1
|
Gallo S, Folco CB, Crepaldi T. The MET Oncogene Network of Interacting Cell Surface Proteins. Int J Mol Sci 2024; 25:13692. [PMID: 39769452 PMCID: PMC11728269 DOI: 10.3390/ijms252413692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
The MET oncogene, encoding the hepatocyte growth factor (HGF) receptor, plays a key role in tumorigenesis, invasion, and resistance to therapy, yet its full biological functions and activation mechanisms remain incompletely understood. A feature of MET is its extensive interaction network, encompassing the following: (i) receptor tyrosine kinases (RTKs); (ii) co-receptors (e.g., CDCP1, Neuropilin1); (iii) adhesion molecules (e.g., integrins, tetraspanins); (iv) proteases (e.g., ADAM10); and (v) other receptors (e.g., CD44, plexins, GPCRs, and NMDAR). These interactions dynamically modulate MET's activation, signaling, intracellular trafficking, and degradation, enhancing its functional versatility and oncogenic potential. This review offers current knowledge on MET's partnerships, focusing on their functional impact on signaling output, therapeutic resistance, and cellular behavior. Finally, we evaluate emerging combination therapies targeting MET and its interactors, highlighting their potential to overcome resistance and improve clinical outcomes. By exploring the complex interplay within the MET network of interacting cell surface proteins, this review provides insights into advancing anti-cancer strategies and understanding the broader implications of RTK crosstalk in oncology.
Collapse
Affiliation(s)
- Simona Gallo
- Department of Oncology, University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy; (S.G.); (C.B.F.)
- Candiolo Cancer Institute, FPO-IRCCS, SP142, Km 3.95, 10060 Candiolo, Italy
| | - Consolata Beatrice Folco
- Department of Oncology, University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy; (S.G.); (C.B.F.)
- Candiolo Cancer Institute, FPO-IRCCS, SP142, Km 3.95, 10060 Candiolo, Italy
| | - Tiziana Crepaldi
- Department of Oncology, University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy; (S.G.); (C.B.F.)
- Candiolo Cancer Institute, FPO-IRCCS, SP142, Km 3.95, 10060 Candiolo, Italy
| |
Collapse
|
2
|
Zhang H, Song Q, Shang K, Li Y, Jiang L, Yang L. Tspan protein family: focusing on the occurrence, progression, and treatment of cancer. Cell Death Discov 2024; 10:187. [PMID: 38649381 PMCID: PMC11035590 DOI: 10.1038/s41420-024-01961-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
The Tetraspanins (Tspan) protein family, also known as the tetraspanin family, contains 33 family members that interact with other protein molecules such as integrins, adhesion molecules, and T cell receptors by forming dimers or heterodimers. The Tspan protein family regulates cell proliferation, cell cycle, invasion, migration, apoptosis, autophagy, tissue differentiation, and immune response. More and more studies have shown that Tspan proteins are involved in tumorigenesis, epithelial-mesenchymal transition, thrombosis, tumor stem cell, and exosome signaling. Some drugs and microRNAs can inhibit Tspan proteins, thus providing new strategies for tumor therapy. An in-depth understanding of the functions and regulatory mechanisms of the Tspan protein family, which can promote or inhibit tumor development, will provide new strategies for targeted interventions in the future.
