1
|
Yao H, Wu R, Du D, Ai F, Yang F, Li Y, Qi S. Flavonoids from Polypodium hastatum as neuroprotective agents attenuate cerebral ischemia/reperfusion injury in vitro and in vivo via activating Nrf2. Redox Rep 2025; 30:2440204. [PMID: 39702961 DOI: 10.1080/13510002.2024.2440204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
OBJECTIVES Cerebral ischemic stroke is a leading cause of death worldwide. Though timely reperfusion reduces the infarction size, it exacerbates neuronal apoptosis due to oxidative stress. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor regulating the expression of antioxidant enzymes. Activating Nrf2 gives a therapeutic approach to ischemic stroke. METHODS Herein we explored flavonoids identified from Polypodium hastatum as Nrf2 activators and their protective effects on PC12 cells injured by oxygen and glucose deprivation/restoration (OGD/R) as well as middle cerebral artery occlusion (MCAO) mice. RESULTS The results showed among these flavonoids, AAKR significantly improved the survival of PC12 cells induced by OGD/R and activated Nrf2 in a Keap1-dependent manner. Further investigations have disclosed AAKR attenuated oxidative stress, mitochondrial dysfunction and following apoptosis resulting from OGD/R. Meanwhile, activation of Nrf2 by AAKR was involved in the protective effects. Finally, it was found that AAKR could protect MCAO mice brains against ischemia/reperfusion injury via activating Nrf2. DISCUSSION This investigation could provide lead compounds for the discovery of novel Nrf2 activators targeting ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Huankai Yao
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy & Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Ruiqing Wu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy & Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Dan Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy & Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Fengwei Ai
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy & Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Feng Yang
- School of Stomatology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yan Li
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy & Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Suhua Qi
- School of Medical Technology & Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, People's Republic of China
| |
Collapse
|
2
|
Liu T, Bai H, Wang H, Li Y, Wang Z. Anti-inflammatory effects and mechanism of Plantago asiatica L. and Lonicera japonica Thunb. extracts based on canine and feline kidney cell models. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119069. [PMID: 39528117 DOI: 10.1016/j.jep.2024.119069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/24/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Stone symptoms are one of the most common health problems in pets. Inflammation in the kidneys causes the pet's urine to form a hard substance that blocks the urinary tract. Plantago asiatica L. and Lonicera japonica Thunb., as traditional Chinese diuretics, have remarkable effects on anti-inflammatory and analgesia. However, their mechanism of action remains unclear. PURPOSE The alleviating effect of Plantago asiatica and Lonicera japonica extracts upon lipopolysaccharide (LPS)-induced inflammation in canine and feline kidney cells was investigated in this work. MATERIALS AND METHODS Inflammatory factor concentrations and oxidative stress indicators were used to evaluate the inflammatory response. The mechanism by which two extracts reduced inflammation was explored using quantitative real-time polymerase chain reaction (RT-qPCR) and high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) metabolome assay. RESULTS The results demonstrated that Plantago asiatica or Lonicera japonica extract at safe concentration (25-200 μg/mL for canine kidney cell and 1-20 μg/mL for feline kidney cell, respectively) could significantly reduce the release of nitric oxide (p < 0.05) and oxidative damage (p < 0.05) after LPS stimulation, inhibit the production of inflammatory factors (p < 0.05), and improve cell migration ability (p < 0.05). The RT-qPCR results confirmed that Plantago asiatica and Lonicera japonica extracts significantly reduced the mRNA expressions of TLR4, MyD88, NF-kB, Caspase9 and Bax (p < 0.05), and enhanced the mRNA expression of Bcl-2 (p < 0.05). Non-targeted metabolomics results indicated that the cells treated with two extracts raised the contents of allopurinol, further inhibited uric acid and gout and lowered the contents of adenosine and adenine. Moreover, it was revealed that the Plantago asiatica and Lonicera japonica participated in purine metabolism, glycerophospholipid metabolism, protein digestion and absorption, nucleotide metabolism pathways to alleviate kidney cell inflammation. CONCLUSIONS The interaction mechanism was revealed to reduce the content of inflammatory factors by inhibiting TLR4-MyD88-NF-kB signaling pathway, and participate in purine metabolism to reduce the inflammation of kidney cells. These findings could provide significant insight into alleviating nephritis in canine and feline, and strategies for preventing urinary tract and kidney stones using Plantago asiatica and Lonicera japonica extracts.
Collapse
Affiliation(s)
- Tong Liu
- Nourse Science Centre for Pet Nutrition, Wuhu, 241200, China
| | - Huasong Bai
- Nourse Science Centre for Pet Nutrition, Wuhu, 241200, China
| | - Hengyan Wang
- Nourse Science Centre for Pet Nutrition, Wuhu, 241200, China
| | - Yunliang Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Zhanzhong Wang
- Nourse Science Centre for Pet Nutrition, Wuhu, 241200, China.
| |
Collapse
|
3
|
Wang Q, Zhao J, Zhang M, Sun M, Fu ZF, Zhao L, Zhou M. Neuroinvasive virus utilizes a lipid droplet surface protein, perilipin2, to restrict apoptosis by decreasing Bcl-2 ubiquitination. J Virol 2024; 98:e0160724. [PMID: 39498967 DOI: 10.1128/jvi.01607-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/14/2024] [Indexed: 11/07/2024] Open
Abstract
Lipid droplets (LDs) can interact with other organelles to regulate cell death, and it has also been reported to play an important role in virus replication. However, the interplay among LDs, cell death, and viral replication remains unclear. Neuroinvasive viruses, such as Japanese encephalitis virus (JEV), rabies virus (RABV), and encephalomyocarditis virus (EMCV) still threaten global public health and raise intensive concerns. Here, we reveal that neuroinvasive virus infection enhances cellular triglyceride biosynthesis by upregulating the expression of diacylglycerol O-acyltransferase 2 (DGAT2) to promote LD formation and increase the expression of Perilipin 2 (PLIN2), an LD surface protein, which consequently facilitates neuroinvasive virus replication. Furthermore, PLIN2 could reduce mitochondrial damage and suppress apoptosis by restoring mitochondrial potential and interacting with anti-apoptotic protein Bcl-2, specifically the 136-209 amino acid region, to interrupt the BAX-Cytc-caspase-3 apoptotic pathway by decreasing the K48-linked ubiquitination of Bcl-2 at the 17th lysine. Together, we elucidate that neuroinvasive virus utilizes an LD surface protein to restrict the apoptosis of infected cells, providing a fresh insight into the pathogenesis and antiviral therapeutics development of neuroinvasive viruses. IMPORTANCE The neuroinvasive virus is a kind of pathogen that is capable of infiltrating and infecting the central nervous system to potentially induce severe neurological damage and disorders, which pose a significant threat to public health. Here, we found that neuroinvasive viruses can utilize an LD surface protein PLIN2 to facilitate viral replication. Notably, PLIN2 could reduce mitochondrial damage and suppress apoptosis by restoring mitochondrial potential and interacting with anti-apoptotic protein Bcl-2, specifically the 136-209 amino acid region, to interrupt the BAX-Cytc-caspase-3 apoptotic pathway by decreasing the K48-linked ubiquitination of Bcl-2 at the 17th lysine. This study reveals a common strategy for neuroinvasive viruses to avoid apoptosis of infected cells by employing LDs, which extends the important role of LDs in viral pathogenesis and may inspire further research in this field.
Collapse
Affiliation(s)
- Qianruo Wang
- National Key Laboratory of Agricultural Microbiology Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianqing Zhao
- National Key Laboratory of Agricultural Microbiology Huazhong Agricultural University, Wuhan, China
- Key laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mai Zhang
- National Key Laboratory of Agricultural Microbiology Huazhong Agricultural University, Wuhan, China
- Key laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Meixin Sun
- National Key Laboratory of Agricultural Microbiology Huazhong Agricultural University, Wuhan, China
- Key laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhen F Fu
- National Key Laboratory of Agricultural Microbiology Huazhong Agricultural University, Wuhan, China
- Key laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ming Zhou
- National Key Laboratory of Agricultural Microbiology Huazhong Agricultural University, Wuhan, China
- Key laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Geng S, Zuo D, Song A, Huang B, Wang H, Yu S. RNAs associated with oxidative stress and apoptosis show anticancer effects of Flos Sophorae flavonoids extract on human hepatoma cells. Int J Biol Macromol 2024; 282:136750. [PMID: 39433182 DOI: 10.1016/j.ijbiomac.2024.136750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Flos Sophorae, a traditional Chinese medicinal herb and health tea, consists of the dried flowers and buds of the Sophora japonica L. (Leguminosae). This study assesses the in vitro anticancer efficacy of Flos Sophorae flower extract (FSFE) against the human hepatocarcinoma cell line HepG2, juxtaposed with its effects on normal human liver L02 cells. Cell viability was assessed using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide (MTT) assay to evaluate the effects of fruit skin flavonoid extract (FSFE) on cellular proliferation. The results indicated that FSFE significantly inhibited the proliferation of HepG2 liver cancer cells, with an inhibitory concentration (IC50) of 117.98 μg/mL, while having minimal effects on normal liver L02 cells. HPLC analysis identified rutin and quercetin as components of FSFE, both recognized for their antioxidant properties. The flavonoids in Flos Sophorae exhibit potent inhibitory effects on liver cancer cells, indicating potential as a natural anticancer agent. The findings support the continued development and research into the therapeutic applications of these compounds.
Collapse
Affiliation(s)
- Shan Geng
- Department of Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, 402360 Chongqing, China; State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, 400016 Chongqing, China
| | - Dan Zuo
- Clinical Nutrition Department, The Affiliated Dazu Hospital of Chongqing Medical University, 402360 Chongqing, China
| | - Anchao Song
- College of Public Health, Chongqing Medical University, 400016 Chongqing, China
| | - Biao Huang
- Clinical Nutrition Department, The Affiliated Dazu Hospital of Chongqing Medical University, 402360 Chongqing, China
| | - Honglin Wang
- Department of Orthopedic Surgery, The Affiliated Dazu Hospital of Chongqing Medical University, 402360 Chongqing, China.
| | - Shaohong Yu
- Department of General Surgery, The Affiliated Dazu Hospital of Chongqing Medical University, 402360 Chongqing, China.
| |
Collapse
|
5
|
Lazarova M, Stefanova M, Tsvetanova E, Georgieva A, Tasheva K, Radeva L, Yoncheva K. Resveratrol-Loaded Pluronic Micelles Ameliorate Scopolamine-Induced Cognitive Dysfunction Targeting Acetylcholinesterase Activity and Programmed Cell Death. Int J Mol Sci 2024; 25:12777. [PMID: 39684486 DOI: 10.3390/ijms252312777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Numerous experimental studies suggest the potential for resveratrol (RVT) to be useful in the Alzheimer's disease treatment, but its low bioavailability limits its application. This study aimed to assess the potential of resveratrol-loaded micelles as a neuronal delivery platform to protect rats from scopolamine-induced memory impairment. Resveratrol was incorporated into Pluronic micelles, and the effects of micellar (mRVT) and pure resveratrol (RVT) were compared in the model of scopolamine-induced dementia in male Wistar rats. Memory performance was assessed by a T maze test. The effect of the treatment on specific neurotransmitter levels and protein expression in the cortex and the hippocampus were evaluated biochemically. Our results revealed that the polymeric micelles were in nanoscale (approximately 33 nm) and reached 79% encapsulation efficiency. The treatment with mRVT demonstrated better spatial memory protective effect. The biochemical assays showed that mRVT in a dose of 10 mg/kg enhanced the effects of the pure drug in regard to noradrenalin neurotransmission and acetylcholinesterase inhibitory activity in the hippocampus. Furthermore, micellar resveratrol increased the cAMP-response element-binding protein expression in the cortex and hippocampus of rats as well as the Bcl2/BAX ratio, which indicated an anti-apoptotic effect in the experimental dementia model. In conclusion, our results indicated the potential of a micellar system loaded with resveratrol for neurodegenerative diseases treatment.
Collapse
Affiliation(s)
- Maria Lazarova
- Institute of Neurobiology, Bulgarian Academy of Science, 1113 Sofia, Bulgaria
| | - Miroslava Stefanova
- Institute of Neurobiology, Bulgarian Academy of Science, 1113 Sofia, Bulgaria
| | - Elina Tsvetanova
- Institute of Neurobiology, Bulgarian Academy of Science, 1113 Sofia, Bulgaria
| | - Almira Georgieva
- Institute of Neurobiology, Bulgarian Academy of Science, 1113 Sofia, Bulgaria
| | - Krasimira Tasheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Lyubomira Radeva
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | | |
Collapse
|
6
|
Shahbazi R, Mirjafary Z, Zarghami N, Saeidian H. Efficient PEGylated magnetic nanoniosomes for co-delivery of artemisinin and metformin: a new frontier in chemotherapeutic efficacy and cancer therapy. Sci Rep 2024; 14:27380. [PMID: 39521852 PMCID: PMC11550824 DOI: 10.1038/s41598-024-78817-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Two strategies were employed to modify the performance of the nano-niosome drug delivery system. Initially, the surface of the nano-niosomes underwent modification through the inclusion of polyethylene glycol, thereby altering its properties. Additionally, the core of the nano-niosomes was equipped with Fe3O4 magnetic nanoparticles to impart magnetic characteristics to the system. This study presents the development of PEGylated magnetic nanoniosomes (PMNios) for the co-delivery of artemisinin (ART) and metformin (MET) in cancer therapy, highlighting significant advancements in chemotherapeutic efficacy. The magnetization of the nano-niosomes facilitated the targeted delivery of drugs to specific tissues, while PEGylation improved the bioavailability of the nano-niosomes. These PEGylated magnetic niosomes (PMNios) were then loaded with artemisinin and metformin drugs. The synthesized PMNios were thoroughly evaluated in terms of zeta potential, size, morphology, and entrapment efficiency. The PMNios achieved a drug loading efficiency of 88%. They exhibited an average size of 298 nm, a polydispersity index of 0.32, and a zeta potential of - 19 mV, indicating the complete stability. SEM and TEM images of the PMNios revealed a spherical morphology. Subsequently, the PMNios were compared with other forms of nano-niosomes, including empty niosomes, non-magnetic niosomes, and non-PEGylated niosomes. The encapsulation of the nano-niosomes with magnetic nanoparticles allows for faster delivery of the encapsulated drugs to the tumor site, while PEGylation improved the stability, bioavailability, and controlled release of the PMNios. Furthermore, the in-vitro effectiveness of various formulations of the PMNios against A549, a lung cancer cell line, demonstrated that the PMNios exhibited appropriate toxicity towards cancer cell lines in the presence of an external magnetic field. Gene expression level of Bcl2 were lower for the PMNios-ART-MET system, whereas the level of Bax were higher than the other group. The PMNios-ART-MET system also demonstrated well internalization into the A549 cells and preponderant endocytosis. These findings underscore the novelty and potential of PMNios as a robust platform for the targeted co-delivery of hydrophilic and hydrophobic drugs, promising a new frontier in cancer therapy by enhancing the therapeutic index and minimizing side effects.
