascular diseases. The aim of this study was to investigate the effects of isorhynchophylline on angiotensin II (Ang II)-induced proliferation of rat VSMCs. VSMCs were isolated from rat artery and cultured for 14 days before experimentation. The effect of isorhynchophylline on Ang II-induced proliferation was evaluated by cell number, MTT assay and flow cytometry, and nitric oxide (NO) content and activity of NO synthase (NOS) were measured. The expression of proto-oncogene c-fos, osteopontin (OPN) and proliferating cell nuclear antigen (PCNA) mRNAs was measured by real-time RT-PCR. VSMC cultures were verified by morphology and immunostaining with α-smooth muscle actin. Isorhynchophylline (0.1–10.0 μM) was not toxic to VSMCs, but markedly decreased Ang II (1.0 μm)-enhanced cell number and MTT intensity, and blocked cell transition from G0/G1 to S phase. Furthermore, isorhynchophylline increased the NO content and NOS activity, and suppressed Ang II-induced over-expression of c-fos, OPN and PCNA. Thus, isorhynchophylline was effective against Ang-II induced cell proliferation, an effect that appears to be due, at least in part, to increased NO production, regulation of the cell cycle, and depressed expression of c-fos, OPN and PCNA related to VMSC proliferation.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Pharmacology, Zunyi Medical College, Zunyi, 563000, China
| | - An-Sheng Sun
- Department of Pharmacology, Zunyi Medical College, Zunyi, 563000, China
| | - Li-Mei Yu
- Department of Pharmacology, Zunyi Medical College, Zunyi, 563000, China
| | - Qin Wu
- Department of Pharmacology, Zunyi Medical College, Zunyi, 563000, China
| | - Qi-Hai Gong
- Department of Pharmacology, Zunyi Medical College, Zunyi, 563000, China
| |
Collapse
|
32
|
Chen NX, Kircelli F, O'Neill KD, Chen X, Moe SM. Verapamil inhibits calcification and matrix vesicle activity of bovine vascular smooth muscle cells. Kidney Int 2009; 77:436-42. [PMID: 20016465 DOI: 10.1038/ki.2009.481] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Calcium channel activity in vascular smooth muscle cells is a critical component during vascular calcification and formation of matrix vesicles. Here, we examined whether the blockade of L-type calcium channels inhibits these functions. Bovine vascular smooth muscle cells or rat aorta organ cultures were incubated in media known to promote calcification and treated with the L-type calcium channel inhibitors verapamil, nifedipine, or nimodipine. The phenylalkylamine, verapamil, significantly decreased calcification of the vascular smooth muscle cells and rat aorta, in a dose-dependent manner, whereas the dihydropyridines, nifedipine and nimodipine, had no effect. Furthermore, verapamil, but not nifedipine, significantly decreased the alkaline phosphatase activity of bovine vascular smooth muscle cells. Verapamil pretreatment of the cells also inhibited matrix vesicle alkaline phosphatase activity and reduced the ability of these matrix vesicles to subsequently calcify on a type I collagen extracellular matrix scaffold. As L-type channels are blocked by verapamil and dihydropyridines, we suggest that verapamil inhibits vascular smooth muscle mineralization and matrix vesicle activity by mechanisms other than the simple blockade of this calcium channel activity.
Collapse
Affiliation(s)
- Neal X Chen
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | | | |
Collapse
|
33
|
Jeffcoate WJ, Rasmussen LM, Hofbauer LC, Game FL. Medial arterial calcification in diabetes and its relationship to neuropathy. Diabetologia 2009; 52:2478-88. [PMID: 19756483 DOI: 10.1007/s00125-009-1521-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 06/02/2009] [Indexed: 01/03/2023]
Abstract
Calcification of the media of arterial walls is common in diabetes and is particularly associated with distal symmetrical neuropathy. Arterial calcification also complicates chronic kidney disease and is an independent risk factor for cardiovascular and all-cause mortality. The term calcification is not strictly accurate because the morphological changes incorporate those of new bone formation, i.e. ossification. The processes are complex, but are closely related to those involved in bone homeostasis, and it is relevant that calcification of the arterial wall and osteopenia often co-exist. One particular factor linked to the development of arterial calcification is distal symmetrical neuropathy; indeed, it has been suggested that neuropathy explains the distal distribution of arterial calcification in diabetes. It has also been suggested that the link with neuropathy results from loss of neuropeptides, such as calcitonin gene-related peptide, which are inherently protective. The association between distal symmetrical neuropathy and calcification of the arterial wall highlights the fact that neuropathy may be an independent risk factor for cardiovascular mortality.
