1
|
Dhalla NS, Mota KO, Elimban V, Shah AK, de Vasconcelos CML, Bhullar SK. Role of Vasoactive Hormone-Induced Signal Transduction in Cardiac Hypertrophy and Heart Failure. Cells 2024; 13:856. [PMID: 38786079 PMCID: PMC11119949 DOI: 10.3390/cells13100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Heart failure is the common concluding pathway for a majority of cardiovascular diseases and is associated with cardiac dysfunction. Since heart failure is invariably preceded by adaptive or maladaptive cardiac hypertrophy, several biochemical mechanisms have been proposed to explain the development of cardiac hypertrophy and progression to heart failure. One of these includes the activation of different neuroendocrine systems for elevating the circulating levels of different vasoactive hormones such as catecholamines, angiotensin II, vasopressin, serotonin and endothelins. All these hormones are released in the circulation and stimulate different signal transduction systems by acting on their respective receptors on the cell membrane to promote protein synthesis in cardiomyocytes and induce cardiac hypertrophy. The elevated levels of these vasoactive hormones induce hemodynamic overload, increase ventricular wall tension, increase protein synthesis and the occurrence of cardiac remodeling. In addition, there occurs an increase in proinflammatory cytokines and collagen synthesis for the induction of myocardial fibrosis and the transition of adaptive to maladaptive hypertrophy. The prolonged exposure of the hypertrophied heart to these vasoactive hormones has been reported to result in the oxidation of catecholamines and serotonin via monoamine oxidase as well as the activation of NADPH oxidase via angiotensin II and endothelins to promote oxidative stress. The development of oxidative stress produces subcellular defects, Ca2+-handling abnormalities, mitochondrial Ca2+-overload and cardiac dysfunction by activating different proteases and depressing cardiac gene expression, in addition to destabilizing the extracellular matrix upon activating some metalloproteinases. These observations support the view that elevated levels of various vasoactive hormones, by producing hemodynamic overload and activating their respective receptor-mediated signal transduction mechanisms, induce cardiac hypertrophy. Furthermore, the occurrence of oxidative stress due to the prolonged exposure of the hypertrophied heart to these hormones plays a critical role in the progression of heart failure.
Collapse
Affiliation(s)
- Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (V.E.); (S.K.B.)
| | - Karina O. Mota
- Department of Physiology, Center of Biological and Health Sciences, Federal University of Sergipe, Sao Cristóvao 49100-000, Brazil; (K.O.M.); (C.M.L.d.V.)
| | - Vijayan Elimban
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (V.E.); (S.K.B.)
| | - Anureet K. Shah
- Department of Nutrition and Food Science, California State University, Los Angeles, CA 90032-8162, USA;
| | - Carla M. L. de Vasconcelos
- Department of Physiology, Center of Biological and Health Sciences, Federal University of Sergipe, Sao Cristóvao 49100-000, Brazil; (K.O.M.); (C.M.L.d.V.)
| | - Sukhwinder K. Bhullar
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (V.E.); (S.K.B.)
| |
Collapse
|
2
|
Fazio A, Evangelisti C, Cappellini A, Mongiorgi S, Koufi FD, Neri I, Marvi MV, Russo M, Ghigo A, Manzoli L, Fiume R, Ratti S. Emerging Roles of Phospholipase C Beta Isozymes as Potential Biomarkers in Cardiac Disorders. Int J Mol Sci 2023; 24:13096. [PMID: 37685903 PMCID: PMC10487445 DOI: 10.3390/ijms241713096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Phospholipase C (PLC) enzymes represent crucial participants in the plasma membrane of mammalian cells, including the cardiac sarcolemmal (SL) membrane of cardiomyocytes. They are responsible for the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) into 1,2-diacylglycerol (DAG) and inositol (1,4,5) trisphosphate (Ins(1,4,5)P3), both essential lipid mediators. These second messengers regulate the intracellular calcium (Ca2+) concentration, which activates signal transduction cascades involved in the regulation of cardiomyocyte activity. Of note, emerging evidence suggests that changes in cardiomyocytes' phospholipid profiles are associated with an increased occurrence of cardiovascular diseases, but the underlying mechanisms are still poorly understood. This review aims to provide a comprehensive overview of the significant impact of PLC on the cardiovascular system, encompassing both physiological and pathological conditions. Specifically, it focuses on the relevance of PLCβ isoforms as potential cardiac biomarkers, due to their implications for pathological disorders, such as cardiac hypertrophy, diabetic cardiomyopathy, and myocardial ischemia/reperfusion injury. Gaining a deeper understanding of the mechanisms underlying PLCβ activation and regulation is crucial for unraveling the complex signaling networks involved in healthy and diseased myocardium. Ultimately, this knowledge holds significant promise for advancing the development of potential therapeutic strategies that can effectively target and address cardiac disorders by focusing on the PLCβ subfamily.