Collapse
Affiliation(s)
- Rasoul Shahbazi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zohreh Mirjafary
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hamid Saeidian
- Department of Science, Payame Noor University (PNU), P.O. Box 19395-3697, Tehran, Iran
| |
Collapse
|
7
|
Zhang C, Jiang D, Shi H, Zhang C, Yang F, Qi Q, Xu R. Protective effect of fructooligosaccharide against oxidative stress and apoptosis induced by Aeromonas hydrophila in Megalobrama amblycephala. BMC Genomics 2024; 25:975. [PMID: 39415104 PMCID: PMC11484227 DOI: 10.1186/s12864-024-10881-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
This research aimed to investigate the effects of dietary fructooligosaccharides (FOS) on attenuating the Aeromonas hydrophila (A. hydrophila)-induced oxidative stress and apoptosis in blunt snout bream Megalobrama amblycephala. Fish were divided into three groups as follows: C1 (Control), T1 (A. hydrophila), and T2 (A. hydrophila + 4 g/kg FOS). The results showed that the activities of antioxidant enzymes increased, the liver morphology had disorderly arrangement, and extensive cell necrosis occurred because of A. hydrophila-infection. While the dietary FOS improved the above-mentioned liver damage. Additionaly, FOS elevated mRNA levels of pro-apoptotic molecules, including caspase-8 and 9, and down-regulated mRNA levels of the anti-apoptotic molecule Bcl-2, which is triggered by A. hydrophila-infection. The transcriptome analysis showed that the oxidative stress-related DEGs pathways were activated in intestine of blunt snout bream by A. hydrophila-infection. The FOS-added group led to the enrichment of more pathways to health. Further WGCNA co-expression network analysis showed that the screened single genes were clustered into 49 modules. The two modules with the highest association to the five traits (10 hub genes) were chosen to build the network by combining the physiological and biochemical characteristic. In summary, this research offers a foundation for the exploring of A. hydrophila-restoration genes in dietary FOS, and also lays a theoretical foundation for aquaculture in the future.
Collapse
Affiliation(s)
- Chunnuan Zhang
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang, 471003, People's Republic of China.
| | - Dongxue Jiang
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang, 471003, People's Republic of China
| | - Huajuan Shi
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang, 471003, People's Republic of China
| | - Cheng Zhang
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang, 471003, People's Republic of China
| | - Feng Yang
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang, 471003, People's Republic of China
| | - Qian Qi
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang, 471003, People's Republic of China
| | - Ruiyi Xu
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang, 471003, People's Republic of China
| |
Collapse
|
8
|
Zamanian MY, Taheri N, Ramadan MF, Mustafa YF, Alkhayyat S, Sergeevna KN, Alsaab HO, Hjazi A, Molavi Vasei F, Daneshvar S. A comprehensive view on the fisetin impact on colorectal cancer in animal models: Focusing on cellular and molecular mechanisms. Animal Model Exp Med 2024; 7:591-605. [PMID: 39136058 PMCID: PMC11528395 DOI: 10.1002/ame2.12476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/21/2024] [Accepted: 07/09/2024] [Indexed: 11/02/2024] Open
Abstract
Flavonoids, including fisetin, have been linked to a reduced risk of colorectal cancer (CRC) and have potential therapeutic applications for the condition. Fisetin, a natural flavonoid found in various fruits and vegetables, has shown promise in managing CRC due to its diverse biological activities. It has been found to influence key cell signaling pathways related to inflammation, angiogenesis, apoptosis, and transcription factors. The results of this study demonstrate that fisetin induces colon cancer cell apoptosis through multiple mechanisms. It impacts the p53 pathway, leading to increased levels of p53 and decreased levels of murine double minute 2, contributing to apoptosis induction. Fisetin also triggers the release of important components in the apoptotic process, such as second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding protein with low pI and cytochrome c. Furthermore, fisetin inhibits the cyclooxygenase-2 and wingless-related integration site (Wnt)/epidermal growth factor receptor/nuclear factor kappa B signaling pathways, reducing Wnt target gene expression and hindering colony formation. It achieves this by regulating the activities of cyclin-dependent kinase 2 and cyclin-dependent kinase 4, reducing retinoblastoma protein phosphorylation, decreasing cyclin E levels, and increasing p21 levels, ultimately influencing E2 promoter binding factor 1 and cell division cycle 2 (CDC2) protein levels. Additionally, fisetin exhibits various effects on CRC cells, including inhibiting the phosphorylation of Y-box binding protein 1 and ribosomal S6 kinase, promoting the phosphorylation of extracellular signal-regulated kinase 1/2, and disrupting the repair process of DNA double-strand breaks. Moreover, fisetin serves as an adjunct therapy for the prevention and treatment of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (PIK3CA)-mutant CRC, resulting in a reduction in phosphatidylinositol-3 kinase (PI3K) expression, Ak strain transforming phosphorylation, mTOR activity, and downstream target proteins in CRC cells with a PIK3CA mutation. These findings highlight the multifaceted potential of fisetin in managing CRC and position it as a promising candidate for future therapy development.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, School of MedicineHamadan University of Medical SciencesHamadanIran
- Department of Pharmacology and Toxicology, School of PharmacyHamadan University of Medical SciencesHamadanIran
| | - Niloofar Taheri
- School of MedicineShahroud University of Medical SciencesShahroudIran
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical ChemistryCollege of Pharmacy, University of MosulMosulIraq
| | | | - Klunko Nataliya Sergeevna
- Department of Training of Scientific and Scientific‐Pedagogical PersonnelRussian New UniversityMoscowRussian Federation
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical TechnologyTaif UniversityTaifSaudi Arabia
| | - Ahmed Hjazi
- Department of Medical LaboratoryCollege of Applied Medical Sciences, Prince Sattam bin Abdulaziz UniversityAl‐KharjSaudi Arabia
| | - Farnoosh Molavi Vasei
- Department of Clinical Biochemistry, School of MedicineRafsanjan University of Medical SciencesRafsanjanIran
| | - Siamak Daneshvar
- Department of Surgery, School of MedicineHamadan University of Medical SciencesHamadanIran
| |
Collapse
|
9
|
Zhu Y, Li SY, Zhang LJ, Lei B, Wang YC, Wang Z. Neuroprotection of the P2X7 receptor antagonist A740003 on retinal ganglion cells in experimental glaucoma. Neuroreport 2024; 35:822-831. [PMID: 38973496 DOI: 10.1097/wnr.0000000000002071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The aim of this study was to explore the neuroprotective effects of the P2X7 receptor antagonist A740003 on retinal ganglion cells (RGCs) in chronic intraocular hypertension (COH) experimental glaucoma mouse model. Bioinformatics was used to analyze the glaucoma-related genes. Western blot, real-time fluorescence quantitative PCR, and immunofluorescence staining techniques were employed to explore the mechanisms underlying the neuroprotective effects of A740003 on RGCs in COH retinas. Bioinformatic analysis revealed that oxidative stress, neuroinflammation, and cell apoptosis were highly related to the pathogenesis of glaucoma. In COH retinas, intraocular pressure elevation significantly increased the levels of translocator protein, a marker of microglial activation, which could be reversed by intravitreal preinjection of A740003. A740003 also suppressed the increased mRNA levels of proinflammatory cytokines interleukin (IL) 1β and tumor necrosis factor α in COH retinas. In addition, although the mRNA levels of anti-inflammatory cytokine IL-4 and IL-10 were kept unchanged in COH retinas, administration of A740003 could increase their levels. The mRNA and protein levels of Bax and cleaved caspase-3 were increased in COH retinas, which could be partially reversed by A740003, while the levels of Bcl-2 kept unchanged in COH retinas with or without the injections of A740003. Furthermore, A740003 partially attenuated the reduction in the numbers of Brn-3a-positive RGCs in COH mice. A740003 could provide neuroprotective roles on RGCs by inhibiting the microglia activation, attenuating the retinal inflammatory response, reducing the apoptosis of RGCs, and enhancing the survival of RGCs in COH experimental glaucoma.
Collapse
Affiliation(s)
- Yan Zhu
- Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou
| | - Shu-Ying Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai
| | - Lu-Jia Zhang
- Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou
| | - Bo Lei
- Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou
- Henan Eye Institute, Henan Eye Hospital, Henan Academy of Innovations in Medical Science, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yong-Chen Wang
- Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou
| | - Zhongfeng Wang
- Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai
| |
Collapse
|
10
|
Tripathi S, Parmar D, Raval S, Mishra R, Singh G. Attenuation of chromium (VI) and arsenic (III)-induced oxidative stress and hepatic apoptosis by phloretin, biochanin-A, and coenzyme Q10 via activation of SIRT1/Nrf2/HO-1/NQO1 signaling. J Biochem Mol Toxicol 2024; 38:e23817. [PMID: 39177155 DOI: 10.1002/jbt.23817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/21/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Heavy metal contamination is an alarming concern on a global scale, as drinking tainted water significantly increases human susceptibility to heavy metals. In a realistic scenario, humans are often exposed to a combination of harmful chemicals rather than a single toxicant. Phloretin (PHL), biochanin-A (BCA), and coenzyme Q10 (CoQ10) are bioactive compounds owning plentiful pharmacological properties. Henceforth, the current research explored the putative energizing effects of selected nutraceuticals in combined chromium (Cr) and arsenic (As) intoxicated Swiss albino mice. Potassium dichromate (75 ppm) and sodium meta-arsenite (100 ppm) were given in the drinking water to induce hepatotoxicity, conjugated with PHL and BCA (50 mg/kg each), and CoQ10 (10 mg/kg) intraperitoneally for 2 weeks. After the statistical evaluation, it was observed that the hepato-somatic index, metal load, and antioxidant activity (lipid peroxidation and protein carbonyl content) increased along with the concomitant decrease in the antioxidants (catalase, glutathione-S-transferase, superoxide dismutase, reduced glutathione, and total thiol) in the Cr and As intoxicated mice. Additionally, light microscopy observations, DNA breakages, decreased silent information regulator 1 (SIRT1), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), heme oxygenase (HO-1), and NAD(P)H quinone dehydrogenase 1 (NQO1) gene expressions, together with stimulated apoptotic cell death manifested by the increased expressions of caspase 8 and caspase 3, thus, proved consistency with the aforementioned outcomes. Importantly, the treatment with nutraceuticals not only restored the antioxidant activity but also favorably altered the expressions of SIRT1, Nrf2, HO-1, and NQO1 signaling and apoptosis markers. These findings highlight the crucial role of the PHL, BCA, and CoQ10 combination in reducing Cr and As-induced hepatotoxicity in mice. By averting the triggered apoptosis in conjunction with oxidative stress, this combination increases the SIRT1, Nrf2, HO-1, and NQO1 signaling, thereby reassuringly maintaining the cellular equilibrium.
Collapse
Affiliation(s)
- Swapnil Tripathi
- Toxicology Department, ICMR-National Institute of Occupational Health, Ahmedabad, Gujarat, India
- Department of Biochemistry & Forensic Science, Gujarat University, Ahmedabad, Gujarat, India
| | - Dharati Parmar
- Toxicology Department, ICMR-National Institute of Occupational Health, Ahmedabad, Gujarat, India
| | - Samir Raval
- College of Veterinary Science and Animal Husbandry, Kamdhenu University, Sardarkrushinagar, Gujarat, India
| | - Rajeev Mishra
- Department of Life Sciences & Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, India
| | - Gyanendra Singh
- Toxicology Department, ICMR-National Institute of Occupational Health, Ahmedabad, Gujarat, India
| |
Collapse
|
11
|
Goh Y, Sadikan MZ, Jaiprakash H, Nasir NAA, Agarwal R, Iezhitsa I, Ismail NM. Tocotrienol-rich fraction (TRF) protects against retinal cell apoptosis and preserves visual behavior in rats with streptozotocin-induced diabetic retinopathy. BMC Complement Med Ther 2024; 24:322. [PMID: 39215295 PMCID: PMC11365272 DOI: 10.1186/s12906-024-04614-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Tocotrienol is a vitamin E analogue that is known to exert anti-inflammatory and antioxidant effects. Hence, in the current study, the effects of TRF on the expression of pro- and anti-apoptotic proteins in the streptozotocin-induced diabetic rat retinas were investigated. The effect of TRF on the visual behaviour of rats was also studied. METHODS Diabetes was induced in rats by intraperitoneal injection of streptozotocin and was confirmed by a blood sugar level of at least 20 mmol/L, 48 h, post-injection. Diabetic rats were divided into a group treated with vehicle (DV) and the other treated with TRF (100 mg/kg; DT). A group of non-diabetic rats treated with vehicle (N) served as the control group. All treatments were administered orally for 12 weeks. Rats were then subjected to an assessment of general behaviour in an open field arena and a two-chamber mirror test to assess their visual behaviour. At the end of the experimental period, rats were sacrificed, and their retinas were isolated to measure the expression of pro- (Casp3, Bax) and anti-apoptotic (Bcl2) markers using RT-qPCR and ELISA. TUNEL staining was used to detect the apoptotic retinal cells. RESULTS Treatment with TRF lowered the retinal expression of Casp3 protein by 2.26-folds (p < 0.001) and Bax protein by 2.18-fold (p < 0.001) compared to vehicle-treated rats. The retinal anti-apoptotic protein Bcl2 expression was 1.87-fold higher in DT compared to DV rats (p < 0.001). Accordingly, the Bax/Bcl2 ratio in the TRF-treated group was significantly greater in DT compared to DV rats. Retinal Casp3, Bax, and Bcl2 gene expression, as determined by RT-qPCR, also showed changes corresponding to protein expression. In the open field test, DV rats showed greater anxiety-related behaviour than group N, while the behaviour of DT rats was similar to the N group of rats. DT rats and group N rats preferred the inverse mirror chamber over the mirror-containing chamber in the two-mirror chamber test (p < 0.01). CONCLUSION Oral TRF therapy for 12 weeks lowers retinal cell apoptosis by decreasing pro- and increasing anti-apoptotic markers. The preservation of visual behaviour in a two-chamber mirror test supported these retinal molecular alterations in diabetic rats.