Collapse
Affiliation(s)
- W J Jeffcoate
- Department of Diabetes and Endocrinology, Nottingham University Hospitals Trust, City Hospital Campus, Nottingham, NG5 1PB, UK.
| | | | | | | |
Collapse
|
34
|
McDonald SJ, Dooley PC, McDonald AC, Schuijers JA, Ward AR, Grills BL. Early fracture callus displays smooth muscle-like viscoelastic properties ex vivo: implications for fracture healing. J Orthop Res 2009; 27:1508-13. [PMID: 19472384 DOI: 10.1002/jor.20923] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cells of early, fibrous callus in bone fractures possess much alpha smooth muscle actin. This callus contracts and relaxes; however, active and passive components of its force production have yet to be defined. We aimed to establish whether passive viscoelastic properties of early soft fracture callus are smooth muscle-like in nature. Under anesthesia one rib was fractured in rats and calluses removed 7 days later for analysis. Urinary bladder detrusor muscle and Achilles tendon were also resected and analyzed. Force production in these tissues was measured using a force transducer when preparations were immersed in calcium-free Krebs-Henseleit solution (pH 7.4, 22 degrees C). Viscoelastic responses were measured in each preparation in response to 50 microN increases and decreases in force after achieving basal tissue tension by preconditioning. Callus, bladder, and tendon all displayed varying, reproducible degrees of stress relaxation (SR) and reverse stress relaxation (RSR) (n = 7 for all groups). Hysteresis was observed in callus, with the first SR response significantly larger than that produced in subsequent stretches (p < 0.05). Callus SR responses were greater than tendon (p < 0.001) but less than bladder (p < 0.001). Callus RSR responses were greater than tendon (p < 0.001), but no significant difference was seen between RSR of callus and bladder. We concluded that early, soft callus displayed significant SR and RSR phenomena similar to smooth muscle tissue, and SR and RSR may be important in maintenance of static tension in early callus by promoting osteogenesis and fracture healing.
Collapse
Affiliation(s)
- Stuart J McDonald
- School of Human Biosciences, Musculoskeletal Research Centre, La Trobe University, Victoria 3086, Australia
| | | | | | | | | | | |
Collapse
|
35
|
Persy V, D'Haese P. Vascular calcification and bone disease: the calcification paradox. Trends Mol Med 2009; 15:405-16. [PMID: 19733120 DOI: 10.1016/j.molmed.2009.07.001] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 07/07/2009] [Accepted: 07/08/2009] [Indexed: 02/06/2023]
Abstract
Vascular calcification or ectopic mineralization in blood vessels is an active, cell-regulated process, increasingly recognized as a general cardiovascular risk factor. Remarkably, ectopic artery mineralization is frequently accompanied by decreased bone mineral density or disturbed bone turnover. This contradictory association, observed mainly in osteoporosis and chronic kidney disease, is called the 'calcification paradox'. Here, we review recent advances in our understanding of the calcification paradox, including protein expression patterns governing both normal and ectopic mineralization, the conversion of vascular smooth muscle cells to bone-like cells, and the regulatory pathways involved in both bone and vessel mineralization. Further elucidation of the mechanisms underlying the calcification paradox is crucial in order to develop preventive and therapeutic strategies to deal with vascular calcification and reduce the associated cardiovascular risk.
Collapse
|
36
|
Current Opinion in Endocrinology, Diabetes & Obesity. Current world literature. Curr Opin Endocrinol Diabetes Obes 2009; 16:189-202. [PMID: 19300094 DOI: 10.1097/med.0b013e328329fcc2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Sutra T, Morena M, Bargnoux AS, Caporiccio B, Canaud B, Cristol JP. Superoxide production: a procalcifying cell signalling event in osteoblastic differentiation of vascular smooth muscle cells exposed to calcification media. Free Radic Res 2009; 42:789-97. [PMID: 19051077 DOI: 10.1080/10715760802400766] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Recent studies showed that hydrogen peroxide (H(2)O(2)) enhanced bone markers expression in vascular smooth muscle cells (VSMCs) implicated in osteoblastic differentiation. This study aimed at investigating the role of NAD(P)H oxidase in vascular calcification processes. A7r5 rat VSMCs were incubated with beta-glycerophosphate (10 mm) or uremic serum to induce a diffuse mineralization. H(2)O(2) production by VSMCs was determinated by chemiluminescence. NAD(P)H oxidase sub-unit (p22(phox)), Cbfa-1, ERK phosphorylation and bone alkaline phosphatase (ALP) expressions were measured by Western blotting. VSMCs exhibited higher production of H(2)O(2) and early expression of p22(phox) with beta-glycerophosphate or uremic serum within 24 h of treatment. beta-glycerophosphate-induced oxidative stress was associated with Cbfa-1 expression followed by ALP expression and activity, meanwhile the VSMCs expressing ALP diffusely calcified their extracellular matrix. Interestingly, diphenyleneiodonium partly prevented the osteoblastic differentiation. Results from this model strongly suggest a major implication of vascular NAD(P)H oxidase in vascular calcification supported by VSMCs osteoblastic differentiation.
Collapse
Affiliation(s)
- Thibault Sutra
- EA 4188 Nutrition humaine, Biodisponibilité et Athérogénèse, Institut Universitaire de Recherche Clinique, Université Montpellier 1, France
| | | | | | | | | | | |
Collapse
|