Collapse
Affiliation(s)
- Antonietta Fazio
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (C.E.); (A.C.); (S.M.); (F.-D.K.); (I.N.); (M.V.M.); (L.M.)
| | - Camilla Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (C.E.); (A.C.); (S.M.); (F.-D.K.); (I.N.); (M.V.M.); (L.M.)
| | - Alessandra Cappellini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (C.E.); (A.C.); (S.M.); (F.-D.K.); (I.N.); (M.V.M.); (L.M.)
| | - Sara Mongiorgi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (C.E.); (A.C.); (S.M.); (F.-D.K.); (I.N.); (M.V.M.); (L.M.)
| | - Foteini-Dionysia Koufi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (C.E.); (A.C.); (S.M.); (F.-D.K.); (I.N.); (M.V.M.); (L.M.)
| | - Irene Neri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (C.E.); (A.C.); (S.M.); (F.-D.K.); (I.N.); (M.V.M.); (L.M.)
| | - Maria Vittoria Marvi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (C.E.); (A.C.); (S.M.); (F.-D.K.); (I.N.); (M.V.M.); (L.M.)
| | - Michele Russo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Torino, 10126 Torino, Italy; (M.R.); (A.G.)
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Torino, 10126 Torino, Italy; (M.R.); (A.G.)
| | - Lucia Manzoli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (C.E.); (A.C.); (S.M.); (F.-D.K.); (I.N.); (M.V.M.); (L.M.)
| | - Roberta Fiume
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (C.E.); (A.C.); (S.M.); (F.-D.K.); (I.N.); (M.V.M.); (L.M.)
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (C.E.); (A.C.); (S.M.); (F.-D.K.); (I.N.); (M.V.M.); (L.M.)
| |
Collapse
|
3
|
Liu J, Yin Y, Ni J, Zhang P, Li WM, Liu Z. Dual Specific Phosphatase 7 Exacerbates Dilated Cardiomyopathy, Heart Failure, and Cardiac Death by Inactivating the ERK1/2 Signaling Pathway. J Cardiovasc Transl Res 2022; 15:1219-1238. [PMID: 35596107 DOI: 10.1007/s12265-022-10268-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/25/2022] [Indexed: 12/16/2022]
Abstract
Heart failure is one of the most common but complicated end-stage syndromes in clinical practice. Dilated cardiomyopathy is a myocardial structural abnormality that is associated with heart failure. Dual-specificity phosphatases (DUSPs) are a group of protein phosphatases that regulate signaling pathways in numerous diseases; however, their physiological and pathological impact on cardiovascular disease remains unknown. In the present study, we generated two transgenic mouse models, a DUSP7 knockout and a cardiac-specific DUSP7 overexpressor. Mice overexpressing DUSP7 showed an exacerbated disease phenotype, including severe dilated cardiomyopathy, heart failure, and cardiac death. We further demonstrated that high levels of DUSP7 inhibited ERK1/2 phosphorylation and influenced downstream c-MYC, c-FOS, and c-JUN gene expression but did not affect upstream activators. Taken together, our study reveals a novel molecular mechanism for DUSP7 and provides a new therapeutic target and clinical path to alleviate dilated cardiomyopathy and improve cardiac function.
Collapse
Affiliation(s)
- Jing Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yihen Yin
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Heart, Lung, and Blood Center, Pan-Vascular Research Institute, Tongji University School of Medicine, Shanghai, China
| | - Jing Ni
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peiyu Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei-Ming Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
- Heart, Lung, and Blood Center, Pan-Vascular Research Institute, Tongji University School of Medicine, Shanghai, China.
| | - Zheng Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
- Heart, Lung, and Blood Center, Pan-Vascular Research Institute, Tongji University School of Medicine, Shanghai, China.
