1
|
Pant P, Chitme H, Sircar R, Prasad R, Prasad HO. Genome-wide association study for single nucleotide polymorphism associated with mural and cumulus granulosa cells of PCOS (polycystic ovary syndrome) and non-PCOS patients. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2023. [DOI: 10.1186/s43094-023-00475-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
Abstract
Background
The genetic make-up of local granulosa cells and their function in the pathophysiology of polycystic ovary syndrome (PCOS) is crucial to a full comprehension of the disorder. The major purpose of this study was to compare the Single Nucleotide Polymorphism (SNP) of cumulus granulosa cells (CGCs) and mural granulosa cells (MGCs) between healthy individuals and women with PCOS using genome-wide association analysis (GWA). A case–control study was conducted in a total of 24 women diagnosed with PCOS and 24 healthy non-PCOS women of reproductive age aggregated into 4 samples of 6 patients each. GWA studies entail several processes, such as cell separation, cellular DNA extraction, library preparation followed by interpretation using bioinformatics databases. SNP locations were identified by reference gene also involves the use of Matrix-assisted laser desorption/ionisation-time of flight (MALDI-TOF) mass spectrometry (MS) (MALDI-TOF-MS) for the first sorting. Hybridization with the gene chip was followed by reading the SNP genotypes according to the publications in the literature. TASSEL (Trait Analysis by aSSociation, Evolution and Linkage) program and methods were used for GWA studies.
Results
An aggregate of 21,039 SNP calls were obtained from our samples. Genes of autoimmune illnesses, obesity, inflammatory illnesses, nervous system diseases such as retinitis pigmentosa, autism, neural tube defects, and Alzheimer's disease; and various malignancies such as lung cancer, colorectal cancer, breast cancer were also identified in these cells. Gene ranking score reveals that granulosa cells carry key genes of neurological system and reproductive systems especially in brain and testis, respectively.
Conclusions
Mural and Cumulus Granulosa cells were shown to have the PCOS directly and indirectly related genes MMP9, PRKAA2, COMT and HP. We found that the expression of ARID4B, MUC5AC, NID2, CREBBP, GNB1, KIF2C, COL18A1, and HNRNPC by these cells may contribute to PCOS.
Graphical abstract
Collapse
|
2
|
Lin HC, Li J, Cheng DD, Zhang X, Yu T, Zhao FY, Geng Q, Zhu MX, Kong HW, Li H, Yao M. Nuclear export protein CSE1L interacts with P65 and promotes NSCLC growth via NF-κB/MAPK pathway. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:23-36. [PMID: 33869740 PMCID: PMC8039531 DOI: 10.1016/j.omto.2021.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/06/2021] [Indexed: 12/24/2022]
Abstract
Non-small cell lung cancer (NSCLC) is characterized with high morbidity and mortality, mainly due to frequent recurrence and metastasis. However, the underlying molecular mechanisms of NSCLC tumorigenesis are largely unclear. Through data mining in the ONCOMINE and Gene Expression Omnibus (GEO) databases, the expression of CSE1L (chromosome segregation like 1 protein/CAS), an exportin, was identified to be significantly upregulated in NSCLC and positively associated with poor prognosis of patients. By use of in vitro and in vivo gain- and loss-of-function experiments, we found that CSE1L can promote NSCLC cell proliferation while inhibiting cell apoptosis. Through immunoprecipitation and mass spectrometry experiments, we demonstrated that CSE1L interacted with RELA (named as P65) and affected its location in the nucleus. Moreover, we found that one of the mechanisms by which CSE1L promotes proliferation and inhibits apoptosis is through activating the nuclear factor-κB (NF-κB)/mitogen-activated protein kinase (MAPK) signaling pathway. In summary, our findings indicated an oncogenic role of CSE1L in NSCLC tumorigenesis.