Collapse
Affiliation(s)
- You Goh
- School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Muhammad Zulfiqah Sadikan
- Department of Pharmacology, Faculty of Medicine, Manipal University College Malaysia, Bukit Baru, Melaka, 75150, Malaysia
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, 47000, Malaysia
| | - Heethal Jaiprakash
- School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia.
| | - Nurul Alimah Abdul Nasir
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, 47000, Malaysia
| | - Renu Agarwal
- School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Igor Iezhitsa
- School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Pavshikh Bortsov sq. 1, Volgograd, 400131, Russian Federation
| | - Nafeeza Mohd Ismail
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, 47000, Malaysia
| |
Collapse
|
12
|
Ali S, Zulfiqar M, Summer M, Arshad M, Noor S, Nazakat L, Javed A. Zebrafish as an innovative model for exploring cardiovascular disease induction mechanisms and novel therapeutic interventions: a molecular insight. Mol Biol Rep 2024; 51:904. [PMID: 39133413 DOI: 10.1007/s11033-024-09814-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
Cardiovascular disease (CVD) is a common cardiac disorder that leads to heart attacks, strokes, and heart failure. It is primarily characterized by conditions that impact the heart and blood arteries, including peripheral artery disease, arrhythmias, atherosclerosis, myocardial ischemia, congenital heart abnormalities, heart failure, rheumatic heart disease, hypertension, and cardiomyopathies. These conditions are mainly effect the heart and blood vessels, causing blockages or weakened pumping, due to severe hereditary and environmental factors. The frequency of CVD is rising significantly as life expectancy increases. Despite this, no effective treatment or management for its symptoms has been found. One of the most difficult obstacles to overcome, is finding a suitable animal model for drug screening and drug development. Although rodents, mice, swine, and mammals serve as the basis for most animal models of cardiovascular disease, no model accurately captures the epidemiology of the condition. Zebrafish (Danio rerio) have drawn the interest of the international scientific community due to certain shortcomings of the previously discussed animal models because they are smaller, less costly, and have an incredibly high rate of reproduction. This review article emphasizes the significance of using zebrafish as an animal model to investigate the possible facets of cardiovascular disease. Moreover, the ultimate purpose of this review article is to establish the advantages of employing zebrafish over other animal models and to investigate the boundaries of using zebrafish to study human disease. Furthermore, the mechanisms of cardiovascular diseases induction in zebrafish were covered to improve understanding for readers. Finally, the analysis of cardiotoxicity using Zebra fish model, is also explained. In order to stop the health index from deteriorating, the current study also covers some innovative, effective, and relatively safer treatments for treatment and management of cardiotoxicity.
Collapse
Affiliation(s)
- Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Maryam Zulfiqar
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Mahnoor Arshad
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Laiba Nazakat
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Abdullah Javed
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
13
|
Fabová Z, Loncová B, Harrath AH, Sirotkin AV. Does the miR-105-1-Kisspeptin Axis Promote Ovarian Cell Functions? Reprod Sci 2024; 31:2293-2308. [PMID: 38632222 PMCID: PMC11289008 DOI: 10.1007/s43032-024-01554-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
The objective of this study was to elucidate the intricate interplay among miR-105-1, kisspeptin, and their synergistic influence on basic ovarian granulosa cell functions. The effects of miR-105-1 mimics or miR-105-1 inhibitor, kisspeptin (0, 1, and 10 ng/ml), and its combinations with miR-105-1 mimics on porcine granulosa cells were assessed. The expression levels of miR-105-1, viability, proliferation (accumulation of PCNA, cyclin B1, XTT-, and BrdU-positive cells), apoptosis (accumulation of bcl-2, bax, caspase 3, p53, TUNEL-positive cells), proportion of kisspeptin-positive cells, and the release of steroid hormones and IGF-I were analyzed. Transfection of cells with miR-105-1 mimics promoted cell viability and proliferation, the occurrence of kisspeptin, and the release of progesterone and IGF-I; in contrast, miR-105-1 mimics inhibited apoptosis and estradiol output. MiR-105-1 inhibitor had the opposite effect. Kisspeptin amplified the expression of miR-105-1, cell viability, proliferation, steroid hormones, and IGF-I release and reduced apoptosis. Furthermore, the collaborative action of miR-105-1 mimics and kisspeptin revealed a synergistic relationship wherein miR-105-1 mimics predominantly supported the actions of kisspeptin, while kisspeptin exhibited a dual role in modulating the effects of miR-105-1 mimics. These findings not only affirm the pivotal role of kisspeptin in regulating basic ovarian cell functions but also represent the inaugural evidence underscoring the significance of miR-105-1 in this regulatory framework. Additionally, our results show the ability of kisspeptin to promote miR-105-1 expression and the ability of miR-105-1 to promote the occurrence and effects of kisspeptin and, therefore, indicate the existence of the self-stimulating kisspeptin-miR-105-1 axis.
Collapse
Affiliation(s)
- Zuzana Fabová
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, Slovakia.
- Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A. Hlinku 1, 949 74, Nitra, Slovakia.
| | - Barbora Loncová
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Alexander V Sirotkin
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| |
Collapse
|
14
|
Zaer SJ, Aghamaali M, Najafi S, Hosseini SS, Amini M, Doustvandi MA, Mozammel N, Baradaran B, Mokhtarzadeh AA. MicroRNA-143 overexpression enhances the chemosensitivity of A172 glioblastoma cells to carmustine. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03287-1. [PMID: 39007927 DOI: 10.1007/s00210-024-03287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
As an aggressive malignancy, glioblastoma multiforme (GBM) is the most common type of brain tumor. The existing treatments have shown limited achievement in increasing the overall survival of patients. Therefore, identifying the key molecules involved in GBM will provide new potential therapeutic targets. Carmustine is an alkylating agent used as a supplementary therapeutic option for GBM. However, the extensive use of carmustine has been limited by uncertainty about its efficacy. MicroRNAs (miRNAs) are essential in post-transcriptional gene regulation. Many aberrantly expressed miRNAs have been detected in various types of human cancer, including GBM. In this study, we evaluated the potential therapeutic effect of miR-143 in combination with carmustine on GBM cells. A172 cells were transfected with miR-143 mimics and then treated with carmustine. To assess the cell viability, apoptosis induction, and cell cycle progression, the MTT assay, Annexin V/PI apoptosis assay, and flow cytometry were used, respectively. Furthermore, qRT-PCR assay was applied to evaluate the expression level of genes related to apoptosis. The obtained results evidenced that miR-143 transfection could promote the sensitivity of A172 cells to carmustine and enhance carmustine-induced apoptosis via modulating the expression levels of Caspase-3, Caspase-9, Bax, and Bcl-2. Also, our results revealed that combination therapy could effectively diminish cell cycle progression in A172 cells. In conclusion, these results confirmed that miR-143 could enhance carmustine-mediated suppression of cell proliferation and improve the chemosensitivity of A172 cells to this chemotherapeutic agent. Therefore, miR-143 combination therapy may be a promising GBM treatment approach.
Collapse
Affiliation(s)
- Sheyda Jodeiry Zaer
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nazila Mozammel
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
15
|
Zhang Y, Pei X, Jing L, Zhang Q, Zhao H. Lead induced cerebellar toxicology of developmental Japanese quail (Coturnix japonica) via oxidative stress-based Nrf2/Keap1 pathway inhibition and glutathione-mediated apoptosis signaling activation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124114. [PMID: 38718965 DOI: 10.1016/j.envpol.2024.124114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Lead (Pb) is a heavy metal that has been recognized as a neurotoxin, meaning it can cause harmful effects on the nervous system. However, the neurotoxicology of Pb to birds still needs further study. In this study, we examined the neurotoxic effects of Pb exposure on avian cerebellum by using an animal model-Japanese quail (Coturnix japonica). The one-week old male chicks were exposed to 50, 200 and 500 mg/kg Pb of environmental relevance in the feed for five weeks. The results showed Pb caused cerebellar microstructural damages charactered by deformation of neuroglia cells, granule cells and Purkinje cells with Nissl body changes. Moreover, cerebellar neurotransmission was disturbed by Pb with increasing acetylcholine (ACh) and decreasing acetylcholinesterase (AChE), dopamine (DA), γ-Aminobutyric Acid (GABA) and Na+/K+ ATPase. Meanwhile, cerebellar oxidative stress was caused by Pb exposure represented by increasing reactive oxygen species (ROS) and malondialdehyde (MDA) as well as decreasing catalase (CAT), glutathione peroxidase (GPX), glutathione (GSH) and superoxide dismutase (SOD). Moreover, RNA-Seq analysis showed that molecular signaling pathways in the cerebellum were disrupted by Pb exposure. In particular, the disruption of nuclear factor erythroid-2-related factor 2 (Nfr2)/kelch-like ECH-associated protein 1 (Keap1) pathway and glutathione metabolism pathway indicated increasing cell apoptosis and functional disorder in the cerebellum. The present study revealed that Pb induced cerebellar toxicology through structural injury, oxidative stress, neurotransmission interference and abnormal apoptosis.
Collapse
Affiliation(s)
- Yuxin Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiaoqing Pei
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Lingyang Jing
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Qingyu Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongfeng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
16
|
Zhang L, Xia J. N6-Methyladenosine Methylation of mRNA in Cell Apoptosis. Mol Neurobiol 2024; 61:3934-3948. [PMID: 38040996 DOI: 10.1007/s12035-023-03813-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 11/16/2023] [Indexed: 12/03/2023]
Abstract
Apoptosis, a highly controlled homeostatic mechanism that eliminates single cells without destroying tissue function, occurs during growing development and senescence. N6-methyladenosine (m6A), as the most common internal modification of eukaryotic mRNA, fine-tunes gene expression by regulating many aspects of mRNA metabolism, such as splicing, nucleation, stability, translation, and degradation. Remarkably, recent reports have indicated that aberrant methylation of m6A-related RNA may directly or indirectly influence the expression of apoptosis-related genes, thus regulating the process of cell apoptosis. In this review, we summarized the relationship between m6A modification and cell apoptosis, especially its role in the nervous system, and analyzed the limitations of the current research.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
17
|
Chen H, Liu J, Chen M, Wei Z, Yuan J, Wu W, Wu Z, Zheng Z, Zhao Z, Lin Q, Liu N. SIRT3 facilitates mitochondrial structural repair and functional recovery in rats after ischemic stroke by promoting OPA1 expression and activity. Clin Nutr 2024; 43:1816-1831. [PMID: 38870662 DOI: 10.1016/j.clnu.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Optical atrophy 1 (OPA1), a protein accountable for mitochondrial fusion, facilitates the restoration of mitochondrial structure and function following cerebral ischemia/reperfusion (I/R) injury. The OPA1-conferred mitochondrial protection involves its expression and activity, which can be improved by SIRT3 in non-cerebral ischemia. Nevertheless, it remains obscure whether SIRT3 enhances the expression and activity of OPA1 after cerebral I/R injury. METHODS Mature male Sprague Dawley rats were intracranially injected with adeno-associated viral-Sirtuin-3(AAV-SIRT3) and AAV-sh_OPA1, followed by a 90-min temporary blockage of the middle cerebral artery and subsequent restoration of blood flow. Cultured cortical neurons of rats were transfected with LV-SIRT3 or LV-sh_OPA1 before a 2-h oxygen-glucose deprivation and reoxygenation. The rats and neurons were subsequently treated with a selective OPA1 activity inhibitor (MYLS22). The interaction between SIRT3 and OPA1 was assessed by molecular dynamics simulation technology and co-immunoprecipitation. The expression, function, and specific protective mechanism of SIRT3 were examined by various analyses. RESULTS SIRT3 interacted with OPA1 in the rat cerebral cortex before and after cerebral I/R. After cerebral I/R damage, SIRT3 upregulation increased the OPA1 expression, which enhanced deacetylation and OPA1 activity, thus alleviating cerebral infarct volume, neuronal apoptosis, oxidative pressure, and impairment in mitochondrial energy production; SIRT3 upregulation also improved neuromotor performance, repaired mitochondrial ultrastructure and membrane composition, and promoted the mitochondrial biogenesis. These neuroprotective effects were partly reversed by OPA1 expression interference and OPA1 activity inhibitor MYLS22. CONCLUSION In rats, SIRT3 enhances the expression and activity of OPA1, facilitating the repair of mitochondrial structure and functional recovery following cerebral I/R injury. These findings highlight that regulating SIRT3 may be a promising therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Hongbin Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China; Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Ji Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China; Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Manli Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China; Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Zengyu Wei
- Emergency Department, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jinjin Yuan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China; Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Wenwen Wu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China; Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Zhiyun Wu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China; Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Zhijian Zheng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China; Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Zijun Zhao
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China; Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Qiang Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China; Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Nan Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China; Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
18
|
Zhang M, Guo M, Gao Y, Wu C, Pan X, Huang Z. Mechanisms and therapeutic targets of ferroptosis: Implications for nanomedicine design. J Pharm Anal 2024; 14:100960. [PMID: 39135963 PMCID: PMC11318476 DOI: 10.1016/j.jpha.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 08/15/2024] Open
Abstract
Ferroptosis is a nonapoptotic form of cell death and differs considerably from the well-known forms of cell death in terms of cell morphology, genetics, and biochemistry. The three primary pathways for cell ferroptosis are system Xc-/glutathione peroxidase 4 (GPX4), lipid metabolism, and ferric metabolism. Since the discovery of ferroptosis, mounting evidence has revealed its critical regulatory role in several diseases, especially as a novel potential target for cancer therapy, thereby attracting increasing attention in the fields of tumor biology and anti-tumor therapy. Accordingly, broad prospects exist for identifying ferroptosis as a potential therapeutic target. In this review, we aimed to systematically summarize the activation and defense mechanisms of ferroptosis, highlight the therapeutic targets, and discuss the design of nanomedicines for ferroptosis regulation. In addition, we opted to present the advantages and disadvantages of current ferroptosis research and provide an optimistic vision of future directions in related fields. Overall, we aim to provide new ideas for further ferroptosis research and inspire new strategies for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Meihong Zhang
- College of Pharmacy, University of Jinan, Guangzhou, 510632, China
| | - Mengqin Guo
- College of Pharmacy, University of Jinan, Guangzhou, 510632, China
| | - Yue Gao
- College of Pharmacy, University of Jinan, Guangzhou, 510632, China
| | - Chuanbin Wu
- College of Pharmacy, University of Jinan, Guangzhou, 510632, China
| | - Xin Pan
- College of Pharmacy, University of Sun Yat-sen, Guangzhou, 510275, China
| | - Zhengwei Huang
- College of Pharmacy, University of Jinan, Guangzhou, 510632, China
| |
Collapse
|
19
|
Azhamuthu T, Kathiresan S, Senkuttuvan I, Asath NAA, Ravichandran P, Vasu R. Usnic acid alleviates inflammatory responses and induces apoptotic signaling through inhibiting NF-ĸB expressions in human oral carcinoma cells. Cell Biochem Funct 2024; 42:e4074. [PMID: 38874340 DOI: 10.1002/cbf.4074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Usnic acid (UA) is a unique bioactive substance in lichen with potential anticancer properties. Recently, we have reported that UA can reduce 7,12-dimethylbenz[a] anthracene-induced oral carcinogenesis by inhibiting oxidative stress, inflammation, and cell proliferation in a male golden Syrian hamster in vivo model. The present study aims to explore the relevant mechanism of cell death induced by UA on human oral carcinoma (KB) cell line in an in vitro model. We found that UA can induce apoptosis (cell death) in KB cells by decreasing cell viability, increasing the production of reactive oxygen species (ROS), depolarizing mitochondrial membrane potential (MMP) levels, causing nuclear fragmentation, altering apoptotic morphology, and causing excessive DNA damage. Additionally, UA inhibits the expression of Bcl-2, a protein that promotes cell survival, while increasing the expression of p53, Bax, Cytochrome-c, Caspase-9, and 3 proteins in KB cells. UA also inhibits the expression of nuclear factor-κB (NF-κB), a protein that mediates the activation of pro-inflammatory cytokines such as TNF-α and IL-6, in KB cells. Furthermore, UA promotes apoptosis by enhancing the mitochondrial-mediated apoptotic mechanism through oxidative stress, depletion of cellular antioxidants, and an inflammatory response. Ultimately, the findings of this study suggest that UA may have potential as an anticancer therapeutic agent for oral cancer treatments.
