1
|
Ashok A, Andrabi SS, Mansoor S, Kuang Y, Kwon BK, Labhasetwar V. Antioxidant Therapy in Oxidative Stress-Induced Neurodegenerative Diseases: Role of Nanoparticle-Based Drug Delivery Systems in Clinical Translation. Antioxidants (Basel) 2022; 11:antiox11020408. [PMID: 35204290 PMCID: PMC8869281 DOI: 10.3390/antiox11020408] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
Free radicals are formed as a part of normal metabolic activities but are neutralized by the endogenous antioxidants present in cells/tissue, thus maintaining the redox balance. This redox balance is disrupted in certain neuropathophysiological conditions, causing oxidative stress, which is implicated in several progressive neurodegenerative diseases. Following neuronal injury, secondary injury progression is also caused by excessive production of free radicals. Highly reactive free radicals, mainly the reactive oxygen species (ROS) and reactive nitrogen species (RNS), damage the cell membrane, proteins, and DNA, which triggers a self-propagating inflammatory cascade of degenerative events. Dysfunctional mitochondria under oxidative stress conditions are considered a key mediator in progressive neurodegeneration. Exogenous delivery of antioxidants holds promise to alleviate oxidative stress to regain the redox balance. In this regard, natural and synthetic antioxidants have been evaluated. Despite promising results in preclinical studies, clinical translation of antioxidants as a therapy to treat neurodegenerative diseases remains elusive. The issues could be their low bioavailability, instability, limited transport to the target tissue, and/or poor antioxidant capacity, requiring repeated and high dosing, which cannot be administered to humans because of dose-limiting toxicity. Our laboratory is investigating nanoparticle-mediated delivery of antioxidant enzymes to address some of the above issues. Apart from being endogenous, the main advantage of antioxidant enzymes is their catalytic mechanism of action; hence, they are significantly more effective at lower doses in detoxifying the deleterious effects of free radicals than nonenzymatic antioxidants. This review provides a comprehensive analysis of the potential of antioxidant therapy, challenges in their clinical translation, and the role nanoparticles/drug delivery systems could play in addressing these challenges.
Collapse
Affiliation(s)
- Anushruti Ashok
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
| | - Syed Suhail Andrabi
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
| | - Saffar Mansoor
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
| | - Youzhi Kuang
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
| | - Brian K. Kwon
- Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada;
| | - Vinod Labhasetwar
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
- Correspondence:
| |
Collapse
|
2
|
Korotkov SM. Effects of Tl + on the inner membrane thiol groups, respiration, and swelling in succinate-energized rat liver mitochondria were modified by thiol reagents. Biometals 2021; 34:987-1006. [PMID: 34236558 DOI: 10.1007/s10534-021-00329-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022]
Abstract
The effects of both Tl+ and thiol reagents were studied on the content of the inner membrane free SH-groups, detected with Ellman reagent, and the inner membrane potential as well as swelling and respiration of succinate-energized rat liver mitochondria in medium containing TlNO3 and KNO3. These effects resulted in a rise in swelling and a decrease in the content, the potential, and mitochondrial respiration in 3 and 2,4-dinitrophenol-uncoupled states. A maximal effect was seen when phenylarsine oxide reacting with thiol groups recessed into the hydrophobic regions of the membrane. Compared with phenylarsine oxide, the effective concentrations of other reagents were approximately one order of magnitude higher in experiments with mersalyl and 4,4'-diisothiocyanostilbene-2,2'-disulfonate, and two orders of magnitude higher in experiments with tert-butyl hydroperoxide and diamide. The above effects of Tl+ and the thiol reagents became even more pronounced with calcium overload of mitochondria. However, the effects were suppressed by inhibitors of the mitochondrial permeability transition pore (cyclosporine A, ADP, and n-ethylmaleimide). These findings suggest that opening of the pore induced by Tl+ in the inner membrane can be dependent on the conformation state of the adenine nucleotide translocase, which depends on the activity of its thiol groups.