Collapse
Affiliation(s)
- H C Lin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - J Li
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - D D Cheng
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - X Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - T Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - F Y Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Q Geng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - M X Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - H W Kong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - H Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - M Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| |
Collapse
|
3
|
Ye M, Han R, Shi J, Wang X, Zhao AZ, Li F, Chen H. Cellular apoptosis susceptibility protein (CAS) suppresses the proliferation of breast cancer cells by upregulated cyp24a1. Med Oncol 2020; 37:43. [PMID: 32270348 DOI: 10.1007/s12032-020-01366-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/18/2020] [Indexed: 12/30/2022]
Abstract
Breast cancer is the most common cancer in women. Although several studies demonstrated cellular apoptosis susceptibility protein (CAS) involved in the development of breast cancer, the underlying mechanisms of CAS regulating cell processes in the breast cancer remain elusive. In the present study, we explored the possible mechanism of CAS in contributing to the cell proliferation in the breast cancer cell line MCF-7. Knockdown of CAS led to the reduction of cell viability and proliferation. Furthermore, cell cycle was arrested in G0/G1 phase after knocking down CAS with the decrease of cyclinD1. In addition, RNA-seq analysis for the CAS knockdown cells demonstrated that total eleven genes were significantly altered (Fold changes > 2). Of note, the expression of cyp24a1 was dramatically increased in the shCAS cells compared to that of shNC cells as well as confirmed by quantitative real-time polymerase chain reaction (qPCR). These observations clarified the previous conflicting results on the cell fates of the breast cells regulated by CAS and provide new insight into the role of CAS in the development of breast cancer.
Collapse
Affiliation(s)
- Mei Ye
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Ruigang Han
- Reproductive Medicine Center of The 306th Hospital of PLA, Beijing, China
| | - Jianwu Shi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, China
| | - Xunda Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Allan Z Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Fanghong Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - Hao Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, China.
| |
Collapse
|
4
|
Liu C, Wei J, Xu K, Sun X, Zhang H, Xiong C. CSE1L participates in regulating cell mitosis in human seminoma. Cell Prolif 2018; 52:e12549. [PMID: 30485574 PMCID: PMC6496685 DOI: 10.1111/cpr.12549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/28/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022] Open
Abstract
Objectives CSE1L has been reported to be highly expressed in various tumours. Testicular germ cell tumours are common among young males, and seminoma is the major type. However, whether CSE1L has functions in the seminoma is unclear. Materials and methods The expression of CSE1L was detected by immunohistochemistry in seminoma tissues and non‐tumour normal testis tissues from patients. CSE1L distribution during cell mitosis was determined by immunofluorescent staining with CSE1L, α‐tubulin and γ‐tubulin antibodies. The effects of Cse1L knockdown on cell proliferation and cell cycle progression were determined by Cell Counting Kit‐8 assay, flow cytometry, PH3 staining and bromodeoxyuridine incorporation assay. Results CSE1L was significantly enriched in the seminoma tissue compared with the non‐tumour normal testis tissue. CSE1L also co‐localized with α‐tubulin in the cells with a potential to divide. In the seminoma cell line TCam‐2, CSE1L was associated with the spindles and the centrosomes during cell division. The knockdown of CSE1L in TCam‐2 cells attenuated the cells’ proliferative capacity. Cell cycle assay revealed that the CSE1L‐deficient cells were mainly arrested in the G0/G1 phase and moderately delayed in the G2/M phase. The proportion of cells with multipolar spindle and abnormal spindle geometry was obviously increased by CSE1L expression silencing in the TCam‐2 cells. Conclusions Overall, these findings showed that CSE1L plays a pivotal role in maintaining cell proliferation and cell division in seminomas.