Collapse
Affiliation(s)
- Huhu Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Qinghang Song
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Kaiwen Shang
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Ya Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Liangqian Jiang
- Department of Medical Genetics, Linyi People's Hospital, Linyi, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
3
|
Liu X, Yang J, Kong M, Jiang M, Liu L, Zhang J, Chen Y, Chen X, Zhang Z, Wu C, Jiang X, Liu J, Zhang J. CD9 negatively regulates collective electrotaxis of the epidermal monolayer by controlling and coordinating the polarization of leader cells. BURNS & TRAUMA 2023; 11:tkad012. [PMID: 37492637 PMCID: PMC10365154 DOI: 10.1093/burnst/tkad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/14/2023] [Accepted: 02/24/2023] [Indexed: 07/27/2023]
Abstract
Background Endogenous electric fields (EFs) play an essential role in guiding the coordinated collective migration of epidermal cells to the wound centre during wound healing. Although polarization of leadercells is essential for collective migration, the signal mechanisms responsible for the EF-induced polarization of leader cells under electrotactic collective migration remain unclear. This study aims to determine how the leader cells are polarized and coordinated during EF-guided collective migration of epidermal cell sheets. Methods Collective migration of the human epidermal monolayer (human immortalized keratinocytes HaCaT) under EFs was observed via time-lapse microscopy. The involvement of tetraspanin-29 (CD9) in EF-induced fibrous actin (F-actin) polarization of leader cells as well as electrotactic migration of the epidermal monolayer was evaluated by genetic manipulation. Blocking, rescue and co-culture experiments were conducted to explore the downstream signalling of CD9. Results EFs guided the coordinated collective migration of the epithelial monolayer to the anode, with dynamic formation of pseudopodia in leader cells at the front edge of the monolayer along the direction of migration. F-actin polarization, as expected, played an essential role in pseudopod formation in leader cells under EFs. By confocal microscopy, we found that CD9 was colocalized with F-actin on the cell surface and was particularly downregulated in leader cells by EFs. Interestingly, genetic overexpression of CD9 abolished EF-induced F-actin polarization in leader cells as well as collective migration in the epidermal monolayer. Mechanistically, CD9 determined the polarization of F-actin in leader cells by downregulating a disintegrin and metalloprotease 17/heparin-binding epidermal growth factor-like growth factor/epidermal growth factor receptor (ADAM17/HB-EGF/EGFR) signalling. The abolished polarization of leader cells due to CD9 overexpression could be restored in a co-culture monolayer where normal cells and CD9-overexpressing cells were mixed; however, this restoration was eliminated again by the addition of the HB-EGF-neutralizing antibody. Conclusion CD9 functions as a key regulator in the EF-guided collective migration of the epidermal monolayer by controlling and coordinating the polarization of leader cells through ADAM17/HB-EGF/EGFR signalling.
Collapse
Affiliation(s)
| | | | | | - Min Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotan Yan Street, Shapingba, 400038 Chongqing, China
| | - Luojia Liu
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotan Yan Street, Shapingba, 400038 Chongqing, China
| | - Jinghong Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotan Yan Street, Shapingba, 400038 Chongqing, China
| | - Ying Chen
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotan Yan Street, Shapingba, 400038 Chongqing, China
| | - Xu Chen
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotan Yan Street, Shapingba, 400038 Chongqing, China
| | - Ze Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotan Yan Street, Shapingba, 400038 Chongqing, China
| | - Chao Wu
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotan Yan Street, Shapingba, 400038 Chongqing, China
| | - Xupin Jiang
- Correspondence. Jiaping Zhang, ; Jie Liu, ; Xupin Jiang,
| | - Jie Liu
- Correspondence. Jiaping Zhang, ; Jie Liu, ; Xupin Jiang,
| | - Jiaping Zhang
- Correspondence. Jiaping Zhang, ; Jie Liu, ; Xupin Jiang,
| |
Collapse
|
4
|
Sugiyama MG, Brown AI, Vega-Lugo J, Borges JP, Scott AM, Jaqaman K, Fairn GD, Antonescu CN. Confinement of unliganded EGFR by tetraspanin nanodomains gates EGFR ligand binding and signaling. Nat Commun 2023; 14:2681. [PMID: 37160944 PMCID: PMC10170156 DOI: 10.1038/s41467-023-38390-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/28/2023] [Indexed: 05/11/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is a central regulator of cell physiology. EGFR is activated by ligand binding, triggering receptor dimerization, activation of kinase activity, and intracellular signaling. EGFR is transiently confined within various plasma membrane nanodomains, yet how this may contribute to regulation of EGFR ligand binding is poorly understood. To resolve how EGFR nanoscale compartmentalization gates ligand binding, we developed single-particle tracking methods to track the mobility of ligand-bound and total EGFR, in combination with modeling of EGFR ligand binding. In comparison to unliganded EGFR, ligand-bound EGFR is more confined and distinctly regulated by clathrin and tetraspanin nanodomains. Ligand binding to unliganded EGFR occurs preferentially in tetraspanin nanodomains, and disruption of tetraspanin nanodomains impairs EGFR ligand binding and alters the conformation of the receptor's ectodomain. We thus reveal a mechanism by which EGFR confinement within tetraspanin nanodomains regulates receptor signaling at the level of ligand binding.