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Guangdong Province, Shenzhen, China.
| |
Collapse
|
4
|
Upregulation of Phospholipase C Gene Expression Due to Norepinephrine-Induced Hypertrophic Response. Cells 2022; 11:cells11162488. [PMID: 36010565 PMCID: PMC9406906 DOI: 10.3390/cells11162488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022] Open
Abstract
The activation of phospholipase C (PLC) is thought to have a key role in the cardiomyocyte response to several different hypertrophic agents such as norepinephrine, angiotensin II and endothelin-1. PLC activity results in the generation of diacylglycerol and inositol trisphosphate, which are downstream signal transducers for the expression of fetal genes, increased protein synthesis, and subsequent cardiomyocyte growth. In this article, we describe the signal transduction elements that regulate PLC gene expression. The discussion is focused on the norepinephrine- α1-adrenoceptor signaling pathway and downstream signaling processes that mediate an upregulation of PLC isozyme gene expression. Evidence is also indicated to demonstrate that PLC activities self-regulate the expression of PLC isozymes with the suggestion that PLC activities may be part of a coordinated signaling process for the perpetuation of cardiac hypertrophy. Accordingly, from the information provided, it is plausible that specific PLC isozymes could be targeted for the mitigation of cardiac hypertrophy.
Collapse
|
5
|
Tappia PS, Ramjiawan B, Dhalla NS. Role of Phospholipase C in Catecholamine-induced Increase in Myocardial Protein Synthesis. Can J Physiol Pharmacol 2022; 100:945-955. [PMID: 35767883 DOI: 10.1139/cjpp-2022-0189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The activation of the α1-adrenoceptor-(α1-AR) by norepinephrine results in the G-protein (Gqα) mediated increase in the phosphoinositide-specific phospholipase C (PLC) activity. The byproducts of PLC hydrolytic activity, namely, 1,2-diacylglycerol and inositol-1,4,5-trisphosphate, are important downstream signal transducers for increased protein synthesis in the cardiomyocyte and the subsequent hypertrophic response. In this article, evidence is outlined to demonstrate the role of cardiomyocyte PLC isozymes in the catecholamine-induced increase in protein synthesis by using a blocker of α1-AR and an inhibitor of PLC. The discussion will be focused on the α1-AR-Gqα-PLC-mediated hypertrophic signaling pathway from the viewpoint that it may compliment the other β1-AR-Gs protein-adenylyl cyclase signal transduction mechanisms in the early stages of cardiac hypertrophy development, but may become more relevant at the late stage of cardiac hypertrophy. From the information provided here, it is suggested that some specific PLC isozymes may potentially serve as important targets for the attenuation of cardiac hypertrophy in the vulnerable patient population at-risk for heart failure.
Collapse
Affiliation(s)
- Paramjit S Tappia
- Asper Clinical Research Institute, St. Boniface Hospital, Office of Clinical Research, Winnipeg, Manitoba, Canada;
| | - Bram Ramjiawan
- University of Manitoba, Faculty of Medicine, Winnipeg, Manitoba, Canada;
| | - Naranjan S Dhalla
- St Boniface Hospital Research, 120927, Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Manitoba, Canada;
| |
Collapse
|
6
|
Tappia P, Elimban V, Dhalla N. Involvement of phospholipase C in the norepinephrine-induced hypertrophic response in Cardiomyocytes. SCRIPTA MEDICA 2022. [DOI: 10.5937/scriptamed53-36527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Norepinephrine (NE) is known to mediate cardiomyocyte hypertrophy through the G protein coupled a1 -adrenoceptor (a1 -AR) and the activation of the phosphoinositide-specific phospholipase C (PLC). Since the by-products of PLC activity are important downstream signal transducers for cardiac hypertrophy, the role of and the regulatory mechanisms involved in the activation of PLC isozymes in cardiac hypertrophy are highlighted in this review. The discussion is focused to underscore PLC in different experimental models of cardiac hypertrophy, as well as in isolated adult and neonatal cardiomyocytes treated with NE. Particular emphasis is laid concerning the a1 -AR-PLC-mediated hypertrophic signalling pathway. From the information provided, it is evident that the specific activation of PLC isozymes is a primary signalling event in the a1 -AR mediated response to NE as well as initiation and progression of cardiac hypertrophy. Furthermore, the possibility of PLC involvement in the perpetuation of cardiac hypertrophy is also described. It is suggested that specific PLC isozymes may serve as viable targets for the prevention of cardiac hypertrophy in patient population at-risk for the development of heart failure.