Collapse
Affiliation(s)
- Chunyan Liu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajing Wei
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Xu
- The First People's Hospital of Tianmen City, Tianmen, China
| | - Xiaosong Sun
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Huiping Zhang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Wuhan Tongji Reproductive Medicine Hospital, Wuhan, Hubei, China
| | - Chengliang Xiong
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Wuhan Tongji Reproductive Medicine Hospital, Wuhan, Hubei, China
| |
Collapse
|
5
|
Jiang MC. CAS (CSE1L) signaling pathway in tumor progression and its potential as a biomarker and target for targeted therapy. Tumour Biol 2016; 37:13077-13090. [PMID: 27596143 DOI: 10.1007/s13277-016-5301-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022] Open
Abstract
CSE1L (chromosome segregation 1-like protein), also named as CAS (cellular apoptosis susceptibility protein), is highly expressed in most cancer types. CSE1L/CAS is a multiple functional protein that plays roles in apoptosis, cell survival, chromosome assembly, nucleocytoplasmic transport, microvesicle formation, and cancer metastasis; some of the functions are explicitly correlated. CSE1L is also a cancer serum biomarker. The phosphorylation of CAS is regulated by the extracellular signal-regulated kinase (ERK). The RAS/RAF/MAPK/ERK signaling pathways are the essential targets of most targeted cancer drugs, thus serum phosphorylated CSE1L may be a potential biomarker for monitoring drug resistance in targeted therapy. CSE1L can regulate Ras-induced ERK phosphorylation. CSE1L also regulates the expression and phosphorylation of CREB (cAMP response element binding protein) and MITF (microphthalmia-associated transcription factor) and is thus involved in the melanogenesis and progression of melanoma. CAS is an exosome/microvesicle membrane protein. Tumor cells consistently secrete microvesicles and tumor-derived microvesicles may be accumulated around tumors. Therefore, microvesicle membrane CSE1L may be a potential target for the development of high-efficacy antibody-drug conjugates (ADCs) for cancer therapy. This review will focus on CSE1L expression in cancers, its relationship to Ras/ERK and cAMP/PKA signaling pathways in melanoma development, its potential for the development of ADCs and tumor imaging reagents, and secretory phosphorylated CSE1L for monitoring the emergence of drug resistance in targeted cancer therapy.
Collapse
Affiliation(s)
- Ming-Chung Jiang
- Targetrust Biotech. Ltd., No. 510 Zhongzheng Rd, Xinzhuang Dist, New Taipei City, 24205, Taiwan.
| |
Collapse
|
6
|
Knockdown of CSE1L Gene in Colorectal Cancer Reduces Tumorigenesis in Vitro. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2761-8. [PMID: 27521996 DOI: 10.1016/j.ajpath.2016.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 06/03/2016] [Accepted: 06/17/2016] [Indexed: 11/21/2022]
Abstract
Human cellular apoptosis susceptibility (chromosomal segregation 1-like, CSE1L) gene plays a role in nuclear-to-cytoplasm transport and chromosome segregation during mitosis, cellular proliferation, and apoptosis. CSE1L is involved in colon carcinogenesis. CSE1L gene expression was assessed with three data sets using Affymetrix U133 + gene chips on normal human colonic mucosa (NR), adenomas (ADs), and colorectal carcinoma (CRC). CSE1L protein expression in CRC, AD, and NR from the same patients was measured by immunohistochemistry using a tissue microarray. We evaluated CSE1L expression in CRC cells (HCT116, SW480, and HT29) and its biological functions. CSE1L mRNA was significantly increased in all AD and CRC compared with NR (P < 0.001 and P = 0.02, respectivly). We observed a change in CSE1L staining intensity and cellular localization by immunohistochemistry. CSE1L was significantly increased during the transition from AD to CRC when compared with NR in a CRC tissue microarray (P = 0.01 and P < 0.001). HCT116, SW480, and HT29 cells also expressed CSE1L protein. CSE1L knockdown by shRNA inhibited protein, resulting in decreased cell proliferation, reduced colony formation in soft agar, and induction of apoptosis. CSE1L protein is expressed early and across all stages of CRC development. shRNA knockdown of CSE1L was associated with inhibition of tumorigenesis in CRC cells. CSE1L may represent a potential target for treatment of CRC.
Collapse
|
7
|
Zhu JH, Hong DF, Song YM, Sun LF, Wang ZF, Wang JW. Suppression of cellular apoptosis susceptibility (CSE1L) inhibits proliferation and induces apoptosis in colorectal cancer cells. Asian Pac J Cancer Prev 2014; 14:1017-21. [PMID: 23621178 DOI: 10.7314/apjcp.2013.14.2.1017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The cellular apoptosis susceptibility (CSE1L) gene has been demonstrated to regulate multiple cellular mechanisms including the mitotic spindle check point as well as proliferation and apoptosis. However, the importance of CSE1L in human colon cancer is largely unknown. In the present study, we examined expression levels of CSE1L mRNA by semiquantitative RT-PCR. A lentivirus-mediated small interfering RNA (siRNA) was used to knock down CSE1L expression in the human colon cancer cell line RKO. Changes in CSE1L target gene expression were determined by RT-PCR. Cell proliferation was examined by a high content screening assay. In vitro tumorigenesis was measured by colony-formation assay. Cell cycle distribution and apoptosis were detected by flow cytometric analysis. We found CSE1L mRNA to be expressed in human colon cancer cells. Using a lentivirus based RNAi approach, CSE1L expression was significantly inhibited in RKO cells, causing cell cycle arrest in the G2/M and S phases and a delay in cell proliferation, as well as induction of apoptosis and an inhibition of colony growth capacity. Collectively, the results suggest that silencing of CSE1L may be a potential therapeutic approach for colon cancer.