Collapse
Affiliation(s)
- Michael G Sugiyama
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada
| | - Aidan I Brown
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | - Jesus Vega-Lugo
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jazlyn P Borges
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Andrew M Scott
- Olivia Newton-John Cancer Research Institute, La Trobe University, Melbourne, VIC, Australia
| | - Khuloud Jaqaman
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Gregory D Fairn
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada.
| |
Collapse
|
5
|
Ding Y, Chen J, Li S, Wren JD, Bajpai AK, Wang J, Tanaka T, Rice HC, Hays FA, Lu L, Zhang XA. EWI2 and its relatives in Tetraspanin-enriched membrane domains regulate malignancy. Oncogene 2023; 42:861-868. [PMID: 36788350 DOI: 10.1038/s41388-023-02623-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/16/2023]
Abstract
Experimental studies on immunoglobulin superfamily (IgSF) member EWI2 reveal that it suppresses a variety of solid malignant tumors including brain, lung, skin, and prostate cancers in animal models and inhibits tumor cell movement and growth in vitro. While EWI2 appears to support myeloid leukemia in mouse models and maintain leukemia stem cells. Bioinformatics analyses suggest that EWI2 gene expression is downregulated in glioblastoma but upregulated in melanoma, pancreatic cancer, and liver cancer. The mechanism of action for EWI2 is linked to its inhibition of growth factor receptors and cell adhesion proteins through its associated tetraspanin-enriched membrane domains (TEMDs), by altering the cell surface clustering and endolysosome trafficking/turnover of these transmembrane proteins. Recent studies also show that EWI2 modulates the nuclear translocation of ERK and TFEB to change the activities of these gene expression regulators. For EWI2 relatives including FPRP, IgSF3, and CD101, although their roles in malignant diseases are not fully clear and remain to be determined experimentally, FPRP and IgSF3 likely promote the progression of solid malignant tumors while CD101 seems to modulate immune cells of tumor microenvironment. Distinctive from other tumor regulators, the impacts of EWI subfamily members on solid malignant tumors are likely to be context dependent. In other words, the effect of a given EWI subfamily member on a tumor probably depends on the molecular network and composition of TEMDs in that tumor. Collectively, EWI2 and its relatives are emerged as important regulators of malignant diseases with promising potentials to become anti-cancer therapeutics and cancer therapy targets.
Collapse
Affiliation(s)
- Yingjun Ding
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Junxiong Chen
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shuping Li
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jonathan D Wren
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | - Jie Wang
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Takemi Tanaka
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Heather C Rice
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Franklin A Hays
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lu Lu
- University of Tennessee Health Science Center, Memphis, TN, USA
| | - Xin A Zhang
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
6
|
Yeni Y, Taghizadehghalehjoughi A, Genc S, Hacimuftuoglu A, Yildirim S, Bolat I. Glioblastoma cell-derived exosomes induce cell death and oxidative stress in primary cultures of olfactory neurons. Role of redox stress. Mol Biol Rep 2023; 50:3999-4009. [PMID: 36849859 DOI: 10.1007/s11033-023-08256-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/04/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND Glioblastoma multiforme, described as glioblastoma, is a malignancy originating from glial progenitors in the central nervous system and is the most malignant subtype of brain tumors which attracted researcher's attention due to their high recurrence and mortality despite optimal treatments. In the study, we aimed to research whether glioblastoma-originated exosomes play a role in olfactory nerve cell toxicity. METHODS AND RESULTS For this aim, exosomes obtained from U373 and T98G cells were applied to olfactory nerve cell culture at distinct doses. Then, glutathione (GSH), lactate dehydrogenase (LDH), total antioxidant capacity (TAC), 3-(4,5-Dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide (MTT), total oxidant status (TOS) and Immunofluorescence analyzes were performed. We found that both glioblastoma-derived exosomes decreased cell viability in olfactory neurons with increasing doses. According to the obtained data, the olfactory neuron vitality rate was 71% in T98G-exosome, but the decrease in U373-exosome was more obvious (48%). In particular, the 100 µg/ml dose exacerbated oxidative stress by increasing TOS. It also increased cellular apoptosis compared to the control group due to LDH leakage. However, the results of GSH and TAS showed that antioxidant levels were significantly reduced. CONCLUSION In the microenvironment of olfactory neurons, GBM-derived exosomes increased oxidative stress-induced toxicity by reducing TAC and GSH levels. Therefore, glioblastoma cells by induction of exosome-based stress support malignant growth.