Collapse
|
7
|
Li J, Lee JK, Miwa K, Kuramoto Y, Masuyama K, Yasutake H, Tomoyama S, Nakanishi H, Sakata Y. Scaffold-Mediated Developmental Effects on Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Are Preserved After External Support Removal. Front Cell Dev Biol 2021; 9:591754. [PMID: 33659246 PMCID: PMC7917244 DOI: 10.3389/fcell.2021.591754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/27/2021] [Indexed: 12/29/2022] Open
Abstract
Human induced pluripotent stem (hiPS) cells have been used as a cell source for regenerative therapy and disease modeling. The purity of hiPS-cardiomyocytes (hiPS-CMs) has markedly improved with advancements in cell culture and differentiation protocols. However, the morphological features and molecular properties of the relatively immature cells are still unclear, which has hampered their clinical application. The aim of the present study was to investigate the extent to which topographic substrates actively influence hiPS-CMs. hiPS-CMs were seeded on randomized oriented fiber substrate (random), anisotropic aligned fiber substrate (align), and flat non-scaffold substrate (flat). After culturing for one week, the hiPS-CMs on the aligned patterns showed more mature-like properties, including elongated rod shape, shorter duration of action potential, accelerated conduction velocity, and elevated cardiac gene expression. Subsequently, to determine whether this development was irreversible or was altered after withdrawal of the structural support, the hiPS-CMs were harvested from the three different patterns and reseeded on the non-scaffold (flat) pattern. After culturing for one more week, the improvements in morphological and functional properties diminished, although hiPS-CMs pre-cultured on the aligned pattern retained the molecular features of development, which were even more significant as compared to that observed during the pre-culture stage. Our results suggested that the anisotropic fiber substrate can induce the formation of geometrical mimic-oriented heart tissue in a short time. Although the morphological and electrophysiological properties of hiPS-CMs obtained via facilitated maturation somehow rely on the existence of an exterior scaffold, the molecular developmental features were preserved even in the absence of the external support, which might persist throughout hiPS-CM development.
Collapse
Affiliation(s)
- Jun Li
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Jong-Kook Lee
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Cardiovascular Regenerative Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Keiko Miwa
- Department of Cardiovascular Regenerative Medicine, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yuki Kuramoto
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kiyoshi Masuyama
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hideki Yasutake
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoki Tomoyama
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroyuki Nakanishi
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
8
|
Blunsom NJ, Cockcroft S. CDP-Diacylglycerol Synthases (CDS): Gateway to Phosphatidylinositol and Cardiolipin Synthesis. Front Cell Dev Biol 2020; 8:63. [PMID: 32117988 PMCID: PMC7018664 DOI: 10.3389/fcell.2020.00063] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/22/2020] [Indexed: 12/15/2022] Open
Abstract
Cytidine diphosphate diacylglycerol (CDP-DAG) is a key intermediate in the synthesis of phosphatidylinositol (PI) and cardiolipin (CL). Both PI and CL have highly specialized roles in cells. PI can be phosphorylated and these phosphorylated derivatives play major roles in signal transduction, membrane traffic, and maintenance of the actin cytoskeletal network. CL is the signature lipid of mitochondria and has a plethora of functions including maintenance of cristae morphology, mitochondrial fission, and fusion and for electron transport chain super complex formation. Both lipids are synthesized in different organelles although they share the common intermediate, CDP-DAG. CDP-DAG is synthesized from phosphatidic acid (PA) and CTP by enzymes that display CDP-DAG synthase activities. Two families of enzymes, CDS and TAMM41, which bear no sequence or structural relationship, have now been identified. TAMM41 is a peripheral membrane protein localized in the inner mitochondrial membrane required for CL synthesis. CDS enzymes are ancient integral membrane proteins found in all three domains of life. In mammals, they provide CDP-DAG for PI synthesis and for phosphatidylglycerol (PG) and CL synthesis in prokaryotes. CDS enzymes are critical for maintaining phosphoinositide levels during phospholipase C (PLC) signaling. Hydrolysis of PI (4,5) bisphosphate by PLC requires the resynthesis of PI and CDS enzymes catalyze the rate-limiting step in the process. In mammals, the protein products of two CDS genes (CDS1 and CDS2) localize to the ER and it is suggested that CDS2 is the major CDS for this process. Expression of CDS enzymes are regulated by transcription factors and CDS enzymes may also contribute to CL synthesis in mitochondria. Studies of CDS enzymes in protozoa reveal spatial segregation of CDS enzymes from the rest of the machinery required for both PI and CL synthesis identifying a key gap in our understanding of how CDP-DAG can cross the different membrane compartments in protozoa and in mammals.