Collapse
Affiliation(s)
- Jin-Hui Zhu
- Department of General Surgery and Laparoscopic Center, Second Affiliated Hospital, Zhejiang University School of Medicine, 2Hangzhou, China
| | | | | | | | | | | |
Collapse
|
8
|
Lorenzato A, Biolatti M, Delogu G, Capobianco G, Farace C, Dessole S, Cossu A, Tanda F, Madeddu R, Olivero M, Di Renzo MF. AKT activation drives the nuclear localization of CSE1L and a pro-oncogenic transcriptional activation in ovarian cancer cells. Exp Cell Res 2013; 319:2627-36. [PMID: 23948303 DOI: 10.1016/j.yexcr.2013.07.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 07/27/2013] [Accepted: 07/31/2013] [Indexed: 12/28/2022]
Abstract
The human homolog of the yeast cse1 gene (CSE1L) is over-expressed in ovarian cancer. CSE1L forms complex with Ran and importin-α and has roles in nucleocytoplasmic traffic and gene expression. CSE1L accumulated in the nucleus of ovarian cancer cell lines, while it was localized also in the cytoplasm of other cancer cell lines. Nuclear localization depended on AKT, which was constitutively active in ovarian cancer cells, as the CSE1L protein translocated to the cytoplasm when AKT was inactivated. Moreover, the expression of a constitutively active AKT forced the translocation of CSE1L from the cytoplasm to the nucleus in other cancer cells. Nuclear accrual of CSE1L was associated to the nuclear accumulation of the phosphorylated Ran Binding protein 3 (RanBP3), which depended on AKT as well. Also in samples of human ovarian cancer, AKT activation was associated to nuclear accumulation of CSE1L and phosphorylation of RanBP3. Expression profiling of ovarian cancer cells after CSE1L silencing showed that CSE1L was required for the expression of genes promoting invasion and metastasis. In agreement, CSE1L silencing impaired motility and invasiveness of ovarian cancer cells. Altogether these data show that in ovarian cancer cells activated AKT by affecting RanBP3 phosphorylation determines the nuclear accumulation of CSE1L and likely the nuclear concentration of transcription factors conveying pro-oncogenic signals.
Collapse
Affiliation(s)
- Annalisa Lorenzato
- Department of Oncology, University of Torino School of Medicine, Torino, Italy; Institute for Cancer Research at Candiolo, Candiolo, Torino, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Jiang MC, Yeh CM, Tai CJ, Chen HC, Lin SH, Su TC, Shen SC, Lee WR, Liao CF, Li LT, Lee CH, Chen YC, Yeh KT, Chang CC. CSE1L modulates Ras-induced cancer cell invasion: correlation of K-Ras mutation and CSE1L expression in colorectal cancer progression. Am J Surg 2013; 206:418-27. [PMID: 23806821 DOI: 10.1016/j.amjsurg.2012.11.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 10/09/2012] [Accepted: 11/14/2012] [Indexed: 01/08/2023]
Abstract
BACKGROUND Ras plays an important role in colorectal cancer progression. CSE1L (chromosome segregation 1-like) gene maps to 20q13, a chromosomal region that correlates with colorectal cancer development. We investigated the association of CSE1L with Ras in colorectal cancer progression. METHODS The effect of CSE1L on metastasis-stimulating activity of Ras was studied in an animal model with tumor cells expressing CSE1L-specific shRNA and v-H-Ras. CSE1L expression was evaluated by the immunohistochemical analysis of 127 surgically resected colorectal tumors. K-Ras mutations were analyzed by direct sequencing. RESULTS CSE1L knockdown reduced Ras-induced metastasis of B16F10 melanoma cells in C57BL/6 mice. v-H-Ras expression altered the cellular trafficking of CSE1L and increased CSE1L secretion. Most colorectal tumors were positive for CSE1L staining (98.4%, 125 of 127). Colorectal tumors with K-Ras mutation or high cytoplasmic CSE1L expression were correlated with T status (depth of tumor penetration; P = .004), stage (P = .004), and lymph node metastasis (P = .019). CONCLUSIONS CSE1L may be a target for treating Ras-associated tumors. Analysis of K-Ras mutation and CSE1L expression may provide valuable clinical and pathological information to aid in the determination of treatment options for colorectal cancer.