Collapse
Affiliation(s)
- Theerthu Azhamuthu
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Tamil Nadu, India
| | - Suresh Kathiresan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Tamil Nadu, India
| | - Ilanchitchenni Senkuttuvan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Tamil Nadu, India
| | | | - Pugazhendhi Ravichandran
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Tamil Nadu, India
| | - Rajeswari Vasu
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Tamil Nadu, India
| |
Collapse
|
20
|
Yeo S, Wu H, Yoon I, Lee WK, Hwang SJ. Design of smart chemotherapy of doxorubicin hydrochloride using nanostructured lipid carriers and solid lipid nanoparticles for improved anticancer efficacy. Int J Pharm 2024; 657:124048. [PMID: 38537925 DOI: 10.1016/j.ijpharm.2024.124048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/20/2024]
Abstract
Doxorubicin hydrochloride (DOX) is an anticancer agent used in cancer chemotherapy. The purpose of this study was to design nanostructured lipid carriers (NLCs) of DOX as smart chemotherapy to improve its photostability and anticancer efficacy. The characteristics of DOX and DOX-loaded NLCs were investigated using UV-Vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, particle size, and zeta potential study. The cytotoxicity of DOX was evaluated against three cancer cell lines (HeLa, A549, and CT-26). The particle size and zeta potential were in the range 58.45-94.08 nm and -5.80 mV - -18.27 mV, respectively. The chemical interactions, particularly hydrogen bonding and van der Waals forces, between DOX and the main components of NLCs was confirmed by FTIR. NLCs showed the sustained release profile of DOX. The photostability results revealed that the NLC system improved the photostability of DOX. Cytotoxicity results using the three cell lines showed that all formulations improved the anticancer efficacy of free DOX, and the efficacy was dependent on cell type and particle size. These results suggest that DOX-loaded NLCs are promising chemotherapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Sooho Yeo
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea; Center for Nano Manufacturing and Department of Nanoscience and Engineering, Inje University, 197 Injero, Gimhae 50834, Gyeongnam, Republic of Korea
| | - Huiqiang Wu
- Center for Nano Manufacturing and Department of Nanoscience and Engineering, Inje University, 197 Injero, Gimhae 50834, Gyeongnam, Republic of Korea
| | - Il Yoon
- Center for Nano Manufacturing and Department of Nanoscience and Engineering, Inje University, 197 Injero, Gimhae 50834, Gyeongnam, Republic of Korea.
| | - Woo Kyoung Lee
- Center for Nano Manufacturing and Department of Nanoscience and Engineering, Inje University, 197 Injero, Gimhae 50834, Gyeongnam, Republic of Korea.
| | - Sung-Joo Hwang
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea.
| |
Collapse
|
21
|
Iksen, Witayateeraporn W, Hardianti B, Pongrakhananon V. Comprehensive review of Bcl-2 family proteins in cancer apoptosis: Therapeutic strategies and promising updates of natural bioactive compounds and small molecules. Phytother Res 2024; 38:2249-2275. [PMID: 38415799 DOI: 10.1002/ptr.8157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/04/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Cancer has a considerably higher fatality rate than other diseases globally and is one of the most lethal and profoundly disruptive ailments. The increasing incidence of cancer among humans is one of the greatest challenges in the field of healthcare. A significant factor in the initiation and progression of tumorigenesis is the dysregulation of physiological processes governing cell death, which results in the survival of cancerous cells. B-cell lymphoma 2 (Bcl-2) family members play important roles in several cancer-related processes. Drug research and development have identified various promising natural compounds that demonstrate potent anticancer effects by specifically targeting Bcl-2 family proteins and their associated signaling pathways. This comprehensive review highlights the substantial roles of Bcl-2 family proteins in regulating apoptosis, including the intricate signaling pathways governing the activity of these proteins, the impact of reactive oxygen species, and the crucial involvement of proteasome degradation and the stress response. Furthermore, this review discusses advances in the exploration and potential therapeutic applications of natural compounds and small molecules targeting Bcl-2 family proteins and thus provides substantial scientific information and therapeutic strategies for cancer management.
Collapse
Affiliation(s)
- Iksen
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacy, Sekolah Tinggi Ilmu Kesehatan Senior Medan, Medan, Indonesia
| | - Wasita Witayateeraporn
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Besse Hardianti
- Laboratory of Pharmacology and Clinical Pharmacy, Faculty of Health Sciences, Almarisah Madani University, South Sulawesi, Indonesia
| | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
22
|
Wu F, Zhao M, Tang Z, Wang F, Han S, Liu S, Chen B. Curcumin alleviates cecal oxidative injury in diquat-induced broilers by regulating the Nrf2/ARE pathway and microflora. Poult Sci 2024; 103:103651. [PMID: 38552344 PMCID: PMC10995872 DOI: 10.1016/j.psj.2024.103651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/27/2024] [Accepted: 03/08/2024] [Indexed: 04/08/2024] Open
Abstract
This study evaluated the alleviative effect of curcumin (CUR) on the diquat (DQ)-induced cecal injury in broilers. A total of 320 one-day-old Cobb broilers were selected and randomly divided into 4 treatments, namely control, DQ, CUR 100, and CUR150 groups. The control and DQ groups were fed a basal diet, while the CUR 100 and CUR150 groups were fed the basal diet supplemented with 100 and 150 mg/kg CUR, respectively. Each group had 8 replicates, with 10 broilers per replicate. On day 21 of the experiment, 1 broiler was selected from each replicate and intraperitoneally injected 20 mg/kg body weight of DQ for DQ, CUR 100, and CUR 150 groups. Broilers in control group received equivalent volume of saline. Broilers were euthanized 48h postinjection for tissue sampling. The results showed that DQ injection could cause oxidative stress and inflammatory reactions in the cecum, affecting the fatty acid production and flora structure, thus leading to cecum damage. Compared with the DQ group, the activity of superoxide dismutase, the level of interleukin 10, acetic acid, and total volatile fatty, and the abundance of nuclear factor E2-related factor 2, copper and zinc superoxide dismutase and catalase mRNA in the cecal mucosa of broilers in the CUR group increased significantly (P < 0.05). However, the levels of malondialdehyd, reactive oxygen species, tumor necrosis factor-alpha, and the expression of cysteine-aspartic acid protease-3 and tumor necrosis factor-alpha decreased significantly (P < 0.05) in the CUR group. In addition, CUR treatment alleviated the damage to the cecum and restored the flora structure, and Lactobacillus and Lactobacillaceae promoted the alleviative effect of CUR on DQ. In summary, CUR could alleviate the cecal injury caused by DQ-induced oxidative damage and inflammatory reactions by regulating the Nrf2-ARE signaling pathway and intestinal flora, thus protecting the cecum.
Collapse
Affiliation(s)
- Fengyang Wu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000 China; College of Food Science and Technology, Hebei Agricultural University, Baoding, 071000 China
| | - Man Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000 China
| | - Zhaohong Tang
- Hebei Research Institute of Microbiology Co., LTD, Baoding, 071000 China
| | - Fengxia Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000 China
| | - Shuaijuan Han
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000 China
| | - Shudong Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000 China
| | - Baojiang Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000 China.
| |
Collapse
|
23
|
Liu Y, Zhang Z, He Y, Li R, Zhang Y, Liu H, Wang Y, Ma W. Mitochondria protective and anti-apoptotic effects of peripheral benzodiazepine receptor and its ligands on the treatment of asthma in vitro and vivo. J Inflamm (Lond) 2024; 21:11. [PMID: 38641850 PMCID: PMC11031857 DOI: 10.1186/s12950-024-00383-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 04/03/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Asthma is a prevalent respiratory inflammatory disease. Abnormal apoptosis of bronchial epithelial cells is one of the major factors in the progression of asthma. Peripheral benzodiazepine receptors are highly expressed in bronchial epithelial cells, which act as a component of the mitochondrial permeability transition pore to regulate its opening and closing and apoptosis of bronchial epithelial cells. We aimed to investigate the mechanisms by which peripheral benzodiazepine receptor and its ligands, agonist 4'-Chlorodiazepam (Ro5-4864) and antagonist 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide (PK 11,195), modulate the mitochondrial function and cell apoptosis in the treatment of asthma. METHODS In vitro study, Ro5-4864 and PK 11,195 were utilized to pretreat cells prior to the inflammatory injury induced by Lipopolysaccharide. The reactive oxygen species, the apoptosis of cell, the mitochondrial membrane potentials, the ultrastructures of the mitochondria and the expression levels of peripheral benzodiazepine receptors and apoptosis-related proteins and genes were detected. In vivo study, mice were administrated intraperitoneally with Ro5-4864 and PK 11,195 before sensitized and challenged by ovalbumin. Serum IgE and bronchoalveolar lavage fluid cytokines were detected, and lung tissues were underwent the histopathological examination. RESULTS The ligands of peripheral benzodiazepine receptor counteracted the effects of the increase of reactive oxygen species, the elevated extent of apoptosis, the decrease of mitochondrial membrane potentials and the disruption of mitochondrial ultrastructures induced by Lipopolysaccharide. The ligands also promoted the expression of anti-apoptosis-related proteins and genes and inhibited the expression of pro-apoptosis-related proteins and genes. Besides, the ligands reduced the levels of serum IgE and bronchoalveolar lavage fluid cytokines in asthmatic mice and attenuated the histopathological damage of lungs. CONCLUSION Peripheral benzodiazepine receptor serves as a potential therapeutic target for the treatment of asthma, with its ligands exerting mitochondrial protective and anti-apoptotic effects on bronchial epithelial cells.
Collapse
Affiliation(s)
- Yurui Liu
- Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 12 Jichang Road, 510405, Guangzhou, P.R. China
| | - Zhengze Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 12 Jichang Road, 510405, Guangzhou, P.R. China
| | - Yuewen He
- Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 12 Jichang Road, 510405, Guangzhou, P.R. China
| | - Ruogen Li
- Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 12 Jichang Road, 510405, Guangzhou, P.R. China
| | - Yuhao Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 12 Jichang Road, 510405, Guangzhou, P.R. China
| | - Hao Liu
- Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 12 Jichang Road, 510405, Guangzhou, P.R. China
| | - Yong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 12 Jichang Road, 510405, Guangzhou, P.R. China
| | - Wuhua Ma
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 12 Jichang Road, 510405, Guangzhou, P.R. China.
| |
Collapse
|
24
|
Salama M, Ali A, Ibrahim FAR, Elabd S. Citalopram, an antipsychotic agent, induces G1/G0 phase cell cycle arrest and promotes apoptosis in human laryngeal carcinoma HEP-2 cells. Med Oncol 2024; 41:105. [PMID: 38573558 PMCID: PMC10994997 DOI: 10.1007/s12032-024-02338-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/21/2024] [Indexed: 04/05/2024]
Abstract
Human laryngeal squamous carcinoma (LSCC) is a common malignant tumor in the head and neck. Despite the recently developed therapies for the treatment of LSCC, patients' overall survival rate still did not enhance remarkably; this highlights the need to formulate alternative strategies to develop novel treatments. The antitumor effects of antidepressant drugs such as citalopram have been reported on several cancer cells; however, they have yet to be investigated against LSCC. The current study was directed to explore the possible antitumor effects of citalopram on human laryngeal carcinoma cell lines (HEP-2). HEP-2 cells were cultured and treated with different doses of citalopram (50-400 µM) for 24, 48, and 72 h. The effects of citalopram on the viability of cancer cells were determined by the MTT assay. In addition, apoptosis and cell cycle analysis were performed by flow cytometry. Moreover, evaluation of the expression of proapoptotic and apoptotic proteins, such as cytochrome c, cleaved caspases 3 and 9, Bcl-2, and BAX, was performed by western blotting analysis. Our results revealed that citalopram significantly suppressed the proliferation of HEP-2 cells through the upregulation of p21 expression, resulting in the subsequent arrest of the cell cycle at the G0/G1 phase. Furthermore, citalopram treatment-induced HEP-2 cell apoptosis; this was indicated by the significant increase of cytochrome c, cleaved caspases 3 and 9, and BAX protein expression. On the contrary, Bcl-2 protein expression was significantly downregulated following treatment with citalopram. The ultrastructure studies were in accordance with the protein expression findings and showed clear signs of apoptosis with ring chromatin condensation upon treatment with citalopram. These findings suggest that citalopram's anti-tumor activities on HEP-2 cells entailed stimulation of the intrinsic apoptotic pathway, which was mediated via Bcl-2 suppression.