Collapse
Affiliation(s)
- Yesim Yeni
- Department of Medical Pharmacology, Faculty of Medicine, Malatya Turgut Ozal University, 44210, Malatya, Turkey
| | - Ali Taghizadehghalehjoughi
- Faculty of Medicine, Department of Medical Pharmacology, Bilecik Seyh Edebali University, 11230, Bilecik, Turkey.
| | - Sidika Genc
- Faculty of Medicine, Department of Medical Pharmacology, Bilecik Seyh Edebali University, 11230, Bilecik, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Ismail Bolat
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, 25240, Erzurum, Turkey
| |
Collapse
|
7
|
Velázquez-Enríquez JM, Ramírez-Hernández AA, Navarro LMS, Reyes-Avendaño I, González-García K, Jiménez-Martínez C, Castro-Sánchez L, Sánchez-Chino XM, Vásquez-Garzón VR, Baltiérrez-Hoyos R. Proteomic Analysis Reveals Differential Expression Profiles in Idiopathic Pulmonary Fibrosis Cell Lines. Int J Mol Sci 2022; 23:ijms23095032. [PMID: 35563422 PMCID: PMC9105114 DOI: 10.3390/ijms23095032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, irreversible lung disorder of unknown cause. This disease is characterized by profibrotic activation of resident pulmonary fibroblasts resulting in aberrant deposition of extracellular matrix (ECM) proteins. However, although much is known about the pathophysiology of IPF, the cellular and molecular processes that occur and allow aberrant fibroblast activation remain an unmet need. To explore the differentially expressed proteins (DEPs) associated with aberrant activation of these fibroblasts, we used the IPF lung fibroblast cell lines LL97A (IPF-1) and LL29 (IPF-2), compared to the normal lung fibroblast cell line CCD19Lu (NL-1). Protein samples were quantified and identified using a label-free quantitative proteomic analysis approach by liquid chromatography-tandem mass spectrometry (LC-MS/MS). DEPs were identified after pairwise comparison, including all experimental groups. Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein–Protein Interaction (PPI) network construction were used to interpret the proteomic data. Eighty proteins expressed exclusively in the IPF-1 and IPF-2 clusters were identified. In addition, 19 proteins were identified up-regulated in IPF-1 and 10 in IPF-2; 10 proteins were down-regulated in IPF-1 and 2 in IPF-2 when compared to the NL-1 proteome. Using the search tool for retrieval of interacting genes/proteins (STRING) software, a PPI network was constructed between the DEPs and the 80 proteins expressed exclusively in the IPF-2 and IPF-1 clusters, containing 115 nodes and 136 edges. The 10 hub proteins present in the IPP network were identified using the CytoHubba plugin of the Cytoscape software. GO and KEGG pathway analyses showed that the hub proteins were mainly related to cell adhesion, integrin binding, and hematopoietic cell lineage. Our results provide relevant information on DEPs present in IPF lung fibroblast cell lines when compared to the normal lung fibroblast cell line that could play a key role during IPF pathogenesis.
Collapse
Affiliation(s)
- Juan Manuel Velázquez-Enríquez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico; (J.M.V.-E.); (A.A.R.-H.); (I.R.-A.); (K.G.-G.)
| | - Alma Aurora Ramírez-Hernández
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico; (J.M.V.-E.); (A.A.R.-H.); (I.R.-A.); (K.G.-G.)
| | | | - Itayetzi Reyes-Avendaño
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico; (J.M.V.-E.); (A.A.R.-H.); (I.R.-A.); (K.G.-G.)
| | - Karina González-García
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico; (J.M.V.-E.); (A.A.R.-H.); (I.R.-A.); (K.G.-G.)