Collapse
Affiliation(s)
- Ming-Chung Jiang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Hsing-Yi District, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Presence of CSE1L protein in urine of patients with urinary bladder urothelial carcinomas. Int J Biol Markers 2012; 27:e280-4. [PMID: 22653741 DOI: 10.5301/jbm.2012.9310] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2012] [Indexed: 12/23/2022]
Abstract
The chromosome segregation 1-like (CSE1L) protein is highly expressed in most cancers and has been shown to be secreted by tumor cells. We studied the presence of CSE1L in the urine of patients with bladder urothelial carcinomas. The results of our immunohistochemical analysis showed a high expression of CSE1L in bladder cancer specimens, while the normal bladder specimens only showed a very faint staining in some cells. Immunoblotting showed that CSE1L was present in urine of patients with bladder cancer. Urinary CSE1L-positive cases were detected in 95% (57/60) of patients with bladder urothelial carcinomas or the atypical/suspicious cases with urothelial atypia. No CSE1L was detected in urine of healthy controls (p<0.01). Our results suggest that urinary CSE1L deserves further evaluation for the screening of bladder cancer.
Collapse
|
11
|
Chang CC, Tai CJ, Su TC, Shen KH, Lin SH, Yeh CM, Yeh KT, Lin YM, Jiang MC. The prognostic significance of nuclear CSE1L in urinary bladder urothelial carcinomas. Ann Diagn Pathol 2012; 16:362-8. [DOI: 10.1016/j.anndiagpath.2012.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 02/28/2012] [Indexed: 02/07/2023]
|
12
|
Sillars-Hardebol AH, Carvalho B, Beliën JA, de Wit M, Delis-van Diemen PM, Tijssen M, van de Wiel MA, Pontén F, Meijer GA, Fijneman RJA. CSE1L, DIDO1 and RBM39 in colorectal adenoma to carcinoma progression. Cell Oncol (Dordr) 2012; 35:293-300. [DOI: 10.1007/s13402-012-0088-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2012] [Indexed: 01/22/2023] Open
|
13
|
Lorenzato A, Martino C, Dani N, Oligschläger Y, Ferrero AM, Biglia N, Calogero R, Olivero M, Di Renzo MF. The cellular apoptosis susceptibility
CAS/CSE1L
gene protects ovarian cancer cells from death by suppressing RASSF1C. FASEB J 2012; 26:2446-56. [DOI: 10.1096/fj.11-195982] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Annalisa Lorenzato
- Department of Oncological SciencesUniversity of Torino School of MedicineTurin Italy
- Institute for Cancer Research at CandioloCandioloItaly
| | - Cosimo Martino
- Department of Oncological SciencesUniversity of Torino School of MedicineTurin Italy
- Institute for Cancer Research at CandioloCandioloItaly
| | - Nadia Dani
- Department of Oncological SciencesUniversity of Torino School of MedicineTurin Italy
- Institute for Cancer Research at CandioloCandioloItaly
| | - Yvonne Oligschläger
- Department of Oncological SciencesUniversity of Torino School of MedicineTurin Italy
- Institute for Cancer Research at CandioloCandioloItaly
| | - Anna Maria Ferrero
- Department of Obstetrics and GynaecologyAzienda Sanitaria Ospedaliera (ASO) Ordine MaurizianoTurinItaly
| | - Nicoletta Biglia
- Department of Obstetrics and GynaecologyAzienda Sanitaria Ospedaliera (ASO) Ordine MaurizianoTurinItaly
| | - Raffaele Calogero
- Genomics and Bioinformatics UnitDepartment of Clinical and Biological SciencesASO San Luigi GonzagaOrbassanoItaly
| | - Martina Olivero
- Department of Oncological SciencesUniversity of Torino School of MedicineTurin Italy
- Institute for Cancer Research at CandioloCandioloItaly
| | - Maria Flavia Di Renzo
- Department of Oncological SciencesUniversity of Torino School of MedicineTurin Italy
- Institute for Cancer Research at CandioloCandioloItaly
| |
Collapse
|
14
|
The liver prometastatic reaction of cancer patients: implications for microenvironment-dependent colon cancer gene regulation. CANCER MICROENVIRONMENT 2011; 4:163-80. [PMID: 21870094 DOI: 10.1007/s12307-011-0084-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/08/2011] [Indexed: 02/07/2023]