Collapse
Affiliation(s)
- Sergey M Korotkov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez pr. 44, St. Petersburg, Russian Federation, 194223.
| |
Collapse
|
3
|
Mitochondrial K + Transport: Modulation and Functional Consequences. Molecules 2021; 26:molecules26102935. [PMID: 34069217 PMCID: PMC8156104 DOI: 10.3390/molecules26102935] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 01/28/2023] Open
Abstract
The existence of a K+ cycle in mitochondria has been predicted since the development of the chemiosmotic theory and has been shown to be crucial for several cellular phenomena, including regulation of mitochondrial volume and redox state. One of the pathways known to participate in K+ cycling is the ATP-sensitive K+ channel, MitoKATP. This channel was vastly studied for promoting protection against ischemia reperfusion when pharmacologically activated, although its molecular identity remained unknown for decades. The recent molecular characterization of MitoKATP has opened new possibilities for modulation of this channel as a mechanism to control cellular processes. Here, we discuss different strategies to control MitoKATP activity and consider how these could be used as tools to regulate metabolism and cellular events.
Collapse
|
4
|
Anamika, Trigun SK. Sirtuin-3 activation by honokiol restores mitochondrial dysfunction in the hippocampus of the hepatic encephalopathy rat model of ammonia neurotoxicity. J Biochem Mol Toxicol 2021; 35:e22735. [PMID: 33522075 DOI: 10.1002/jbt.22735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/06/2020] [Accepted: 01/20/2021] [Indexed: 11/11/2022]
Abstract
The neurotoxic level of ammonia in the brain during liver cirrhosis causes a nervous system disorder, hepatic encephalopathy (HE), by affecting mitochondrial functions. Sirtuin-3 (SIRT3) is emerging as a master regulator of mitochondrial integrity, which is currently being focused as a pathogenic hotspot for HE. This article describes SIRT3 level versus mitochondrial dysfunction markers in the hippocampus of the control, the moderate-grade hepatic encephalopathy (MoHE), developed in thioacetamide-induced (100 mg/kg bw ip for 10 days) liver cirrhotic rats, and the MoHE rats treated with an SIRT3 activator, honokiol (HKL; 10 mg/kg bw ip), for 7 days from 8th day of the thioacetamide schedule. As compared with the control group rats, hippocampus mitochondria of MoHE rats showed a significant decline in SIRT3 expression and its activity with concordant enhancement of ROS and declined membrane permeability transition and organelle viability scores. This was consistent with the declined mitochondrial thiol level and thiol-regenerating enzyme, isocitrate dehydrogenase 2. Also, significantly declined activities of electron transport chain complexes I, III, IV, and Q10 , decreased NAD+ /NADH and ATP/AMP ratios, and enhanced number of the shrunken mitochondria were recorded in the hippocampus of those MoHE rats. However, all these mitochondrial aberrations were observed to regain their normal profiles/levels, concordant to the enhanced SIRT3 expression and its activity due to treatment with HKL. The findings suggest a role of SIRT3 in mitochondrial structure-function derangements associated with MoHE pathogenesis and SIRT3 activation by HKL as a relevant strategy to protect mitochondrial integrity during ammonia neurotoxicity.
Collapse
Affiliation(s)
- Anamika
- Biochemistry Section, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Surendra K Trigun
- Biochemistry Section, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
5
|
Mao X, Fu P, Wang L, Xiang C. Mitochondria: Potential Targets for Osteoarthritis. Front Med (Lausanne) 2020; 7:581402. [PMID: 33324661 PMCID: PMC7726420 DOI: 10.3389/fmed.2020.581402] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a common and disabling joint disorder that is mainly characterized by cartilage degeneration and narrow joint spaces. The role of mitochondrial dysfunction in promoting the development of OA has gained much attention. Targeting endogenous molecules to improve mitochondrial function is a potential treatment for OA. Moreover, research on exogenous drugs to improve mitochondrial function in OA based on endogenous molecular targets has been accomplished. In addition, stem cells and exosomes have been deeply researched in the context of cartilage regeneration, and these factors both reverse mitochondrial dysfunctions. Thus, we hypothesize that biomedical approaches will be applied to the treatment of OA. Furthermore, we have summarized the global status of mitochondria and osteoarthritis research in the past two decades, which will contribute to the research field and the development of novel treatment strategies for OA.