| | - Cristian Jiménez-Martínez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico;
| | - Luis Castro-Sánchez
- Conacyt-Centro Universitario de Investigaciones Biomédicas “CUIB”, Universidad de Colima, Colima 28045, Mexico;
| | - Xariss Miryam Sánchez-Chino
- Catedra-Conacyt, Departamento de Salud El Colegio de La Frontera Sur, Unidad Villahermosa, Tabasco 86280, Mexico;
| | | | - Rafael Baltiérrez-Hoyos
- Conacyt-Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico;
- Correspondence:
| |
Collapse
|
8
|
Titu S, Grapa CM, Mocan T, Balacescu O, Irimie A. Tetraspanins: Physiology, Colorectal Cancer Development, and Nanomediated Applications. Cancers (Basel) 2021; 13:cancers13225662. [PMID: 34830819 PMCID: PMC8616055 DOI: 10.3390/cancers13225662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Considering the high incidence of colorectal cancer in adults, as well as the need for identifying novel therapies, we hereby explore the role of tetraspanins in the development of colorectal cancer. We have focused on variate aspects starting from the structure and general physiology and ending with the precise mechanisms involved in the dual reported role of tetraspanins (pro–tumoral and tumor suppressor key player element). Moreover, the present review focuses on the potential of tetraspanins as a target for nanotechnology-mediated therapies, also gathering the limited attempts towards this aim and their reported data. Abstract Tetraspanins are transmembrane proteins expressed in a multitude of cells throughout the organism. They contribute to many processes that surround cell–cell interactions and are associated with the progress of some diseases, including cancer. Their crucial role in cell physiology is often understated. Furthermore, recent studies have shown their great potential in being used as targeting molecules. Data have suggested the potential of tetraspanins as a targeting vector for nanomediated distribution and delivery for colorectal cancer applications. Our aim is to provide a review on the important part that tetraspanins play in the human organism and highlight their potential use for drug delivery systems using nanotechnology.
Collapse
Affiliation(s)
- Stefan Titu
- “Iuliu Hatieganu” University of Medicine and Pharmacy, Faculty of Medicine, 400126 Cluj-Napoca, Romania; (S.T.); (C.M.G.); (A.I.)
- Department of Surgical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta” Cluj-Napoca, 400015 Cluj-Napoca, Romania
| | - Cristiana Maria Grapa
- “Iuliu Hatieganu” University of Medicine and Pharmacy, Faculty of Medicine, 400126 Cluj-Napoca, Romania; (S.T.); (C.M.G.); (A.I.)
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology, 400126 Cluj-Napoca, Romania
| | - Teodora Mocan
- “Iuliu Hatieganu” University of Medicine and Pharmacy, Faculty of Medicine, 400126 Cluj-Napoca, Romania; (S.T.); (C.M.G.); (A.I.)
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology, 400126 Cluj-Napoca, Romania
- Correspondence:
| | - Ovidiu Balacescu
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta” Cluj-Napoca, 400015 Cluj-Napoca, Romania;
| | - Alexandru Irimie
- “Iuliu Hatieganu” University of Medicine and Pharmacy, Faculty of Medicine, 400126 Cluj-Napoca, Romania; (S.T.); (C.M.G.); (A.I.)
- Department of Surgical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta” Cluj-Napoca, 400015 Cluj-Napoca, Romania
| |
Collapse
|
9
|
Multi-layered proteogenomic analysis unravels cancer metastasis directed by MMP-2 and focal adhesion kinase signaling. Sci Rep 2021; 11:17130. [PMID: 34429501 PMCID: PMC8385024 DOI: 10.1038/s41598-021-96635-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/10/2021] [Indexed: 12/27/2022] Open
Abstract
The role of matrix metalloproteinase-2 (MMP-2) in tumor cell migration has been widely studied, however, the characteristics and effects of MMP-2 in clinical sample of metastatic colorectal cancer (CRC) remain poorly understood. Here, in order to unveil the perturbed proteomic signal during MMP-2 induced cancer progression, we analyzed plasma proteome of CRC patients according to disease progression, HCT116 cancer secretome upon MMP-2 knockdown, and publicly available CRC tissue proteome data. Collectively, the integrative analysis of multi-layered proteomes revealed that a protein cluster containing EMT (Epithelial-to-Mesenchymal Transition)-associated proteins such as CD9-integrin as well as MMP-2. The proteins of the cluster were regulated by MMP-2 perturbation and exhibited significantly increased expressions in tissue and plasma as disease progressed from TNM (Tumor, Node, and Metastasis) stage I to II. Furthermore, we also identified a plausible association between MMP-2 up-regulation and activation of focal adhesion kinase signaling in the proteogenomic analysis of CRC patient tissues. Based on these comparative and integrative analyses, we suggest that the high invasiveness in the metastatic CRC resulted from increased secretion of MMP-2 and CD9-integrin complex mediated by FAK signaling activation.