Collapse
Affiliation(s)
| | - Shamshad Cockcroft
- Division of Biosciences, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
9
|
Blunsom NJ, Gomez-Espinosa E, Ashlin TG, Cockcroft S. Sustained phospholipase C stimulation of H9c2 cardiomyoblasts by vasopressin induces an increase in CDP-diacylglycerol synthase 1 (CDS1) through protein kinase C and cFos. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1072-1082. [PMID: 30862571 PMCID: PMC6495107 DOI: 10.1016/j.bbalip.2019.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 01/18/2023]
Abstract
Chronic stimulation (24 h) with vasopressin leads to hypertrophy in H9c2 cardiomyoblasts and this is accompanied by continuous activation of phospholipase C. Consequently, vasopressin stimulation leads to a depletion of phosphatidylinositol levels. The substrate for phospholipase C is phosphatidylinositol (4, 5) bisphosphate (PIP2) and resynthesis of phosphatidylinositol and its subsequent phosphorylation maintains the supply of PIP2. The resynthesis of PI requires the conversion of phosphatidic acid to CDP-diacylglycerol catalysed by CDP-diacylglycerol synthase (CDS) enzymes. To examine whether the resynthesis of PI is regulated by vasopressin stimulation, we focussed on the CDS enzymes. Three CDS enzymes are present in mammalian cells: CDS1 and CDS2 are integral membrane proteins localised at the endoplasmic reticulum and TAMM41 is a peripheral protein localised in the mitochondria. Vasopressin selectively stimulates an increase CDS1 mRNA that is dependent on protein kinase C, and can be inhibited by the AP-1 inhibitor, T-5224. Vasopressin also stimulates an increase in cFos protein which is inhibited by a protein kinase C inhibitor. We conclude that vasopressin stimulates CDS1 mRNA through phospholipase C, protein kinase C and cFos and provides a potential mechanism for maintenance of phosphatidylinositol levels during long-term phospholipase C signalling.
Collapse
Affiliation(s)
- Nicholas J Blunsom
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK
| | - Evelyn Gomez-Espinosa
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK
| | - Tim G Ashlin
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK
| | - Shamshad Cockcroft
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK.
| |
Collapse
|
10
|
Blunsom NJ, Cockcroft S. Phosphatidylinositol synthesis at the endoplasmic reticulum. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158471. [PMID: 31173893 DOI: 10.1016/j.bbalip.2019.05.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/23/2022]
Abstract
Phosphatidylinositol (PI) is a minor phospholipid with a characteristic fatty acid profile; it is highly enriched in stearic acid at the sn-1 position and arachidonic acid at the sn-2 position. PI is phosphorylated into seven specific derivatives, and individual species are involved in a vast array of cellular functions including signalling, membrane traffic, ion channel regulation and actin dynamics. De novo PI synthesis takes place at the endoplasmic reticulum where phosphatidic acid (PA) is converted to PI in two enzymatic steps. PA is also produced at the plasma membrane during phospholipase C signalling, where hydrolysis of phosphatidylinositol (4,5) bisphosphate (PI(4,5)P2) leads to the production of diacylglycerol which is rapidly phosphorylated to PA. This PA is transferred to the ER to be also recycled back to PI. For the synthesis of PI, CDP-diacylglycerol synthase (CDS) converts PA to the intermediate, CDP-DG, which is then used by PI synthase to make PI. The de novo synthesised PI undergoes remodelling to acquire its characteristic fatty acid profile, which is altered in p53-mutated cancer cells. In mammals, there are two CDS enzymes at the ER, CDS1 and CDS2. In this review, we summarise the de novo synthesis of PI at the ER and the enzymes involved in its subsequent remodelling to acquire its characteristic acyl chains. We discuss how CDS, the rate limiting enzymes in PI synthesis are regulated by different mechanisms. During phospholipase C signalling, the CDS1 enzyme is specifically upregulated by cFos via protein kinase C.
Collapse
Affiliation(s)
- Nicholas J Blunsom
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK
| | - Shamshad Cockcroft
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK.