Collapse
Affiliation(s)
- Xingjia Mao
- Department of Orthopedic, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Panfeng Fu
- Department of Respiratory and Critical Care, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Linlin Wang
- Department of Basic Medicine Sciences, The School of Medicine of Zhejiang University, Hangzhou, China
| | - Chuan Xiang
- Department of Orthopedic, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
6
|
Xue X, Quan Y, Gong L, Gong X, Li Y. A review of the processed Polygonum multiflorum (Thunb.) for hepatoprotection: Clinical use, pharmacology and toxicology. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113121. [PMID: 32693115 DOI: 10.1016/j.jep.2020.113121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonum multiflorum (Thunb.) (PMT) is a member of Polygonaceae. Traditional Chinese medicine considers that the processed PMT can tonify liver, nourish blood and blacken hair. In recent years, the processed PMT and its active ingredients have significant therapeutic effects on nonalcoholic fatty liver disease, alcoholic fatty liver disease, viral hepatitis, liver fibrosis and liver cancer. AIM OF THE STUDY The main purpose of this review is to provide a critical appraisal of the existing knowledge on the clinical application, hepatoprotective pharmacology and hepatotoxicity, it provides a comprehensive evaluation of the liver function of the processed PMT. MATERIALS AND METHODS A detailed literature search was conducted using various online search engines, such as Pubmed, Google Scholar, Mendeley, Web of Science and China National Knowledge Infrastructure (CNKI) database. The main active components of the processed PMT and the important factors in the occurrence and development of liver diseases are used as key words to carry out detailed literature retrieval. RESULTS In animal and cell models, the processed PMT and active components can treat various liver diseases, such as fatty liver induced by high-fat diet, liver injury and fibrosis induced by drugs, viral transfected hepatitis, hepatocellular carcinoma, etc. They can protect liver by regulating lipid metabolism related enzymes, resisting insulin resistance, decreasing the expression of inflammatory cytokines, inhibiting the activation of hepatic stellate cells, reducing generation of extracellular matrix, promoting cancer cell apoptosis and controlling the growth of tumor cells, etc. However, improperly using of the processed PMT can cause liver injury, which is associated with the standardization of processing, the constitution of the patients, the characteristics of the disease, and the administration of dosage and time. CONCLUSION The processed PMT can treat various liver diseases via reasonably using, and the active compounds (2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside, emodin, physcion, etc.) are promising candidate drugs for developing new liver protective agents. However, some components have a "toxic-effective" bidirectional effect, which should be used cautiously.