Collapse
|
10
|
Lorico A, Lorico-Rappa M, Karbanová J, Corbeil D, Pizzorno G. CD9, a tetraspanin target for cancer therapy? Exp Biol Med (Maywood) 2021; 246:1121-1138. [PMID: 33601913 DOI: 10.1177/1535370220981855] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the present minireview, we intend to provide a brief history of the field of CD9 involvement in oncogenesis and in the metastatic process of cancer, considering its potential value as a tumor-associated antigenic target. Over the years, CD9 has been identified as a favorable prognostic marker or predictor of metastatic potential depending on the cancer type. To understand its implications in cancer beside its use as an antigenic biomarker, it is essential to know its physiological functions, including its molecular partners in a given cell system. Moreover, the discovery that CD9 is one of the most specific and broadly expressed markers of extracellular membrane vesicles, nanometer-sized entities that are released into extracellular space and various physiological body fluids and play a role in intercellular communication under physiological and pathological conditions, notably the establishment of cancer metastases, has added a new dimension to our knowledge of CD9 function in cancer. Here, we will discuss these issues as well as the possible cancer therapeutic implications of CD9, their limitations, and pitfalls.
Collapse
Affiliation(s)
- Aurelio Lorico
- Touro University College of Medicine, Henderson, NV 89014, USA.,Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | | | - Jana Karbanová
- Biotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Denis Corbeil
- Biotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Giuseppe Pizzorno
- University of Tennessee Health Science Center, Memphis, TN 38163, USA.,Erlanger Health System, Chattanooga, TN 37403 , USA
| |
Collapse
|
11
|
ErbB receptors and tetraspanins: Casting the net wider. Int J Biochem Cell Biol 2016; 77:68-71. [PMID: 27262234 DOI: 10.1016/j.biocel.2016.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 01/15/2023]
|
12
|
Detchokul S, Williams ED, Parker MW, Frauman AG. Tetraspanins as regulators of the tumour microenvironment: implications for metastasis and therapeutic strategies. Br J Pharmacol 2015; 171:5462-90. [PMID: 23731188 DOI: 10.1111/bph.12260] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/16/2013] [Accepted: 05/16/2013] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED One of the hallmarks of cancer is the ability to activate invasion and metastasis. Cancer morbidity and mortality are largely related to the spread of the primary, localized tumour to adjacent and distant sites. Appropriate management and treatment decisions based on predicting metastatic disease at the time of diagnosis is thus crucial, which supports better understanding of the metastatic process. There are components of metastasis that are common to all primary tumours: dissociation from the primary tumour mass, reorganization/remodelling of extracellular matrix, cell migration, recognition and movement through endothelial cells and the vascular circulation and lodgement and proliferation within ectopic stroma. One of the key and initial events is the increased ability of cancer cells to move, escaping the regulation of normal physiological control. The cellular cytoskeleton plays an important role in cancer cell motility and active cytoskeletal rearrangement can result in metastatic disease. This active change in cytoskeletal dynamics results in manipulation of plasma membrane and cellular balance between cellular adhesion and motility which in turn determines cancer cell movement. Members of the tetraspanin family of proteins play important roles in regulation of cancer cell migration and cancer-endothelial cell interactions, which are critical for cancer invasion and metastasis. Their involvements in active cytoskeletal dynamics, cancer metastasis and potential clinical application will be discussed in this review. In particular, the tetraspanin member, CD151, is highlighted for its major role in cancer invasion and metastasis. LINKED ARTICLES This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24.
Collapse
Affiliation(s)
- S Detchokul
- Clinical Pharmacology and Therapeutics Unit, Department of Medicine (Austin Health/Northern Health), The University of Melbourne, Heidelberg, Vic., Australia
| | | | | | | |
Collapse
|
13
|
Abstract
Tetraspanins are a superfamily of small transmembrane proteins that are expressed in almost all eukaryotic cells. Through interacting with one another and with other membrane and intracellular proteins, tetraspanins regulate a wide range of proteins such as integrins, cell surface receptors, and signaling molecules, and thereby engage in diverse cellular processes ranging from cell adhesion and migration to proliferation and differentiation. In particular, tetraspanins modulate the function of proteins involved in all determining factors of cell migration including cell-cell adhesion, cell-ECM adhesion, cytoskeletal protrusion/contraction, and proteolytic ECM remodeling. We herein provide a brief overview of collective in vitro and in vivo studies of tetraspanins to illustrate their regulatory functions in the migration and trafficking of cancer cells, vascular endothelial cells, skin cells (keratinocytes and fibroblasts), and leukocytes. We also discuss the involvement of tetraspanins in various pathologic and remedial processes that rely on cell migration and their potential value as targets for therapeutic intervention.