Collapse
Affiliation(s)
- Mohammed Salama
- Department of Histochemistry and Cell Biology, Medical Research Institute, Alexandria University, 165 El-Horeya Avenue, Hadara, Alexandria, Egypt.
| | - Abeer Ali
- Department of Chemical Pathology, Medical Research Institute, Alexandria University, 165 Horreya Avenue, Hadara, Alexandria, Egypt
| | - Fawziya A R Ibrahim
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, 165 Horreya Avenue, Hadara, Alexandria, Egypt
| | - Seham Elabd
- Department of Physiology, Medical Research Institute, Alexandria University, 165 Horreya Avenue, Hadara, Alexandria, Egypt
| |
Collapse
|
25
|
Nazeri Z, Zarezade V, Jamalan M, Cheraghzadeh M, Azizidoost S, Kheirollah A. Carbon nanotubes induce cytotoxicity and apoptosis through increasing protein levels of Bax and ROS in mouse skin fibroblasts. Res Pharm Sci 2024; 19:148-156. [PMID: 39035585 PMCID: PMC11257208 DOI: 10.4103/rps.rps_157_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 04/12/2023] [Accepted: 02/17/2024] [Indexed: 07/23/2024] Open
Abstract
Background and purpose Carbon nanotubes (CNTs) are a significant discovery in nanotechnology, with widespread applications in modern technology. However, there are concerns about their potential toxicity, particularly in skin cells. This study aimed to investigate the mechanisms by which CNTs induced cytotoxicity and apoptosis in mouse skin fibroblasts. Experimental approach The mice skin fibroblasts were isolated and exposed to two types of CNTs at various concentrations and then analyzed for changes in viability, reactive oxygen species (ROS) production, the levels of Bcl-2-associated X protein (Bax), and lactate production. Findings/Results The results demonstrated that CNTs reduced cell viability and increased ROS production in a dose-dependent manner. Additionally, the current study found that CNTs increased the protein levels of Bax, a pro-apoptotic protein, in mouse skin fibroblasts. Furthermore, it was observed a significant decrease in lactate production in cells exposed to CNTs. Conclusion and implications The findings concluded that CNTs have the potential to be toxic substances for skin fibroblasts, which serve as the body's first line of defense. This is evidenced by their ability to increase the production of ROS and the protein levels of Bax, as well as reduce lactic acid levels. As lactic acid has been reported to have beneficial effects on skin collagen production, further studies are needed to fully understand the impact of carbon nanotube exposure on human skin health.
Collapse
Affiliation(s)
- Zahra Nazeri
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahid Zarezade
- Department of Biochemistry, School of Medicine, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Mostafa Jamalan
- Department of Biochemistry, Abadan University of Medical Sciences, Abadan, Iran
| | - Maryam Cheraghzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Kheirollah
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- 548-E Borwell Research Building, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
26
|
Li Q, Zheng S, Niu K, Qiao Y, Liu Y, Zhang Y, Li B, Zheng C, Yu B. Paeoniflorin improves ulcerative colitis via regulation of PI3K‑AKT based on network pharmacology analysis. Exp Ther Med 2024; 27:125. [PMID: 38414786 PMCID: PMC10895587 DOI: 10.3892/etm.2024.12414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/24/2023] [Indexed: 02/29/2024] Open
Abstract
Paeoniflorin (PF) is the primary component derived from Paeonia lactiflora and white peony root and has been used widely for the treatment of ulcerative colitis (UC) in China. UC primarily manifests as a chronic inflammatory response in the intestine. In the present study, a network pharmacology approach was used to explore the specific effects and underlying mechanisms of action of PF in the treatment of UC. A research strategy based on network pharmacology, combining target prediction, network construction, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and molecular docking simulation was used to predict the targets of PF. A total of 288 potential targets of PF and 599 UC-related targets were identified. A total of 60 therapeutic targets of PF against UC were identified. Of these, 20 core targets were obtained by protein-protein interaction network construction. GO and KEGG pathway analyses showed that PF alleviated UC through EGFR tyrosine kinase inhibitor resistance, the IL-17 signaling pathway, and the PI3K/AKT signaling pathway. Molecular docking simulation showed that AKT1 and EGFR had good binding energy with PF. Animal-based experiments revealed that the administration of PF ameliorated the colonic pathological damage in a dextran sulfate sodium-induced mouse model, resulting in lower levels of proinflammatory cytokines including IL-1β, IL-6, and TNF-α, and higher levels of IL-10 and TGF-β. PF decreased the mRNA and protein expression levels of AKT1, EGFR, mTOR, and PI3K. These findings suggested that PF plays a therapeutic protective role in the treatment of UC by regulating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Qifang Li
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong 272069, P.R. China
| | - Shuyue Zheng
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Kai Niu
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Yi Qiao
- School of Public Health, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Yuan Liu
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Ying Zhang
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Bingbing Li
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Canlei Zheng
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Bin Yu
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| |
Collapse
|
27
|
Samia S, Sandeep Chary P, Khan O, Kumar Mehra N. Recent trends and advances in novel formulations as an armament in Bcl-2/Bax targeted breast cancer. Int J Pharm 2024; 653:123889. [PMID: 38346605 DOI: 10.1016/j.ijpharm.2024.123889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024]
Abstract
Breast cancer (BC) remains a significant health burden worldwide, necessitating the development of innovative therapeutic strategies. The B-cell lymphoma 2 (Bcl-2) family proteins, Bcl-2 and Bax, play a crucial role in regulating apoptosis and thus are promising targets for BC therapy. We focus on the recent advancements in novel formulations that specifically target Bcl-2/Bax pathway to combat BC. It provides an overview on biological functions of Bcl-2/Bax in apoptosis regulation, emphasizing their significance in pathogenesis and progression of the disease while covering the numerous therapeutic approaches aimed at modulating the Bcl-2/Bax pathway, including small-molecule inhibitors, peptides, gene-based therapies and other repurposed drugs harboured onto cutting-edge technologies and nanocarrier systems employed to enhance the targeted delivery of Bcl-2/Bax inhibitors tumor cells. These advanced formulations aim to improve therapeutic efficacy, minimize off-target effects, and overcome drug resistance, offering promising prospects in its treatment. In conclusion, it illuminates the diverse and evolving landscape of novel formulations as an essential armament in targeting these proteins while bridging and unravelling the obscurity of Bcl-2/Bax pathway-targeted drug delivery systems which are presently in their nascent stages of exploration for BC therapy which can benefit researchers, clinicians, and pharmaceutical scientists.
Collapse
Affiliation(s)
- Shaikh Samia
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Omar Khan
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
28
|
Kumar S, Shenoy S, Swamy RS, Ravichandiran V, Kumar N. Fluoride-Induced Mitochondrial Dysfunction and Approaches for Its Intervention. Biol Trace Elem Res 2024; 202:835-849. [PMID: 37300595 DOI: 10.1007/s12011-023-03720-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
Fluoride is present everywhere in nature. The primary way that individuals are exposed to fluoride is by drinking water. It's interesting to note that while low fluoride levels are good for bone and tooth growth, prolonged fluoride exposure is bad for human health. Additionally, preclinical studies link oxidative stress, inflammation, and programmed cell death to fluoride toxicity. Moreover, mitochondria play a crucial role in the production of reactive oxygen species (ROS). On the other hand, little is known about fluoride's impact on mitophagy, biogenesis, and mitochondrial dynamics. These actions control the growth, composition, and organisation of mitochondria, and the purification of mitochondrial DNA helps to inhibit the production of reactive oxygen species and the release of cytochrome c, which enables cells to survive the effects of fluoride poisoning. In this review, we discuss the different pathways involved in mitochondrial toxicity and dysfunction induced by fluoride. For therapeutic approaches, we discussed different phytochemical and pharmacological agents which reduce the toxicity of fluoride via maintained by imbalanced cellular processes, mitochondrial dynamics, and scavenging the ROS.
Collapse
Affiliation(s)
- Sachindra Kumar
- National Institute of Pharmaceutical Education and Research, Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Ravindra Shantakumar Swamy
- Division of Anatomy, Department of Basic Medical Sciences (DBMS), Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - V Ravichandiran
- National Institute of Pharmaceutical Education and Research, Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| | - Nitesh Kumar
- National Institute of Pharmaceutical Education and Research, Hajipur, Industrial Area Hajipur, Vaishali, 844102, India.
| |
Collapse
|
29
|
Gebreslassie YT, Gebremeskel FG. Green and cost-effective biofabrication of copper oxide nanoparticles: Exploring antimicrobial and anticancer applications. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 41:e00828. [PMID: 38312482 PMCID: PMC10835232 DOI: 10.1016/j.btre.2024.e00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024]
Abstract
Nanotechnology has made remarkable advancements in recent years, revolutionizing various scientific fields, industries, and research institutions through the utilization of metal and metal oxide nanoparticles. Among these nanoparticles, copper oxide nanoparticles (CuO NPs) have garnered significant attention due to their versatile properties and wide-range applications, particularly, as effective antimicrobial and anticancer agents. CuO NPs can be synthesized using different methods, including physical, chemical, and biological approaches. However, conventional chemical and physical approaches are expensive, resource-intensive, and involve the use of hazardous chemicals, which can pose risks to human health and the environment. In contrast, biological synthesis provides a sustainable and cost-effective alternative by eliminating chemical pollutants and allowing for the production of CuO NPs of tailored sizes and shapes. This comprehensive review focused on the green synthesis of CuO NPs using various biological resources, such as plants, microorganisms, and other biological derivatives. Current knowledge and recent trends in green synthesis methods for CuO NPs are discussed, with a specific emphasis on their biomedical applications, particularly in combating cancer and microbial infections. This review highlights the significant potential of CuO NPs in addressing these diseases. By capitalizing on the advantages of biological synthesis, such as environmental safety and the ability to customize nanoparticle characteristics, CuO NPs have emerged as promising therapeutic agents for a wide range of conditions. This review presents compelling findings, demonstrating the remarkable achievements of biologically synthesized CuO NPs as novel therapeutic agents. Their unique properties and mechanisms enable effective combating against cancer cells and various harmful microbial infections. CuO NPs exhibit potent anticancer activity through diverse mechanisms, including induction of apoptosis, inhibition of angiogenesis, and modulation of signaling pathways. Additionally, their antimicrobial activity manifests through various mechanisms, such as disrupting microbial membranes, generating reactive oxygen species, and interfering with microbial enzymes. This review offers valuable insights into the substantial potential of biologically synthesized CuO NPs as an innovative approach for future therapeutic interventions against cancer and microbial infections.
Collapse
Affiliation(s)
- Yemane Tadesse Gebreslassie
- Department of Chemistry, College of Natural and Computational Science, Adigrat University, P.O. Box 50, Adigrat, Ethiopia
| | - Fisseha Guesh Gebremeskel
- Department of Chemistry, College of Natural Sciences, Arba Minch University, P.O. Box 21, Arba Minch, Ethiopia
| |
Collapse
|
30
|
Li Y, Fu J, Hou H, Tang W, Liu Z, Gao D, Zhao F, Gao X, Sun F, Tan H. Chondroitin sulfate-modified antiangiogenic peptide conjugate induces cell apoptosis via the mitochondria-mediated pathway to perform antitumor activity. Int J Biol Macromol 2024; 262:129671. [PMID: 38423906 DOI: 10.1016/j.ijbiomac.2024.129671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/07/2024] [Accepted: 01/20/2024] [Indexed: 03/02/2024]
Abstract
Tumor growth and metastasis heavily rely on angiogenesis, crucial for solid tumor development. Inhibiting angiogenesis associated with tumors emerges as a potent therapeutic approach. Our previous work synthesized the chondroitin sulfate-modified antiangiogenic peptide CS-ES2-AF (CS-EA), which exhibited better antiangiogenic activity, longer half-life, and more robust targeting. In this work, we further evaluated the stability in vitro, cellular uptake mechanism, cell apoptosis mechanism, antitumor activity in vivo, and safety of CS-EA. The stability of CS-EA was consistently superior to that of EA at different temperatures and in different pH ranges. Furthermore, CS-EA mainly entered EAhy926 cells through the clathrin-mediated endocytosis pathway. CS-EA inhibited endothelial cell proliferation, and induced cell apoptosis through downregulating the Bcl-2, reducing mitochondria membrane potential, upregulating cytochrome c, Caspase 3, and reactive oxygen species levels. CS-EA showed better antitumor activity in the B16 xenografted tumor model, with a tumor inhibition rate 1.92 times higher than EA. Simultaneously, it was observed that CS-EA did not cause any harmful effects on the vital organs of the mice. These findings indicate that CS-EA holds significant promise for the treatment of tumors.
Collapse
Affiliation(s)
- Yan Li
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Jiaai Fu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Huiwen Hou
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Wen Tang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Zengmei Liu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Didi Gao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Feiyan Zhao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - XinQing Gao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Feng Sun
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China.
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China; Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China.
| |
Collapse
|
31
|
Huang Q, Wu M, Pu Y, Zhou J, Zhang Y, Li R, Xia Y, Zhang Y, Ma Y. Inhibition of TNBC Cell Growth by Paroxetine: Induction of Apoptosis and Blockage of Autophagy Flux. Cancers (Basel) 2024; 16:885. [PMID: 38473249 DOI: 10.3390/cancers16050885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
The strategy of drug repurposing has gained traction in the field of cancer therapy as a means of discovering novel therapeutic uses for established pharmaceuticals. Paroxetine (PX), a selective serotonin reuptake inhibitor typically utilized in the treatment of depression, has demonstrated promise as an agent for combating cancer. Nevertheless, the specific functions and mechanisms by which PX operates in the context of triple-negative breast cancer (TNBC) remain ambiguous. This study aimed to examine the impact of PX on TNBC cells in vitro as both a standalone treatment and in conjunction with other pharmaceutical agents. Cell viability was measured using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, apoptosis was assessed through flow cytometry, and the effects on signaling pathways were analyzed using RNA sequencing and Western blot techniques. Furthermore, a subcutaneous tumor model was utilized to assess the in vivo efficacy of combination therapy on tumor growth. The results of our study suggest that PX may activate the Ca2+-dependent mitochondria-mediated intrinsic apoptosis pathway in TNBC by potentially influencing the PI3K/AKT/mTOR pathway as well as by inducing cytoprotective autophagy. Additionally, the combination of PX and chemotherapeutic agents demonstrated moderate inhibitory effects on 4T1 tumor growth in an in vivo model. These findings indicate that PX may exert its effects on TNBC through modulation of critical molecular pathways, offering important implications for improving chemosensitivity and identifying potential therapeutic combinations for clinical use.