Collapse
Affiliation(s)
- Xinyan Xue
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Yunyun Quan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Lihong Gong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Xiaohong Gong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Yunxia Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| |
Collapse
|
7
|
Övey İS, Nazıroğlu M. Effects of homocysteine and memantine on oxidative stress related TRP cation channels in in-vitro model of Alzheimer’s disease. J Recept Signal Transduct Res 2020; 41:273-283. [DOI: 10.1080/10799893.2020.1806321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- İshak Suat Övey
- Department of Physiology, School of Medicine, Alanya Alaaddin Keykubat University, Alanya, Turkey
- Department of Neuroscience, Institute of Health Sciences, Suleyman Demirel University, Isparta, Turkey
| | - Mustafa Nazıroğlu
- Department of Neuroscience, Institute of Health Sciences, Suleyman Demirel University, Isparta, Turkey
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
8
|
Buelna-Chontal M, Hernández-Esquivel L, Correa F, Díaz-Ruiz JL, Chávez E. Tamoxifen inhibits mitochondrial oxidative stress damage induced by copper orthophenanthroline. Cell Biol Int 2016; 40:1349-1356. [PMID: 27730705 DOI: 10.1002/cbin.10690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 10/05/2016] [Indexed: 11/11/2022]
Abstract
In this work, we studied the effect of tamoxifen and cyclosporin A on mitochondrial permeability transition caused by addition of the thiol-oxidizing pair Cu2+ -orthophenanthroline. The findings indicate that tamoxifen and cyclosporin A circumvent the oxidative membrane damage manifested by matrix Ca2+ release, mitochondrial swelling, and transmembrane electrical gradient collapse. Furthermore, it was found that tamoxifen and cyclosporin A prevent the generation of TBARs promoted by Cu2+ -orthophenanthroline, as well as the inactivation of the mitochondrial enzyme aconitase and disruption of mDNA. Electrophoretic analysis was unable to demonstrate a cross-linking reaction between membrane proteins. Yet, it was found that Cu2+ -orthophenanthroline induced the generation of reactive oxygen species. It is thus plausible that membrane leakiness is due to an oxidative stress injury.
Collapse
Affiliation(s)
- Mabel Buelna-Chontal
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, D.F. México, México
| | - Luz Hernández-Esquivel
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, D.F. México, 14080, México
| | - Francisco Correa
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, D.F. México, México
| | - Jorge Luis Díaz-Ruiz
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, D.F. México, México
| | - Edmundo Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, D.F. México, 14080, México
| |
Collapse
|
9
|
To involvement the conformation of the adenine nucleotide translocase in opening the Tl(+)-induced permeability transition pore in Ca(2+)-loaded rat liver mitochondria. Toxicol In Vitro 2016; 32:320-32. [PMID: 26835787 DOI: 10.1016/j.tiv.2016.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 01/05/2016] [Accepted: 01/29/2016] [Indexed: 12/30/2022]
Abstract
The conformation of adenine nucleotide translocase (ANT) has a profound impact in opening the mitochondrial permeability transition pore (MPTP) in the inner membrane. Fixing the ANT in 'c' conformation by phenylarsine oxide (PAO), tert-butylhydroperoxide (tBHP), and carboxyatractyloside as well as the interaction of 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) with mitochondrial thiols markedly attenuated the ability of ADP to inhibit the MPTP opening. We earlier found (Korotkov and Saris, 2011) that calcium load of rat liver mitochondria in medium containing TlNO3 and KNO3 stimulated the Tl(+)-induced MPTP opening in the inner mitochondrial membrane. The MPTP opening as well as followed increase in swelling, a drop in membrane potential (ΔΨmito), and a decrease in state 3, state 4, and 2,4-dinitrophenol-uncoupled respiration were visibly enhanced in the presence of PAO, tBHP, DIDS, and carboxyatractyloside. However, these effects were markedly inhibited by ADP and membrane-penetrant hydrophobic thiol reagent, N-ethylmaleimide (NEM) which fix the ANT in 'm' conformation. Cyclosporine A additionally potentiated these effects of ADP and NEM. Our data suggest that conformational changes of the ANT may be directly involved in the opening of the Tl(+)-induced MPTP in the inner membrane of Ca(2+)-loaded rat liver mitochondria. Using the Tl(+)-induced MPTP model is discussed in terms finding new transition pore inhibitors and inducers among different chemical and natural compounds.