Collapse
Affiliation(s)
| | - Jiaping Zhang
- a Institute of Burn Research ; State Key Laboratory of Trauma; Burns and Combined Injury; Southwest Hospital; The Third Military Medical University ; Chongqing , China
| | - Yuesheng Huang
- a Institute of Burn Research ; State Key Laboratory of Trauma; Burns and Combined Injury; Southwest Hospital; The Third Military Medical University ; Chongqing , China
| |
Collapse
|
14
|
Tang M, Yin G, Wang F, Liu H, Zhou S, Ni J, Chen C, Zhou Y, Zhao Y. Downregulation of CD9 promotes pancreatic cancer growth and metastasis through upregulation of epidermal growth factor on the cell surface. Oncol Rep 2015; 34:350-8. [PMID: 25955689 DOI: 10.3892/or.2015.3960] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/21/2015] [Indexed: 11/06/2022] Open
Abstract
The expression of CD9 has been shown to be inversely associated with pancreatic cancer metastasis but the underlying mechanism remains incompletely understood. Using the two closely associated pancreatic cancer cell lines, PaTu-8898s and PaTu-8898t, which are metastatic and non-metastatic, respectively, we showed that the PaTu-8988s cells expressed a lower level of CD9 but had higher proliferation and migration rates than the PaTu-8898t cells. An inverse correlation between CD9 expression and the cell surface level of epidermal growth factor receptor (EGFR) was observed in both cell lines. In the PaTu-8898s cells, overexpression of CD9 decreased the cell surface expression of EGFR, associated with increased expression of dynamin-2, whereas in the PaTu-8898t cells, knockdown of CD9 with RNA interference (RNAi) increased the cell surface expression of EGFR, associated with decreased expression of dynamin-2. However, the total EGFR level did not change by manipulation of CD9 expression, suggesting that CD9 plays a role in EGFR endocytosis. Furthermore, in the PaTu-8898ts cells, CD9 overexpression decreased the cell proliferation and migration, which were reversed by EGFR overexpression, whereas in the PaTu-8898t cells, CD9 knockdown enhanced the cell proliferation and migration which were blocked by EGFR RNAi both in vitro and in vivo. Thus, in pancreatic cancer cells, downregulation of CD9 may play a role in cancer growth and metastasis through, at least in part, enhancing cell surface expression of EGFR.
Collapse
Affiliation(s)
- Maochun Tang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Guojian Yin
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Feng Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Hua Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Shu Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Jianbo Ni
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Congying Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yan Zhao
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
15
|
Viticchiè G, Muller PAJ. c-Met and Other Cell Surface Molecules: Interaction, Activation and Functional Consequences. Biomedicines 2015; 3:46-70. [PMID: 28536399 PMCID: PMC5344229 DOI: 10.3390/biomedicines3010046] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/08/2015] [Indexed: 12/18/2022] Open
Abstract
The c-Met receptor, also known as the HGF receptor, is one of the most studied tyrosine kinase receptors, yet its biological functions and activation mechanisms are still not fully understood. c-Met has been implicated in embryonic development and organogenesis, in tissue remodelling homeostasis and repair and in cancer metastasis. These functions are indicative of the many cellular processes in which the receptor plays a role, including cell motility, scattering, survival and proliferation. In the context of malignancy, sustained activation of c-Met leads to a signalling cascade involving a multitude of kinases that initiate an invasive and metastatic program. Many proteins can affect the activation of c-Met, including a variety of other cell surface and membrane-spanning molecules or receptors. Some cell surface molecules share structural homology with the c-Met extracellular domain and can activate c-Met via clustering through this domain (e.g., plexins), whereas other receptor tyrosine kinases can enhance c-Met activation and signalling through intracellular signalling cascades (e.g., EGFR). In this review, we provide an overview of c-Met interactions and crosstalk with partner molecules and the functional consequences of these interactions on c-Met activation and downstream signalling, c-Met intracellular localization/recycling and c-Met degradation.