Collapse
Affiliation(s)
- Qianrui Huang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Mengling Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yamin Pu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Junyou Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu 610041, China
- Department of Basic Medical Sciences & Forensic Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yiqian Zhang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ru Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Chengdu 610041, China
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu 610041, China
| | - Yiwen Zhang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yimei Ma
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu 610041, China
| |
Collapse
|
32
|
Jiang H, Wang W, Mao Y, Jiang L, Yu J, Zhu X, Fu H, Lin Z, Shen H, Pan X, Xue X. Morroniside-mediated mitigation of stem cell and endothelial cell dysfunction for the therapy of glucocorticoid-induced osteonecrosis of the femoral head. Int Immunopharmacol 2024; 127:111421. [PMID: 38157694 DOI: 10.1016/j.intimp.2023.111421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Prolonged use of glucocorticoids (GCs) potentially lead to a condition known as GCs-induced osteonecrosis of the femoral head (GIONFH). The primary mechanisms underlying this phenomenon lies in stem cells and endothelial cells dysfunctions. Morroniside, an iridoid glycoside sourced from Cornus officinalis, possesses numerous biological capabilities, including combating oxidative stress, preventing apoptosis, opposing ischemic effects, and promoting the regeneration of bone tissue. PURPOSE This study aimed to analyze the impact of Morroniside on Dexamethasone (DEX)-induced dysfunction in stem cells and endothelial cells, and its potential as a therapeutic agent for GIONFH in rat models. METHODS ROS assay, JC-1 assay, and TUNEL assay were used to detect oxidative stress and apoptosis levels in vitro. For the evaluation of the osteogenic capability of bone marrow-derived mesenchymal stem cells, we employed ALP and ARS staining. Additionally, the angiogenic ability of endothelial cells was assessed using tube formation assay and migration assay. Microcomputed tomography analysis, hematoxylin-eosin staining, and immunohistochemical staining were utilized to evaluate the in vivo therapeutic efficacy of Morroniside. RESULTS Morroniside mitigates DEX-induced excessive ROS expression and cell apoptosis, effectively reducing oxidative stress and alleviating cell death. In terms of osteogenesis, Morroniside reverses DEX-induced osteogenic impairment, as evidenced by enhanced ALP and ARS staining, as well as increased osteogenic protein expression. In angiogenesis, Morroniside counteracts DEX-induced vascular dysfunction, demonstrated by an increase in tube-like structures in tube formation assays, a rise in the number of migrating cells, and elevated levels of angiogenic proteins. In vivo, our results further indicate that Morroniside alleviates the progression of GIONFH. CONCLUSION The experimental findings suggest that Morroniside concurrently mitigates stem cell and endothelial cell dysfunction through the PI3K/AKT signaling pathway both in vitro and in vivo. These outcomes suggest that Morroniside serves as a potential therapeutic agent for GIONFH.
Collapse
Affiliation(s)
- Hongyi Jiang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Weidan Wang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yiwen Mao
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Liting Jiang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiachen Yu
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xinyi Zhu
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haonan Fu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhongnan Lin
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hanting Shen
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaoyun Pan
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Xinghe Xue
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
33
|
Yan T, Ding F, Zhang Y, Wang Y, Wang Y, Zhang Y, Zhu F, Zhang G, Zheng X, Jia G, Zhou F, Zhao Y, Zhao Y. Astaxanthin Inhibits H 2O 2-Induced Excessive Mitophagy and Apoptosis in SH-SY5Y Cells by Regulation of Akt/mTOR Activation. Mar Drugs 2024; 22:57. [PMID: 38393028 PMCID: PMC10890442 DOI: 10.3390/md22020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
Oxidative stress, which damages cellular components and causes mitochondrial dysfunction, occurs in a variety of human diseases, including neurological disorders. The clearance of damaged mitochondria via mitophagy maintains the normal function of mitochondria and facilitates cell survival. Astaxanthin is an antioxidant known to have neuroprotective effects, but the underlying mechanisms remain unclear. This study demonstrated that astaxanthin inhibited H2O2-induced apoptosis in SH-SY5Y cells by ameliorating mitochondrial damage and enhancing cell survival. H2O2 treatment significantly reduced the levels of activated Akt and mTOR and induced mitophagy, while pretreatment with astaxanthin prevented H2O2-induced inhibition of Akt and mTOR and attenuated H2O2-induced mitophagy. Moreover, the inhibition of Akt attenuated the protective effect of astaxanthin against H2O2-induced cytotoxicity. Taken together, astaxanthin might inhibit H2O2-induced apoptosis by protecting mitochondrial function and reducing mitophagy. The results also indicate that the Akt/mTOR signaling pathway was critical for the protection of astaxanthin against H2O2-induced cytotoxicity. The results from the present study suggest that astaxanthin can reduce neuronal oxidative injury and may have the potential to be used for preventing neurotoxicity associated with neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Yan Zhao
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China; (T.Y.); (F.D.); (Y.Z.); (Y.W.); (Y.W.); (Y.Z.); (F.Z.); (G.Z.); (X.Z.); (G.J.); (F.Z.); (Y.Z.)
| |
Collapse
|
34
|
Jia Y, Xiao H, Wang X, Liu Y, Wang J, Xie H, Shang H, Sun G, Tian Y. Design, synthesis, and evaluation of n-butylphthalide and ligustrazine hybrids as potent neuroprotective agents for the treatment of ischemic stroke in vitro and in vivo. Bioorg Chem 2024; 142:106961. [PMID: 37956636 DOI: 10.1016/j.bioorg.2023.106961] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/28/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
A series of novel NBP-TMP hybrids with neuroprotective effects were designed and synthesized for the treatment of ischemic stroke. The anti-cerebral ischemic activity of these compounds was screened by evaluating their neuroprotective effects on the oxygen glucose deprivation/reperfusion (OGD/R)-induced SH-SY5Y cell injury model in vitro. Nine compounds 7e, 7h-7i, 7k, 7m-7p and 7r showed better activities on cell viability and LDH levels compared to NBP at the concentration of 6.25 μM. Among them, compound 7m showed the best potency with a percentage of protection 90.2 % compared to NBP (69.2 %) and other compounds. Preliminary structure-activity analysis revealed that the introduction of iodine and N-methylpiperazine groups could significantly improve the neuroprotective effect. Further mechanism research showed that compound 7m could reduce the damage to neuronal mitochondria caused by OGD/R by reducing ROS and increasing mitochondrial membrane potential (MMP), and reduce the apoptosis and necrosis of neurons to play a neuroprotective role. In addition, 7m could regulate the levels of mitochondrial apoptosis pathway-related proteins Bcl-2, Bax, and caspase 3. Finally, in vivo experiments showed that the compound 7m significantly inhibited ischemia-reperfusion injury and cerebral blood flow in rats, and showed a more significant neuroprotective effect than the positive drug NBP at a dose concentration of 20 mg/kg. In conclusion, our results suggest that 7m may be used as a novel lead compound for the future development of anti-cerebral ischemic agents.
Collapse
Affiliation(s)
- Yi Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Haiyan Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xiaolin Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Ying Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiaxin Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haochen Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Hai Shang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Yu Tian
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
35
|
Jiang H, Lin C, Cai T, Jiang L, Lou C, Lin S, Wang W, Yan Z, Pan X, Xue X. Taxifolin-mediated Nrf2 activation ameliorates oxidative stress and apoptosis for the treatment of glucocorticoid-induced osteonecrosis of the femoral head. Phytother Res 2024; 38:156-173. [PMID: 37846877 DOI: 10.1002/ptr.8031] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/27/2023] [Accepted: 09/23/2023] [Indexed: 10/18/2023]
Abstract
Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is the main complication secondary to long-term or excessive use of glucocorticoids (GCs). Taxifolin (TAX) is a natural antioxidant with various pharmacological effects, such as antioxidative stress and antiapoptotic properties. The purpose of this study was to explore whether TAX could regulate oxidative stress and apoptosis in GIONFH by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. We conducted qRT-PCR, Western blotting, TUNEL assays, flow cytometry, and other experiments in vitro. Microcomputed tomography analysis, hematoxylin-eosin staining, and immunohistochemical staining were performed to determine the therapeutic effect of TAX in vivo. TAX mitigated the overexpression of ROS and NOX gene expression induced by DEX, effectively reducing oxidative stress. Additionally, TAX could alleviate DEX-induced osteoblast apoptosis, as evidenced by qRT-PCR, Western blotting, and other experimental techniques. Our in vivo studies further demonstrated that TAX mitigates the progression of GIONFH in rats by combating oxidative stress and apoptosis. Mechanistic exploration revealed that TAX thwarts the progression of GIONFH through the activation of the Nrf2 pathway. Overall, our research herein reports that TAX-mediated Nrf2 activation ameliorates oxidative stress and apoptosis for the treatment of GIONFH.
Collapse
Affiliation(s)
- Hongyi Jiang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Chihao Lin
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Tingwen Cai
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Liting Jiang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Chao Lou
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shida Lin
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Weidan Wang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zijian Yan
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyun Pan
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinghe Xue
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
36
|
Rajabi-Toustani R, Hu Q, Wang S, Qiao H. How Do Environmental Toxicants Affect Oocyte Maturation Via Oxidative Stress? ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 238:69-95. [PMID: 39030355 DOI: 10.1007/978-3-031-55163-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
In mammals, oogenesis initiates before birth and pauses at the dictyate stage of meiotic prophase I until luteinizing hormone (LH) surges to resume meiosis. Oocyte maturation refers to the resumption of meiosis that directs oocytes to advance from prophase I to metaphase II of meiosis. This process is carefully modulated to ensure a normal ovulation and successful fertilization. By generating excessive amounts of oxidative stress, environmental toxicants can disrupt the oocyte maturation. In this review, we categorized these environmental toxicants that induce mitochondrial dysfunction and abnormal spindle formation. Further, we discussed the underlying mechanisms that hinder oocyte maturation, including mitochondrial function, spindle formation, and DNA damage response.
Collapse
Affiliation(s)
- Reza Rajabi-Toustani
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Qinan Hu
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Shuangqi Wang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA.
| |
Collapse
|
37
|
Singh AK, Yadav D, Malviya R. Splicing DNA Damage Adaptations for the Management of Cancer Cells. Curr Gene Ther 2024; 24:135-146. [PMID: 38282448 DOI: 10.2174/0115665232258528231018113410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/07/2023] [Accepted: 09/25/2023] [Indexed: 01/30/2024]
Abstract
Maintaining a tumour cell's resistance to apoptosis (organized cell death) is essential for cancer to metastasize. Signal molecules play a critical function in the tightly regulated apoptotic process. Apoptosis may be triggered by a wide variety of cellular stresses, including DNA damage, but its ultimate goal is always the same: the removal of damaged cells that might otherwise develop into tumours. Many chemotherapy drugs rely on cancer cells being able to undergo apoptosis as a means of killing them. The mechanisms by which DNA-damaging agents trigger apoptosis, the interplay between pro- and apoptosis-inducing signals, and the potential for alteration of these pathways in cancer are the primary topics of this review.
Collapse
Affiliation(s)
- Arun Kumar Singh
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Deepika Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
38
|
Lee MH, Kim HL, Seo H, Jung S, Kim BJ. A secreted form of chorismate mutase (Rv1885c) in Mycobacterium bovis BCG contributes to pathogenesis by inhibiting mitochondria-mediated apoptotic cell death of macrophages. J Biomed Sci 2023; 30:95. [PMID: 38110948 PMCID: PMC10729386 DOI: 10.1186/s12929-023-00988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Mycobacterium tuberculosis is the causative agent of tuberculosis (TB), and its pathogenicity is associated with its ability to evade the host defense system. The secretory form of the chorismate mutase of M. tuberculosis (TBCM, encoded by Rv1885c) is assumed to play a key role in the pathogenesis of TB; however, the mechanism remains unknown. METHODS A tbcm deletion mutant (B∆tbcm) was generated by targeted gene knockout in BCG to investigate the pathogenic role of TBCM in mice or macrophages. We compared the pathogenesis of B∆tbcm and wild-type BCG in vivo by measuring the bacterial clearance rate and the degree of apoptosis. Promotion of the intrinsic apoptotic pathway was evaluated in infected bone marrow-derived macrophages (BMDMs) by measuring apoptotic cell death, loss of mitochondrial membrane potential and translocation of pore-forming proteins. Immunocytochemistry, western blotting and real-time PCR were also performed to assess the related protein expression levels after infection. Furthermore, these findings were validated by complementation of tbcm in BCG. RESULTS Deletion of the tbcm gene in BCG leads to reduced pathogenesis in a mouse model, compared to wild type BCG, by promoting apoptotic cell death and bacterial clearance. Based on these findings, we found that intrinsic apoptosis and mitochondrial impairment were promoted in B∆tbcm-infected BMDMs. B∆tbcm down-regulates the expression of Bcl-2, which leads to mitochondrial outer membrane permeabilization (MOMP), culminating in cytochrome c release from mitochondria. Consistent with this, transcriptome profiling also indicated that B∆tbcm infection is more closely related to altered mitochondrial-related gene expression than wild-type BCG infection, suggesting an inhibitory role of TBCM in mitochondrial dysfunction. Moreover, genetic complementation of B∆tbcm (C∆tbcm) restored its capacity to inhibit mitochondria-mediated apoptotic cell death. CONCLUSIONS Our findings demonstrate the contribution of TBCM to bacterial survival, inhibiting intrinsic apoptotic cell death of macrophages as a virulence factor of M. tuberculosis complex (MTBC) strains, which could be a potential target for the development of TB therapy.