Collapse
|
10
|
Lipina C, Irving AJ, Hundal HS. Mitochondria: a possible nexus for the regulation of energy homeostasis by the endocannabinoid system? Am J Physiol Endocrinol Metab 2014; 307:E1-13. [PMID: 24801388 DOI: 10.1152/ajpendo.00100.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The endocannabinoid system (ECS) regulates numerous cellular and physiological processes through the activation of receptors targeted by endogenously produced ligands called endocannabinoids. Importantly, this signaling system is known to play an important role in modulating energy balance and glucose homeostasis. For example, current evidence indicates that the ECS becomes overactive during obesity whereby its central and peripheral stimulation drives metabolic processes that mimic the metabolic syndrome. Herein, we examine the role of the ECS in modulating the function of mitochondria, which play a pivotal role in maintaining cellular and systemic energy homeostasis, in large part due to their ability to tightly coordinate glucose and lipid utilization. Because of this, mitochondrial dysfunction is often associated with peripheral insulin resistance and glucose intolerance as well as the manifestation of excess lipid accumulation in the obese state. This review aims to highlight the different ways through which the ECS may impact upon mitochondrial abundance and/or oxidative capacity and, where possible, relate these findings to obesity-induced perturbations in metabolic function. Furthermore, we explore the potential implications of these findings in terms of the pathogenesis of metabolic disorders and how these may be used to strategically develop therapies targeting the ECS.
Collapse
Affiliation(s)
- Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Andrew J Irving
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| |
Collapse
|
11
|
Pietraforte D, Vona R, Marchesi A, de Jacobis IT, Villani A, Del Principe D, Straface E. Redox control of platelet functions in physiology and pathophysiology. Antioxid Redox Signal 2014; 21:177-93. [PMID: 24597688 DOI: 10.1089/ars.2013.5532] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE An imbalance between the production and the detoxification of reactive oxygen species and reactive nitrogen species (ROS/RNS) can be implicated in many pathological processes. Platelets are best known as primary mediators of hemostasis and can be either targets of ROS/RNS or generate radicals during cell activation. These conditions can dramatically affect platelet physiology, leading even, as an ultimate event, to the cell number modification. In this case, pathological conditions such as thrombocytosis (promoted by increased cell number) or thrombocytopenia and myelodysplasia (promoted by cell decrease mediated by accelerated apoptosis) can occur. RECENT ADVANCES Usually, in peripheral blood, ROS/RNS production is balanced by the rate of oxidant elimination. Under this condition, platelets are in a nonadherent "resting" state. During endothelial dysfunction or under pathological conditions, ROS/RNS production increases and the platelets respond with specific biochemical and morphologic changes. Mitochondria are at the center of these processes, being able to both generate ROS/RNS, that drive redox-sensitive events, and respond to ROS/RNS-mediated changes of the cellular redox state. Irregular function of platelets and enhanced interaction with leukocytes and endothelial cells can contribute to pathogenesis of atherosclerotic and thrombotic events. CRITICAL ISSUES The relationship between oxidative stress, platelet death, and the activation-dependent pathways that drive platelet pro-coagulant activity is unclear and deserves to be explored. FUTURE DIRECTIONS Expanding knowledge about how platelets can mediate hemostasis and modulate inflammation may lead to novel and effective therapeutic strategies for the long and growing list of pathological conditions that involve both thrombosis and inflammation.