Abstract
Colon cancer frequently metastasizes to the liver but the genetic and phenotypic properties of specific cancer cells able to implant and grow in this organ have not yet been established. The contribution of the patient's genetic, physiologic and pathologic backgrounds to the incidence and development of hepatic colon cancer metastases is also presently misunderstood. At a transcriptional level, hepatic metastasis development is in part associated with marked changes in gene expression of colon cancer cells that may originate in the primary tumor. Other changes occur in the liver and are regulated by hepatic cells, which represent the new microenvironment for metastatic colon cancer cells. However, hepatic parenchymal and non-parenchymal cell functions are also affected by both tumor-derived factors and systemic host factors, which suggests that the hepatic metastasis microenvironment is a functional linkage between the hepatic pathophysiology of the colon cancer patient and the biology of its cancer cells. Therefore, together with metastasis-related gene profiles suggesting the existence of liver metastasis potential in primary tumors, new biomarkers of the prometastatic microenvironment supported by the liver reaction to colon cancer factors may be helpful for the individual assessment of hepatic metastasis risk in colon cancer patients. In addition, knowledge on hepatic metastasis gene regulation by the hepatic microenvironment may open multiple opportunities for therapeutic intervention during colon cancer metastasis at both subclinical and advanced stages.
Collapse
|
15
|
Increased cellular apoptosis susceptibility (CSE1L/CAS) protein expression promotes protrusion extension and enhances migration of MCF-7 breast cancer cells. Exp Cell Res 2010; 316:2969-81. [DOI: 10.1016/j.yexcr.2010.07.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/22/2010] [Accepted: 07/29/2010] [Indexed: 11/24/2022]
|
16
|
Uen WC, Tai CJ, Shen SC, Lee WR, Tsao TY, Deng WP, Chiou HY, Hsu CH, Hsieh CI, Liao CF, Jiang MC. Differential distributions of CSE1L/CAS and E-cadherin in the polarized and non-polarized epithelial glands of neoplastic colorectal epithelium. J Mol Histol 2010; 41:259-66. [DOI: 10.1007/s10735-010-9286-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 08/16/2010] [Indexed: 11/29/2022]
|
17
|
Tai CJ, Hsu CH, Shen SC, Lee WR, Jiang MC. Cellular apoptosis susceptibility (CSE1L/CAS) protein in cancer metastasis and chemotherapeutic drug-induced apoptosis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:110. [PMID: 20701792 PMCID: PMC2925819 DOI: 10.1186/1756-9966-29-110] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 08/11/2010] [Indexed: 11/10/2022]
Abstract
The cellular apoptosis susceptibility (CSE1L/CAS) protein is highly expressed in cancer, and its expression is positively correlated with high cancer stage, high cancer grade, and worse outcomes of patients. CSE1L (or CAS) regulates chemotherapeutic drug-induced cancer cell apoptosis and may play important roles in mediating the cytotoxicities of chemotherapeutic drugs against cancer cells in cancer chemotherapy. CSE1L was originally regarded as a proliferation-associated protein and was thought to regulate the proliferation of cancer cells in cancer progression. However, the results of experimental studies showed that enhanced CSE1L expression is unable to increase proliferation of cancer cells and CSE1L regulates invasion and metastasis but not proliferation of cancer cells. Recent studies revealed that CSE1L is a secretory protein, and there is a higher prevalence of secretory CSE1L in the sera of patients with metastatic cancer. Therefore, CSE1L may be a useful serological marker for screening, diagnosis and prognosis, assessment of therapeutic responses, and monitoring for recurrence of cancer. In this paper, we review the expression of CSE1L in cancer and discuss why CSE1L regulates the invasion and metastasis rather than the proliferation of cancer.