Collapse
Affiliation(s)
- Mi-Hyun Lee
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hye Lin Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Hyejun Seo
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Seoul National University Medical Research Center (SNUMRC), Seoul, 03080, Republic of Korea
| | - Sangkwon Jung
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Liver Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- Seoul National University Medical Research Center (SNUMRC), Seoul, 03080, Republic of Korea.
| |
Collapse
|
39
|
Wu F, Yang X, Wang F, Liu Y, Han S, Liu S, Zhang Z, Chen B. Dietary curcumin supplementation alleviates diquat-induced oxidative stress in the liver of broilers. Poult Sci 2023; 102:103132. [PMID: 37826902 PMCID: PMC10571021 DOI: 10.1016/j.psj.2023.103132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 10/14/2023] Open
Abstract
This study purposed to investigate the alleviating effect of dietary curcumin supplementation on oxidative stress in the liver of broilers induced by diquat. One-day-old Cobb broilers (400) were selected and randomly divided into 5 groups, with 8 replicates and 10 broilers per replicate. The control group and the diquat group were fed the basal diet, while the curcumin supplementation groups were fed the basal diet supplemented with different amounts of curcumin (50, 100, and 150 mg/kg). On d 21 of the test, 1 broiler was randomly selected from each replicate and intraperitoneally injected with 20 mg/mL of diquat solution at a dose of 1 mL/kg BW or equivalent physiological saline (for the control group). After 48 h of feeding, the selected broilers were slaughtered for analysis. The results show that diquat treatment reduced the antioxidant capacity of the liver, caused oxidative stress, and affected its lipid metabolism. However, diet supplementation using curcumin completely or partially reversed the effect of diquat on the liver of broilers. The blood alanine aminotransferase activity, total bilirubin and total protein levels, and liver Caspase-3 mRNA abundance in broilers were lower or significantly lower in the curcumin supplementation group than in the diquat group (P < 0.05). The curcumin supplementation groups had significantly higher total antioxidant capacity activity but significantly lower malondialdehyde in the liver of broilers than the diquat group (P < 0.05). The blood triglyceride level of broilers was lower or significantly lower in the curcumin supplementation groups than in the diquat group (P < 0.05). The activities of cetyl coenzyme A carboxylase in the liver were significantly lower in the 150 mg/kg curcumin supplementation groups than in the DQ group (P < 0.05). In conclusion, dietary curcumin supplementation could ameliorate the effects of diquat-induced oxidative stress on the antioxidant capacity, tissue morphology, and lipid metabolism of the liver of broilers, thus protecting the liver. The recommended dosage for broiler diets is 100 to 150 mg/kg curcumin.
Collapse
Affiliation(s)
- Fengyang Wu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Xinyu Yang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Fengxia Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Yanhua Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Shuaijuan Han
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Shudong Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Zhisheng Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Baojiang Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
40
|
Rajabathar JR, Al-Lohedan H, Arokiyaraj S, Mohammed F, Al-Dhayan DM, Faqihi NA, Al-Saigh H. Herbal Melanin Inhibits Real-Time Cell Proliferation, Downregulates Anti-Apoptotic Proteins and Upregulates Pro-Apoptotic p53 Expression in MDA-MB-231 and HCT-116 Cancer Cell Lines. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2061. [PMID: 38138165 PMCID: PMC10744400 DOI: 10.3390/medicina59122061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023]
Abstract
Background and Objectives: Cancer is the second-most-important deadly disease in the world, leading to severe socioeconomic consequences and posing a public threat. Consequently, breast and colorectal cancers are significant cancer types that affect women and men more commonly, respectively. Treatment failure or recurrent diseases frequently occur due to resistance, in addition to the side effects of the currently available anticancer agents. Therefore, in this study, herbal melanin anticancer activity was investigated against human breast adenocarcinoma (MDA-MB-231) and human colorectal (HCT 116) cell proliferation and the expression of downregulated anti-apoptotic proteins and upregulated pro-apoptotic p53. Materials and Methods: MDA-MB-231 and HCT 116 cells were monitored for their real-time proliferation properties using Xcelligence. Herbal melanin of various concentrations significantly inhibited MDA-MB-231 and HCT 116 cell proliferation. Then, the expression of proapoptotic and anti-apoptotic proteins such as p53, Bcl-2 and Bcl-xl was studied using Western blotting. Results: The Bcl-2 and Bcl-xl expressions were downregulated, while the p53 expression was upregulated after treatment with herbal melanin. Similarly, the expression of apoptotic proteins such as Bcl-2, Bcl-xl, XIAP, Survivin, Bid, Bax, p53, Cytochrome C, PARP genes and mRNA was studied after herbal melanin treatment using real-time PCR, which revealed the downregulation of Bcl-2, Bcl-xl, XIAP and Survivin and the upregulation of Bid, Bax, p53, Cytochrome C and PARP apoptotic protein expression. Also, caspase 3 and 9 expressions were monitored after the treatment with herbal melanin, which revealed the upregulation of both the MDA-MB-231 and HCT 116 cell types. Conclusions: Overall, herbal melanin can be used as an alternative anticancer agent against the MDA-MB-231 and HCT 116 cell types.
Collapse
Affiliation(s)
- Jothi Ramalingam Rajabathar
- Surfactants Research Chair, Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Hamad Al-Lohedan
- Surfactants Research Chair, Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Fathima Mohammed
- College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Dhaifallah M. Al-Dhayan
- Surfactants Research Chair, Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Norah A. Faqihi
- Surfactants Research Chair, Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Hassan Al-Saigh
- Surfactants Research Chair, Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
41
|
Wang Z, Li L, Yan H, Li W, Pang Y, Yuan Y. Salidroside Ameliorates Furan-Induced Testicular Inflammation in Relation to the Gut-Testis Axis and Intestinal Apoptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17968-17987. [PMID: 37943949 DOI: 10.1021/acs.jafc.3c06587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Furan is a heat-induced food contaminant, and it causes damage to visceral organs, including the testis. To determine the mechanism of the damage to the testis, a mouse model treated with furan (8 mg/kg bw/day) and salidroside (SAL, 10/20/40 mg/kg bw/day) was established, and levels of testicular functional markers and changes of morphology were investigated in furan-induced mice treated with SAL. The change in related proteins and genes suggested that SAL restored the furan-mediated leaky tight junction and triggered the TLR4/MyD88/NF-κB pathway and NLRP3 inflammasome together with inflammation. To find out the gut-testis axis, microbiota PICRUSt analysis and correlation analysis were conducted to investigate the core microbiota and metabolites. The endoplasmic reticulum stress (ERS)-related key protein levels and the result of transmission electron microscopy suggested that SAL inhibited the furan-induced intestinal ERS. The result of TUNEL and levels of apoptosis-related proteins suggested that furan-induced intestinal apoptosis was alleviated by SAL. Collectively, SAL inhibited furan-induced ERS-mediated intestinal apoptosis through modulation of intestinal flora and metabolites, thus strengthening the gut barrier. It inhibited LPS from entering the circulatory system and suppressed the testicular TLR4/MyD88/NF-κB pathway and NLRP3 inflammasome, which alleviated testicular inflammation.
Collapse
Affiliation(s)
- Ziyue Wang
- College of Food Science and Engineering, Jilin University, Changchun, China 130062
| | - Lu Li
- College of Food Science and Engineering, Jilin University, Changchun, China 130062
| | - Haiyang Yan
- College of Food Science and Engineering, Jilin University, Changchun, China 130062
| | - Wenliang Li
- College of Food Science and Engineering, Jilin University, Changchun, China 130062
| | - Yong Pang
- College of Food Science and Engineering, Jilin University, Changchun, China 130062
| | - Yuan Yuan
- College of Food Science and Engineering, Jilin University, Changchun, China 130062
| |
Collapse
|
42
|
Li Y, Zhong G, He T, Quan J, Liu S, Liu Z, Tang Z, Yu W. Effect of arsenic and copper in kidney of mice: Crosstalk between Nrf2/ Keap1 pathway in apoptosis and pyroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115542. [PMID: 37801897 DOI: 10.1016/j.ecoenv.2023.115542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/08/2023]
Abstract
Arsenic (As) and copper (Cu) are two common contaminants in the environment. When organisms are exposed to As or/ and Cu in large quantities or for sustained periods, oxidative stress is induced, adversely affecting kidney function. However, the molecular mechanisms involved in As or/ and Cu-induced nephrotoxicity remain elusive. In this experiment, wild-type C57BL/6 and Nrf2-knockout mice (n = 24 each) were exposed to arsenic trioxide and copper chloride alone or in combination. Our research findings indicate that exposure to As or/ and Cu can activate the Nrf2 antioxidant pathway by upregulating the levels of Nrf2, HO-1, CAT, and downregulating the level of Keap1, thereby reducing As or/ and Cu-induced oxidative stress. Meanwhile, exposure induced kidney cell pyroptosis and apoptosis by promoting the expression of NLRP3 inflammasomes and Caspase-3, which peaked in mice co-treated with As and Cu. Subsequently, we investigated its role in As or/ and Cu-induced kidney injury by knocking out Nrf2. Our results show that after knocking out Nrf2, the expression of antioxidant factors CAT and HO-1 significantly decreased. Based on the low antioxidant capacity after Nrf2 knockout, the levels of NLRP3 inflammasome, GSDMD, and Caspase1 were significantly upregulated after exposure to As and Cu, indicating more severe cellular pyroptosis. In addition, the level of Caspase3-mediated apoptosis was also more severe. Taken together, there is crosstalk between Nrf2-mediated antioxidant capacity and apoptosis/ pyroptosis induced by exposure to As or/ and Cu. Depletion of Nrf2 alters its antioxidant capacity, ultimately leading to more severe apoptosis, pyroptosis, and nephrotoxicity.
Collapse
Affiliation(s)
- Yuanxu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Ting He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jinwen Quan
- Laboratory Animal Center, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Siying Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Zhonghua Liu
- Laboratory Animal Center, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| | - Wenlan Yu
- Laboratory Animal Center, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| |
Collapse
|
43
|
Huang S, Liu Y, Wang C, Xiang W, Wang N, Peng L, Jiang X, Zhang X, Fu Z. Strategies for Cartilage Repair in Osteoarthritis Based on Diverse Mesenchymal Stem Cells-Derived Extracellular Vesicles. Orthop Surg 2023; 15:2749-2765. [PMID: 37620876 PMCID: PMC10622303 DOI: 10.1111/os.13848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023] Open
Abstract
Osteoarthritis (OA) causes disability and significant economic and social burden. Cartilage injury is one of the main pathological features of OA, and is often manifested by excessive chondrocyte death, inflammatory response, abnormal bone metabolism, imbalance of extracellular matrix (ECM) metabolism, and abnormal vascular or nerve growth. Regrettably, due to the avascular nature of cartilage, its capacity to repair is notably limited. Mesenchymal stem cells-derived extracellular vesicles (MSCs-EVs) play a pivotal role in intercellular communication, presenting promising potential not only as early diagnostic biomarkers in OA but also as efficacious therapeutic strategy. MSCs-EVs were confirmed to play a therapeutic role in the pathological process of cartilage injury mentioned above. This paper comprehensively provides the functions and mechanisms of MSCs-EVs in cartilage repair.
Collapse
Affiliation(s)
- Shanjun Huang
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Yujiao Liu
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Chenglong Wang
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Wei Xiang
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Nianwu Wang
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Li Peng
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Xuanang Jiang
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Xiaomin Zhang
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Zhijiang Fu
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| |
Collapse
|
44
|
Dey Bhowmik A, Das T, Chattopadhyay A. Chronic exposure to environmentally relevant concentration of fluoride impairs osteoblast's collagen synthesis and matrix mineralization: Involvement of epigenetic regulation in skeletal fluorosis. ENVIRONMENTAL RESEARCH 2023; 236:116845. [PMID: 37558119 DOI: 10.1016/j.envres.2023.116845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/30/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Globally, 200 million people are suffering from toxic manifestations of Fluoride(F), dental and skeletal fluorosis; unfortunately, there is no treatment. To unravel the pathogenesis of skeletal fluorosis, we established fluorosis mice by treating environmentally relevant concentration of F (15 ppm NaF) through drinking water for 4 months. As in skeletal fluorosis, locomotor disability, crippling deformities occur and thus, our hypothesis was F might adversely affects collagen which gives the bone tensile strength. This work inevitably had to be carried out on osteoblast cells, responsible for synthesis, deposition, and mineralization of bone matrix. Isolated osteoblast cells were confirmed by ALP activity and mineralized nodules formation. Expression of collagen Col1a1, Col1a2, COL1A1 was significantly reduced in treated mice. Further, a study revealed the involvement of epigenetic regulation by promoter hypermethylation of Col1a1; expressional alterations of transcription factors, calcium channels and other genes e.g., Cbfa-1, Tgf-β1, Bmp1, Sp1, Sp7, Nf-Kb p65, Bmp-2, Bglap, Gprc6a and Cav1.2 are associated with impairment of collagen synthesis, deposition and decreased mineralization thus, enfeebling bone health. This study indicates the possible association of epigenetic regulation in skeletal fluorosis. However, no association was found between polymorphisms in the Col1a1 (RsaI, HindIII) and Col1a2 (RsaI, HindIII) genes with fluorosis in mice.
Collapse
Affiliation(s)
- Arpan Dey Bhowmik
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Tanmoy Das
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | | |
Collapse
|
45
|
Zhou X, Zhou A, Tian Z, Chen W, Xu Y, Ning X, Chen K. A Responsive Nanorobot Modulates Intracellular Zinc Homeostasis to Amplify Mitochondria-Targeted Phototherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302952. [PMID: 37434337 DOI: 10.1002/smll.202302952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/26/2023] [Indexed: 07/13/2023]
Abstract
Zinc has been proven to interweave with many critical cell death pathways, and not only exhibits potent anticancer activity solely, but sensitizes cancer cells to anticancer treatment, making zinc supplementation ideal for boosting odds against malignancy. Herein, a smart nanorobot (termed as Zinger) is developed, composed of iRGD-functionalized liposome encapsulating black phosphorus nanosheet (BPNs) doped zeolite imidazole framework-8 (BPN@ZIF-8), for advancing zinc-promoted photodynamic therapy (PDT). Zinger exhibits photo-triggered sequential mitochondria-targeting ability, and can induce zinc overload-mediated mitochondrial stress, which consequently sensitized tumor to PDT through synergistically modulating reactive oxygen species (ROS) production and p53 pathway. It is identified that Zinger selectively triggered intracellular zinc overload and photodynamic effect in cancer cells, which together enhanced PDT treatment outcomes. Importantly, Zinger shows high efficacy in overcoming various treatment barriers, allowing for effectively killing cancer cells in the complex circumstances. Particularly, Zinger exhibits good tumor accumulation, penetration, and even cell uptake, and can respond to light stimulation to eliminate tumors while avoiding normal tissues, thereby prolonging survival of tumor-bearing mice. Therefore, the study provides a novel insight in the development of novel zinc-associated therapy for advancing cancer treatment approaches.