| |
Collapse
|
11
|
Wu J, Zhang C, Liu C, Zhang A, Li A, Zhang J, Zhang Y. Aortic constriction induces hypertension and cardiac hypertrophy via (pro)renin receptor activation and the PLC‑β3 signaling pathway. Mol Med Rep 2018; 19:573-580. [PMID: 30431106 DOI: 10.3892/mmr.2018.9653] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 10/04/2018] [Indexed: 11/06/2022] Open
Abstract
The (pro)renin receptor [(P)RR] serves an important role in cardiovascular complications. However, the precise mechanisms of (P)RR in the heart remain obscure. The authors hypothesized that overexpression of (P)RR would be associated with activation of the relevant signal pathway which could lead to organ injury. The aim of the present study was to test the role of cardiac (P)RR and its potential signaling pathway components including phospholipase C (PLC), protein kinase C (PKC), extracellular signal‑regulated kinase (ERK)1/2 and Raf‑1 proto‑oncogene, serine/threonine kinase (Raf‑1). Hypertension and cardiac hypertrophy were induced by partial abdominal aortic ligation in Sprague‑Dawley rats. The expression levels of cardiac (P)RR, PLC‑β3, PKC, ERK1/2 and Raf‑1 were measured following administration of the handle region peptide (HRP) and PLC‑β3 inhibitor U73122. The expression of (P)RR and PLC‑β3 significantly increased in the left ventricle (P<0.05). Levels of PKC‑α, ERK1/2 and Raf‑1 in the heart rose significantly (P<0.05). HRP and U73122 significantly decreased the levels of cardiac (P)RR and PLC‑β3. Furthermore, levels of PKC‑α, ERK1/2 and Raf‑1 were also decreased (P<0.05). Cardiac parameters, blood pressure and plasma Angiotensin (Ang) I and Ang II levels were altered significantly (P<0.05). The results demonstrated that hypertension induced by aortic restriction activated the (P)RR in the heart. This action led to hypertension and cardiac hypertrophy via the (P)RR‑PLC‑β3‑PKC‑ERK1/2‑Raf‑1 signaling pathway. These results provide a mechanism by which elevated (P)RR levels in hypertension may contribute to the development of cardiac remodeling.
Collapse
Affiliation(s)
- Junyan Wu
- Institute of Cardiovascular Diseases, Taian Maternal and Child Health Hospital, Taian, Shandong 271000, P.R. China
| | - Cong Zhang
- Department of Endocrinology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Chuanjun Liu
- Institute of Cardiovascular Diseases, Taian Maternal and Child Health Hospital, Taian, Shandong 271000, P.R. China
| | - Aihua Zhang
- Institute of Cardiovascular Diseases, Taian Maternal and Child Health Hospital, Taian, Shandong 271000, P.R. China
| | - An Li
- Institute of Cardiovascular Diseases, Taian Maternal and Child Health Hospital, Taian, Shandong 271000, P.R. China
| | - Jingjun Zhang
- Department of Neurology, Taishan Medical University, Taian, Shandong 271000, P.R. China
| | - Yanling Zhang
- Institute of Cardiovascular Diseases, Taian Maternal and Child Health Hospital, Taian, Shandong 271000, P.R. China
| |
Collapse
|
12
|
Cheema SK, Tappia PS, Dhalla NS. Modification of gene expression in rat cardiomyocytes by linoleic and docosahexaenoic acids 1. Can J Physiol Pharmacol 2018; 97:320-327. [PMID: 30388381 DOI: 10.1139/cjpp-2018-0398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Regulation of cardiac fatty acid metabolism is central to the development of cardiac hypertrophy and heart failure. We investigated the effects of select fatty acids on the expression of genes involved in immediate early as well as inflammatory and hypertrophic responses in adult rat cardiomyocytes. Cardiac remodeling begins with upregulation of immediate early genes for c-fos and c-jun, followed by upregulation of inflammatory genes for nuclear factor kappa B (NF-κB) and nuclear factor of activated T-cells (NFAT). At later stages, genes involved in hypertrophic responses, such as atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), are upregulated. Adult rat cardiomyocytes were treated with palmitic acid, a saturated fatty acid; oleic acid, a monounsaturated fatty acid; linoleic acid, a polyunsaturated fatty acid belonging to the n-6 class; and docosahexaenoic acid, a polyunsaturated fatty acid belonging to the n-3 class. Linoleic acid produced a greater increase in the mRNA expression of c-fos, c-jun, NF-κB, NFAT3, ANP, and BNP relative to palmitic acid and oleic acid. In contrast, docosahexaenoic acid caused a decrease in the expression of genes involved in cardiac hypertrophy. Our findings suggest that linoleic acid may be a potent inducer of genes involved in cardiac hypertrophy, whereas docosahexaenoic acid may be protective against the cardiomyocyte hypertrophic response.