Collapse
Affiliation(s)
- Cheng-Jeng Tai
- Section of Hematology-Oncology, Department of Medicine, Taipei Medical University and Hospital, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
18
|
Tung JN, Tsao TY, Tai CJ, Yeh KT, Cheng YW, Jiang MC. Distribution of lysosome-associated membrane proteins-1 and -2, and cathepsin D in eosinophilic granular bodies: possible relationship to cyst development in pilocytic astrocytomas. J Int Med Res 2010; 38:1354-64. [PMID: 20926008 DOI: 10.1177/147323001003800417] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Pilocytic astrocytomas are usually cystic; cyst formation within these tumours may result in increased intracranial pressure, due to the effect of their mass, and contribute to cerebral damage. Eosinophilic granular bodies (EGBs) are produced abundantly in pilocytic astrocytomas but their role in disease progression remains unknown. Immunohistochemistry studies showed EGBs to exhibit pronounced reactivity to antibodies against lysosome-associated membrane proteins (LAMP)-1 and LAMP-2, and the lysosomal enzyme cathepsin D. Both LAMP-1 and LAMP-2 showed peripheral rim and granular staining patterns. The EGBs were scattered widely across cysts and, where EGBs aggregated in clusters, were usually close to areas of fluid in the cysts. Most EGBs had nuclei either attached or close by, indicating that the EGBs may be derived from anucleated astrocytes. The results suggest that EGBs, together with other factors, may play a role in the development of cysts in pilocytic astrocytomas.
Collapse
Affiliation(s)
- J-N Tung
- Institutes of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
19
|
Stella Tsai CS, Chen HC, Tung JN, Tsou SS, Tsao TY, Liao CF, Chen YC, Yeh CY, Yeh KT, Jiang MC. Serum cellular apoptosis susceptibility protein is a potential prognostic marker for metastatic colorectal cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1619-28. [PMID: 20150437 DOI: 10.2353/ajpath.2010.090467] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Colorectal cancer has high rates of recurrence and metastasis. Many patients with similar histopathological features show significantly different clinical outcomes, and these differences are primarily related to metastases undetected by current diagnostic methods. There is no useful serological marker for metastatic disease. We investigated the cellular apoptosis susceptibility (CSE1L/CAS) protein in comparison with carcinoembryonic antigen (CEA) as a marker for metastatic colorectal cancer. Using serum from 103 patients with stage I, II, III, and IV disease, CSE1L was detected in 36.0% (9 of 25), 57.7% (15 of 26), 71.4% (30 of 42), and 88.9% (8 of 9) of patients, respectively; a pathological CEA level was found in 16.0% (4 of 25), 42.3% (11 of 26), 47.6% (20 of 42), and 77.8% (7 of 9) of patients, respectively; a combined CSE1L/CEA assay was detected in 48.0% (12 of 25), 65.4% (17 of 26), 88.1% (37 of 42), and 100% (9 of 9) of patients, respectively. Lymphatic metastasis is an important predictor of poor prognosis and crucial for determination of therapeutic strategy. Serum CSE1L was detected in 74.5% (38 of 51) of patients with lymph node metastasis, whereas a pathological CEA level was found in only 52.9% (27 of 51) of the same patients (P < 0.001); the combined CSE1L/CEA assay increased sensitivity to 90.2% (46 of 51). Animal experiments showed CSE1L reduction in B16-F10 melanoma cells correlated with decreased metastasis to the colorectal tract in C57BL/6 mice. These results indicate that assay of serum CSE1L may facilitate diagnosis of colorectal cancer lymphatic metastases; furthermore, CSE1L is a possible therapeutic target.
Collapse
Affiliation(s)
- Chin-Shaw Stella Tsai
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Wuchi, Taichung County 435, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|