Collapse
Affiliation(s)
- Xinyuan Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, P. R. China
| | - Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, School of Physics, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, P. R. China
| | - Zihan Tian
- School of Information Science and Engineering (School of Cyber Science and Engineering), Xinjiang University, Urumqi, 830046, P. R. China
| | - Weiwei Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, P. R. China
| | - Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, P. R. China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, P. R. China
| | - Kerong Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
46
|
Mao J, Tang L, Fang L, Tian C, Zhu Z, Li Y. Systematic pharmacology-based strategy to explore the mechanism of Semen Strychni for treatment of papillary thyroid carcinoma. Sci Rep 2023; 13:18492. [PMID: 37898675 PMCID: PMC10613225 DOI: 10.1038/s41598-023-45741-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023] Open
Abstract
The aim of the study was to investigated the mechanism of Strychnos nux-vomica L. (Semen Strychni, SS) against papillary carcinoma thyroid (PTC) by combined of network pharmacology and experimental verification. By searching the TCMSP, SEA and SwissTarget Prediction database, the main active ingredients and related targets were obtained. Utilizing Venny 2.1.0 String database and Cytoscape 3.7.2 to screened the intersection target and constructed protein-protein interaction (PPI) network diagram. Using R 4.0.4 software carried out the enrichment analysis of GO and KEGG. HPLC was carried out using LC-20A modular HPLC system to identify the bioactive compound brucine present in SS. Molecular docking was performed using Discovery 2019 software. The inhibition rate was detected by CCK8 method. Western blot was used to detect the expression levels of brucine anti-PTC related pathway proteins. 14 active components were screened out, of which 4 main components showed tight relationship with PTC. SS may play the anti-PTC role by acting on two main pathways (TNF signaling pathway and MAPK signaling pathway) and mediating various biological functions. HPLC analysis revealed that brucine was a suitable marker for standardization of the SS. 4 active components exhibit strong binding energy with core protein. Brucine could significantly reduce the activity of BCPAP cells compared with isobrucine, stigmasterol, (+)-catechin. Brucine may reduce the protein expression levels of IL-6, VEGFA, JUN, TP53, 1L1B, PTGS2, BCL2, CASP3, CASP8, and CASP9 while increase the protein expression levels of BAD, cleaved-CASP3, cleaved-CASP8, and cleaved-CASP9 in BCPAP cells, respectively. The active components of SS against PTC mainly include isobrucine, stigmasterol, (+)-catechin, brucine. Among them, brucine exhibits the strongest anti-PTC activity in BCPAP cells, which may reduce the PTC-related protein expression levels. Therefore, SS may exhibits the anti-PTC activities through multiple targets and pathways.
Collapse
Affiliation(s)
- Jingxin Mao
- Chongqing Medical and Pharmaceutical College, No. 82, Middle University Town Road, Shapingba District, Chongqing, 400030, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Lijing Tang
- Chongqing Medical and Pharmaceutical College, No. 82, Middle University Town Road, Shapingba District, Chongqing, 400030, China
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing, 400030, China
| | - Ling Fang
- Chongqing Medical and Pharmaceutical College, No. 82, Middle University Town Road, Shapingba District, Chongqing, 400030, China
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing, 400030, China
| | - Cheng Tian
- Chongqing Medical and Pharmaceutical College, No. 82, Middle University Town Road, Shapingba District, Chongqing, 400030, China
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing, 400030, China
| | - Zhaojing Zhu
- Chongqing Medical and Pharmaceutical College, No. 82, Middle University Town Road, Shapingba District, Chongqing, 400030, China
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing, 400030, China
| | - Yan Li
- Chongqing Medical and Pharmaceutical College, No. 82, Middle University Town Road, Shapingba District, Chongqing, 400030, China.
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing, 400030, China.
| |
Collapse
|
47
|
Xu K, Huang P, Wu Y, Liu T, Shao N, Zhao L, Hu X, Chang J, Peng Y, Qu S. Engineered Selenium/Human Serum Albumin Nanoparticles for Efficient Targeted Treatment of Parkinson's Disease via Oral Gavage. ACS NANO 2023; 17:19961-19980. [PMID: 37807265 PMCID: PMC10604087 DOI: 10.1021/acsnano.3c05011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the degeneration of dopamine (DA) neurons in the midbrain substantia nigra pars compacta (SNpc). While existing therapeutic strategies can alleviate PD symptoms, they cannot inhibit DA neuron loss. Herein, a tailor-made human serum albumin (HSA)-based selenium nanosystem (HSA/Se nanoparticles, HSA/Se NPs) to treat PD that can overcome the intestinal epithelial barrier (IEB) and blood-brain barrier (BBB) is described. HSA, a transporter for drug delivery, has superior biological characteristics that make it an ideal potential drug delivery substance. Findings reveal that HSA/Se NPs have lower toxicity and higher efficacy than other selenium species and the ability to overcome the IEB and BBB to enrich DA neurons, which then protect MN9D cells from MPP+-induced neurotoxicity and ameliorate both behavioral deficits and DA neuronal death in MPTP-model mice. Thus, a therapeutic drug delivery system composed of orally gavaged HSA/Se NPs for the treatment of PD is described.
Collapse
Affiliation(s)
- Kai Xu
- Department
of Neurology, Nanfang Hospital, Southern
Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong
Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired
Intelligence, Guangzhou, Guangdong 510515, China
- Key
Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Peng Huang
- Department
of Neurology, Nanfang Hospital, Southern
Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong
Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired
Intelligence, Guangzhou, Guangdong 510515, China
- Key
Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yixuan Wu
- Department
of Neurology, Nanfang Hospital, Southern
Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong
Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired
Intelligence, Guangzhou, Guangdong 510515, China
- Key
Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Teng Liu
- Department
of Neonatology and Pediatrics, Xiangya Hospital
of Central South University, Changsha, Hunan 410008, China
| | - Ningyi Shao
- Cancer
Centre, Faculty of Health Sciences, University
of Macau, Taipa, Macau Special Administrative Region 999078, China
| | - Lulu Zhao
- Chongqing
Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory
of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoyan Hu
- Shenzhen
Key Laboratory of Biomimetic Materials and Cellular Immunomodulation,
Institute of Biomedicine and Biotechnology, Shenzhen Institute of
Advanced Technology, Chinese Academy of
Sciences, Shenzhen, Guangdong 518055, China
- University
of Chinese Academy of Sciences, Beijing 100864, China
| | - Junlei Chang
- Shenzhen
Key Laboratory of Biomimetic Materials and Cellular Immunomodulation,
Institute of Biomedicine and Biotechnology, Shenzhen Institute of
Advanced Technology, Chinese Academy of
Sciences, Shenzhen, Guangdong 518055, China
| | - Yongbo Peng
- Chongqing
Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory
of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Shaogang Qu
- Department
of Neurology, Nanfang Hospital, Southern
Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong
Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired
Intelligence, Guangzhou, Guangdong 510515, China
- Key
Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department
of Neurology, Ganzhou People’s Hospital, Ganzhou, Jiangxi 341000, China
| |
Collapse
|
48
|
Huang N, Peng L, Yang J, Li J, Zhang S, Sun M. FAM111B Acts as an Oncogene in Bladder Cancer. Cancers (Basel) 2023; 15:5122. [PMID: 37958297 PMCID: PMC10648174 DOI: 10.3390/cancers15215122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Bladder cancer (BLCA) is a prevalent malignancy of the urinary system, associated with a high recurrence rate and poor prognosis. FAM111B, which encodes a protein containing a trypsin-like cysteine/serine peptidase domain, has been implicated in the progression of various human cancers; however, its involvement in BLCA remains unclear. In this study, we investigated the expression of FAM111B gene in tumor tissues compared to para-tumor tissues using immunohistochemistry and observed a significantly higher FAM111B gene expression in tumor tissues. Furthermore, analysis of clinical characteristics indicated that the increased FAM111B gene expression correlated with lymphatic metastasis and reduced overall survival. To investigate its functional role, we employed FAM111B-knockdown BLCA cell models and performed cell proliferation, wound-healing, transwell, and flow cytometry assays. The results showed that decreased FAM111B gene expression inhibited proliferation and migration but induced apoptosis in BLCA cells. In vivo experiments further validated that FAM111B knockdown suppressed tumor growth. Overall, our findings suggest that FAM111B acts as an oncogene in BLCA, playing a critical role in tumorigenesis, progression, and metastasis of BLCA. In conclusion, we have demonstrated a strong correlation between the expression of FAM111B gene and the development, progression, and metastasis of bladder cancer (BLCA). Thus, FAM111B is an oncogene associated with BLCA and holds promise as a molecular target for future treatment of this cancer.
Collapse
Affiliation(s)
- Ning Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China; (N.H.); (L.P.); (J.Y.); (J.L.)
| | - Lei Peng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China; (N.H.); (L.P.); (J.Y.); (J.L.)
| | - Jiaping Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China; (N.H.); (L.P.); (J.Y.); (J.L.)
| | - Jinqian Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China; (N.H.); (L.P.); (J.Y.); (J.L.)
| | - Sheng Zhang
- Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Mingjuan Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China; (N.H.); (L.P.); (J.Y.); (J.L.)
| |
Collapse
|
49
|
Muro I, Qualman AC, Kovacs EJ, Idrovo JP. Burn-Induced Apoptosis in the Livers of Aged Mice Is Associated With Caspase Cleavage of Bcl-xL. J Surg Res 2023; 290:147-155. [PMID: 37267704 PMCID: PMC10330893 DOI: 10.1016/j.jss.2023.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 04/05/2023] [Accepted: 04/29/2023] [Indexed: 06/04/2023]
Abstract
INTRODUCTION Older adult burn victims have poorer outcomes than younger burn victims. The liver is critical for the recovery of patients with burns. Postburn hepatic apoptosis in young individuals compromises liver integrity; however, this pathway has not yet been studied in older individuals. Because aged animals with burns suffer significant liver damage, we hypothesized that apoptosis is altered in these animals and may affect liver function. Understanding postburn hepatic apoptosis and its effects on liver function in aged animals may help improve outcomes in older patients. METHODS We compared the protein and gene expression levels in young and aged mice after a 15% total-body-surface-area burn. Liver and serum samples were collected at different time points after injury. RESULTS Caspase-9 expression in liver tissue was downregulated by 47% in young animals and upregulated by 62% in aged animals 9 h postburn (P < 0.05). The livers of aged mice showed a Bcl-extra-large (Bcl-xL) transcription increase only after 6 h; however, the livers of young mice exhibited 4.3-fold, 14.4-fold, and 7.8-fold Bcl-xL transcription increases at 3, 6, and 9 h postburn, respectively (P < 0.05). The livers of young mice showed no changes in Caspase-9, Caspase-3, or Bcl-xL protein levels during the early postburn period. In contrast, the livers of aged mice contained cleaved caspase-9, reduced full-length caspase-3, and an accumulation of ΔN-Bcl-x at 6 and 9 h postburn (P < 0.05). p21 expression decreased in aged mice; however, it was significantly increased in the liver tissue of young mice postburn (P < 0.05). Serum amyloid A1 and serum amyloid A2 serum protein levels were 5.2- and 3.1-fold higher in young mice than in aged mice, respectively, at 6 and 9 h postburn (P < 0.05). CONCLUSIONS Livers of aged mice exhibited different apoptotic processes compared to those of young mice early after burn injury. Collectively, burn-induced liver apoptosis in aged mice compromises hepatic serum protein production.
Collapse
Affiliation(s)
- Israel Muro
- Division of G.I., Trauma, and Endocrine Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Andrea C Qualman
- Division of G.I., Trauma, and Endocrine Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Elizabeth J Kovacs
- Division of G.I., Trauma, and Endocrine Surgery, Department of Surgery, University of Colorado, Aurora, Colorado; Division of Burn Research, Division of Alcohol Research, Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado
| | - Juan-Pablo Idrovo
- Division of G.I., Trauma, and Endocrine Surgery, Department of Surgery, University of Colorado, Aurora, Colorado.
| |
Collapse
|
50
|
Guanghui H, Zhimeng L, Yina S, Chenghua L. Nitric oxide synthase regulates coelomocytes apoptosis through the NF-κB signaling pathway in the sea cucumber Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109027. [PMID: 37633344 DOI: 10.1016/j.fsi.2023.109027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/28/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Nitric oxide synthase (NOS) was initially discovered to participate in the generation of nitric oxide as a defense mechanism against pathogenic infections. In recent years, it has been found that NOS plays a pivotal role in regulating apoptosis and inflammation in mammals. However, the mechanisms underlying NOS-mediated apoptosis in invertebrates remain largely unclear. In this study, we found that the Apostichopus japonicus NOS (AjNOS) expression levels were upregulated by 2.20-fold and 3.46-fold after being challenged with Vibrio splendidus at concentrations of 107 CFU mL-1 and 108 CFU mL-1 for 12 h compared to the control group, respectively. Under these conditions, the rates of coelomocytes apoptosis were increased from 14.7% to 32.7% and 45.4%, respectively. Treatment with NOS inhibitor (l-NAME) resulted in a reduction of coelomocytes apoptosis rates from 32.6% to 26.5% in V. splendidus (107 CFU mL-1) groups and from 42.3% to 33.3% in V. splendidus (108 CFU mL-1) groups, respectively. NOS has been reported to regulate apoptosis through IκBα phosphorylation. Simultaneously, exposure to V. splendidus in conjunction with l-NAME resulted in down-regulation of AjIκBα phosphorylation levels compared to the group infected solely with V. splendidus. Furthermore, immunofluorescence analysis revealed that treatment with l-NAME or interference of AjNOS using siRNA inhibited translocation of AjNF-κB/p65 (RelA) into the nucleus. Previous studies have shown that NF-κB can down-regulate expression levels of Bcl-2 family members, which is an important pathway for regulating apoptosis. In the present study, treatment with l-NAME was found to promote anti-apoptotic AjBcl-2 mRNA increase to 1.41-fold and protein expression increase to 1.86-fold at 12 h post V. splendidus challenge. However, these effects were suppressed by PMA (an NF-κB activator). Overall, our findings demonstrate that AjNOS regulates coelomocytes apoptosis induced by V. splendidus through activation of the AjNF-κB signaling pathway and down-regulation of AjBcl-2 in A. japonicus.
Collapse
Affiliation(s)
- Han Guanghui
- State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Lv Zhimeng
- State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Shao Yina
- State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Li Chenghua
- State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|