Collapse
Affiliation(s)
- Sukhinder K Cheema
- a Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Paramjit S Tappia
- b Asper Clinical Research Institute, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada
| | - Naranjan S Dhalla
- c Institute of Cardiovascular Sciences, University of Manitoba, St. Boniface Hospital, Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
13
|
Yu X, Jia B, Wang F, Lv X, Peng X, Wang Y, Li H, Wang Y, Lu D, Wang H. α₁ adrenoceptor activation by norepinephrine inhibits LPS-induced cardiomyocyte TNF-α production via modulating ERK1/2 and NF-κB pathway. J Cell Mol Med 2014; 18:263-73. [PMID: 24304472 PMCID: PMC3930413 DOI: 10.1111/jcmm.12184] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 10/08/2013] [Indexed: 02/05/2023] Open
Abstract
Cardiomyocyte tumour necrosis factor α (TNF-α) production contributes to myocardial depression during sepsis. This study was designed to observe the effect of norepinephrine (NE) on lipopolysaccharide (LPS)-induced cardiomyocyte TNF-α expression and to further investigate the underlying mechanisms in neonatal rat cardiomyocytes and endotoxaemic mice. In cultured neonatal rat cardiomyocytes, NE inhibited LPS-induced TNF-α production in a dose-dependent manner. α₁- adrenoceptor (AR) antagonist (prazosin), but neither β₁- nor β₂-AR antagonist, abrogated the inhibitory effect of NE on LPS-stimulated TNF-α production. Furthermore, phenylephrine (PE), an α₁-AR agonist, also suppressed LPS-induced TNF-α production. NE inhibited p38 phosphorylation and NF-κB activation, but enhanced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and c-Fos expression in LPS-treated cardiomyocytes, all of which were reversed by prazosin pre-treatment. To determine whether ERK1/2 regulates c-Fos expression, p38 phosphorylation, NF-κB activation and TNF-α production, cardiomyocytes were also treated with U0126, a selective ERK1/2 inhibitor. Treatment with U0126 reversed the effects of NE on c-Fos expression, p38 mitogen-activated protein kinase (MAPK) phosphorylation and TNF-α production, but not NF-κB activation in LPS-challenged cardiomyocytes. In addition, pre-treatment with SB202190, a p38 MAPK inhibitor, partly inhibited LPS-induced TNF-α production in cardiomyocytes. In endotoxaemic mice, PE promoted myocardial ERK1/2 phosphorylation and c-Fos expression, inhibited p38 phosphorylation and IκBα degradation, reduced myocardial TNF-α production and prevented LPS-provoked cardiac dysfunction. Altogether, these findings indicate that activation of α₁-AR by NE suppresses LPS-induced cardiomyocyte TNF-α expression and improves cardiac dysfunction during endotoxaemia via promoting myocardial ERK phosphorylation and suppressing NF-κB activation.
Collapse
Affiliation(s)
- Xiaohui Yu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan UniversityGuangzhou, Guangdong, China
| | - Baoyin Jia
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan UniversityGuangzhou, Guangdong, China
| | - Faqiang Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan UniversityGuangzhou, Guangdong, China
| | - Xiuxiu Lv
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan UniversityGuangzhou, Guangdong, China
| | - Xuemei Peng
- Department of Anesthesiology, The First Affiliated Hospital, Jinan UniversityGuangzhou, Guangdong, China
| | - Yiyang Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan UniversityGuangzhou, Guangdong, China
| | - Hongmei Li
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan UniversityGuangzhou, Guangdong, China
| | - Yanping Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan UniversityGuangzhou, Guangdong, China
| | - Daxiang Lu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan UniversityGuangzhou, Guangdong, China
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan UniversityGuangzhou, Guangdong, China
- *Correspondence to: Prof. Huadong WANG, M.D., Ph.D., Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China., Tel.: 86-20-85220241, Fax: 86-20-85221343, E-mail:
| |
Collapse
|
14
|
Involvement of the PLCε/PKCα pathway in human BIU-87 bladder cancer cell proliferation. Cell Biol Int 2012; 35:1031-6. [PMID: 21121899 DOI: 10.1042/cbi20090101] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PLCε (phospholipase Cε), one of effectors belonging to the small GTPase superfamily, has been suggested to play a crucial role in carcinogenesis. However, its bio-function in bladder cancer has never been demonstrated. In our previous study, we found that PLCε mRNA was highly expressed in bladder cancer tissues. In the present study, we silenced the PLCε gene by shRNA (small-hairpin RNA) in the bladder cancer cell line BIU-87. The results showed that it significantly inhibited cell proliferation and arrested the cell cycle at G0/G1-phase. The regulation of cell characteristics has been related to PKCα (protein kinase Cα) activity. Further study showed that knockdown of the PLCε gene down-regulated oncogenes c-fos and c-jun. These results indicate that PLCε plays a crucial role in bladder cancer, and PLCε may be a key molecule regulating the signal pathway of bladder cancer proliferation.