Collapse
Affiliation(s)
- Giuditta Viticchiè
- MRC (Medical Research Council) Toxicology Unit, Lancaster Road, Leicester LE1 9HN, UK.
| | - Patricia A J Muller
- MRC (Medical Research Council) Toxicology Unit, Lancaster Road, Leicester LE1 9HN, UK.
| |
Collapse
|
16
|
Herr MJ, Mabry SE, Jameson JF, Jennings LK. Pro-MMP-9 upregulation in HT1080 cells expressing CD9 is regulated by epidermal growth factor receptor. Biochem Biophys Res Commun 2013; 442:99-104. [PMID: 24246676 DOI: 10.1016/j.bbrc.2013.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 11/04/2013] [Indexed: 11/26/2022]
Abstract
Degradation of the surrounding extracellular matrix (ECM) by matrix metalloproteinases (MMPs) drives invasion and metastasis of cancer cells. We previously demonstrated that tetraspanin CD9 expression upregulates pro-MMP-9 expression and release and promotes cellular invasion in a human fibrosarcoma cell line (HT1080). These events were dependent upon the highly functional second extracellular loop of CD9. We report here that the epidermal growth factor receptor (EGFR) tyrosine kinase expression and activity are involved in the CD9-mediated increase in pro-MMP-9 release and cellular invasion. Pro-MMP-9 expression was significantly decreased in a dose-dependent manner using first a broad spectrum receptor tyrosine kinase inhibitor and multiple specific EGFR inhibitors in CD9-HT1080 cells. Furthermore, gefitinib treatment of CD9-HT1080 cells reduced invasion through matrigel. EGFR knockdown using short interfering RNA resulted in decreased pro-MMP-9 expression and release into the media and subsequent cellular invasion without affecting CD9 expression or localization. Conclusively, this study points to EGFR as a key mediator between CD9-mediated pro-MMP-9 release and cellular invasion of HT1080 cells.
Collapse
Affiliation(s)
- Michael J Herr
- The Vascular Biology Center of Excellence, Department of Internal Medicine, USA; Department of Microbiology, Immunology, and Biochemistry, USA
| | | | | | | |
Collapse
|
17
|
Tetraspanin CD9 promotes the invasive phenotype of human fibrosarcoma cells via upregulation of matrix metalloproteinase-9. PLoS One 2013; 8:e67766. [PMID: 23840773 PMCID: PMC3696041 DOI: 10.1371/journal.pone.0067766] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/22/2013] [Indexed: 12/30/2022] Open
Abstract
Tumor cell metastasis, a process which increases the morbidity and mortality of cancer patients, is highly dependent upon matrix metalloproteinase (MMP) production. Small molecule inhibitors of MMPs have proven unsuccessful at reducing tumor cell invasion in vivo. Therefore, finding an alternative approach to regulate MMP is an important endeavor. Tetraspanins, a family of cell surface organizers, play a major role in cell signaling events and have been implicated in regulating metastasis in numerous cancer cell lines. We stably expressed tetraspanin CD9 in an invasive and metastatic human fibrosarcoma cell line (CD9-HT1080) to investigate its role in regulating tumor cell invasiveness. CD9-HT1080 cells displayed a highly invasive phenotype as demonstrated by matrigel invasion assays. Statistically significant increases in MMP-9 production and activity were attributed to CD9 expression and were not due to any changes in other key tetraspanin complex members or MMP regulators. Increased invasion of CD9-HT1080 cells was reversed upon silencing of MMP-9 using a MMP-9 specific siRNA. Furthermore, we determined that the second extracellular loop of CD9 was responsible for the upregulation of MMP-9 production and subsequent cell invasion. We demonstrated for the first time that tetraspanin CD9 controls HT1080 cell invasion via upregulation of an integral member of the MMP family, MMP-9. Collectively, our studies provide mounting evidence that altered expression of CD9 may be a novel approach to regulate tumor cell progression.
Collapse
|
18
|
Sala-Valdés M, Ailane N, Greco C, Rubinstein E, Boucheix C. Targeting tetraspanins in cancer. Expert Opin Ther Targets 2012; 16:985-97. [PMID: 22880813 DOI: 10.1517/14728222.2012.712688] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Tetraspanins are a family of small proteins that cross the membrane four times and form complexes by interacting between themselves and with a variety of transmembrane and cytosolic proteins, building a network of interactions referred to as tetraspanin web or tetraspanin enriched microdomains (TEMs). These domains provide a signaling platform involved in many important cellular functions and malignant processes. AREAS COVERED The authors describe the methods and the rationale for targeting tetraspanins in the therapy of cancer in this review. EXPERT OPINION Targeting tetraspanins in cancer may be a promising therapy due to the importance of tetraspanins in several steps of tumor formation, communication with the environment, dissemination, and metastasis.
Collapse
Affiliation(s)
- Mónica Sala-Valdés
- André Lwoff Institute, Inserm U1004, Hôpital Paul Brousse, 14 Avenue Paul Vaillant Couturier, Villejuif 94800, France.
| | | | | | | | | |
Collapse
|