Collapse
|
15
|
Ferreira JCB, Brum PC, Mochly-Rosen D. βIIPKC and εPKC isozymes as potential pharmacological targets in cardiac hypertrophy and heart failure. J Mol Cell Cardiol 2011; 51:479-84. [PMID: 21035454 PMCID: PMC3135714 DOI: 10.1016/j.yjmcc.2010.10.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 10/15/2010] [Accepted: 10/19/2010] [Indexed: 01/19/2023]
Abstract
Cardiac hypertrophy is a complex adaptive response to mechanical and neurohumoral stimuli and under continual stressor, it contributes to maladaptive responses, heart failure and death. Protein kinase C (PKC) and several other kinases play a role in the maladaptative cardiac responses, including cardiomyocyte hypertrophy, myocardial fibrosis and inflammation. Identifying specific therapies that regulate these kinases is a major focus of current research. PKC, a family of serine/threonine kinases, has emerged as potential mediators of hypertrophic stimuli associated with neurohumoral hyperactivity in heart failure. In this review, we describe the role of PKC isozymes that is involved in cardiac hypertrophy and heart failure. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure".
Collapse
Affiliation(s)
- Julio Cesar Batista Ferreira
- Department of Chemical and Systems Biology, Stanford University School of Medicine, CCSR, Rm 3145A, 269 Campus Drive, Stanford, CA 94305-5174, USA
- School of Physical Education and Sport, University of Sao Paulo, SP 05508-900, Brazil
| | - Patricia Chakur Brum
- School of Physical Education and Sport, University of Sao Paulo, SP 05508-900, Brazil
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, CCSR, Rm 3145A, 269 Campus Drive, Stanford, CA 94305-5174, USA
| |
Collapse
|
16
|
TGF-β1 improves cardiac performance via up-regulation of laminin receptor 37/67 in adult ventricular cardiomyocytes. Basic Res Cardiol 2010; 105:621-9. [DOI: 10.1007/s00395-010-0108-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 05/19/2010] [Accepted: 05/28/2010] [Indexed: 12/17/2022]
|
17
|
Singal T, Dhalla NS, Tappia PS. Reciprocal regulation of transcription factors and PLC isozyme gene expression in adult cardiomyocytes. J Cell Mol Med 2009; 14:1824-35. [PMID: 19538471 PMCID: PMC3829042 DOI: 10.1111/j.1582-4934.2009.00812.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
By employing a pharmacological approach, we have shown that phospholipase C (PLC) activity is involved in the regulation of gene expression of transcription factors such as c-Fos and c-Jun in cardiomyocytes in response to norepinephrine (NE). However, there is no information available regarding the identity of specific PLC isozymes involved in the regulation of c-Fos and c-Jun or on the involvement of these transcription factors in PLC isozyme gene expression in adult cardiomyocytes. In this study, transfection of cardiomyocytes with PLC isozyme specific siRNA was found to prevent the NE-mediated increases in the corresponding PLC isozyme gene expression, protein content and activity. Unlike PLC gamma(1) gene, silencing of PLC beta(1), beta(3) and delta(1) genes with si RNA prevented the increases in c-Fos and c-Jun gene expression in response to NE. On the other hand, transfection with c-Jun si RNA suppressed the NE-induced increase in c-Jun as well as PLC beta(1), beta(3) and delta(1) gene expression, but had no effect on PLC gamma(1) gene expression. Although transfection of cardiomyocytes with c-Fos si RNA prevented NE-induced expression of c-Fos, PLC beta(1) and PLC beta(3) genes, it did not affect the increases in PLC delta(1) and PLC gamma(1) gene expression. Silencing of either c-Fos or c-Jun also depressed the NE-mediated increases in PLC beta(1), beta(3) and gamma(1) protein content and activity in an isozyme specific manner. Furthermore, silencing of all PLC isozymes as well as of c-Fos and c-Jun resulted in prevention of the NE-mediated increase in atrial natriuretic factor gene expression. These findings, by employing gene silencing techniques, demonstrate that there occurs a reciprocal regulation of transcription factors and specific PLC isozyme gene expression in cardiomyocytes.
Collapse
Affiliation(s)
- Tushi Singal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre & Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|