Collapse
Affiliation(s)
- Donatella Pietraforte
- 1 Department of Cell Biology and Neurosciences, Section of Cell Aging and Gender Medicine, Istituto Superiore di Sanità , Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
Dehina L, Descotes J, Chevalier P, Bui-Xuan B, Romestaing C, Dizerens N, Mamou Z, Timour Q. Protective effects of ranolazine and propranolol, alone or combined, on the structural and functional alterations of cardiomyocyte mitochondria in a pig model of ischemia/reperfusion. Fundam Clin Pharmacol 2013; 28:257-67. [DOI: 10.1111/fcp.12033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 03/11/2013] [Accepted: 03/28/2013] [Indexed: 12/23/2022]
Affiliation(s)
- Leila Dehina
- EA 4612; Laboratory of Medical Pharmacology; Claude Bernard University; Lyon France
| | - Jacques Descotes
- EA 4612; Laboratory of Medical Pharmacology; Claude Bernard University; Lyon France
- Poison Center and Pharmacovigilance Department; Lyon University Hospitals; Lyon France
| | - Philippe Chevalier
- EA 4612; Laboratory of Medical Pharmacology; Claude Bernard University; Lyon France
| | - Bernard Bui-Xuan
- EA 4612; Laboratory of Medical Pharmacology; Claude Bernard University; Lyon France
| | - Caroline Romestaing
- Laboratory of Extreme Physiology; Claude Bernard University; Villeurbanne France
| | - Nicole Dizerens
- EA 4612; Laboratory of Medical Pharmacology; Claude Bernard University; Lyon France
| | - Zahida Mamou
- EA 4612; Laboratory of Medical Pharmacology; Claude Bernard University; Lyon France
| | - Quadiri Timour
- EA 4612; Laboratory of Medical Pharmacology; Claude Bernard University; Lyon France
- Poison Center and Pharmacovigilance Department; Lyon University Hospitals; Lyon France
| |
Collapse
|
13
|
Varotto L, Domeneghetti S, Rosani U, Manfrin C, Cajaraville MP, Raccanelli S, Pallavicini A, Venier P. DNA damage and transcriptional changes in the gills of mytilus galloprovincialis exposed to nanomolar doses of combined metal salts (Cd, Cu, Hg). PLoS One 2013; 8:e54602. [PMID: 23355883 PMCID: PMC3552849 DOI: 10.1371/journal.pone.0054602] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/14/2012] [Indexed: 12/19/2022] Open
Abstract
Aiming at an integrated and mechanistic view of the early biological effects of selected metals in the marine sentinel organism Mytilus galloprovincialis, we exposed mussels for 48 hours to 50, 100 and 200 nM solutions of equimolar Cd, Cu and Hg salts and measured cytological and molecular biomarkers in parallel. Focusing on the mussel gills, first target of toxic water contaminants and actively proliferating tissue, we detected significant dose-related increases of cells with micronuclei and other nuclear abnormalities in the treated mussels, with differences in the bioconcentration of the three metals determined in the mussel flesh by atomic absorption spectrometry. Gene expression profiles, determined in the same individual gills in parallel, revealed some transcriptional changes at the 50 nM dose, and substantial increases of differentially expressed genes at the 100 and 200 nM doses, with roughly similar amounts of up- and down-regulated genes. The functional annotation of gill transcripts with consistent expression trends and significantly altered at least in one dose point disclosed the complexity of the induced cell response. The most evident transcriptional changes concerned protein synthesis and turnover, ion homeostasis, cell cycle regulation and apoptosis, and intracellular trafficking (transcript sequences denoting heat shock proteins, metal binding thioneins, sequestosome 1 and proteasome subunits, and GADD45 exemplify up-regulated genes while transcript sequences denoting actin, tubulins and the apoptosis inhibitor 1 exemplify down-regulated genes). Overall, nanomolar doses of co-occurring free metal ions have induced significant structural and functional changes in the mussel gills: the intensity of response to the stimulus measured in laboratory supports the additional validation of molecular markers of metal exposure to be used in Mussel Watch programs.
Collapse
Affiliation(s)
- Laura Varotto
- Department of Biology, University of Padova, Padova, Italy
| | | | - Umberto Rosani
- Department of Biology, University of Padova, Padova, Italy
| | - Chiara Manfrin
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Miren P. Cajaraville
- Department of Zoology & Cell Biology, University of the Basque Country UPV/EHU, Bilbao, Basque Country, Spain
| | | | | | - Paola Venier
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
14
|
Potentially neuroprotective gene modulation in an in vitro model of mild traumatic brain injury. Mol Cell Biochem 2012; 375:185-98. [PMID: 23242602 DOI: 10.1007/s11010-012-1541-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/06/2012] [Indexed: 01/21/2023]
Abstract
In this study, we investigated the hypothesis that mild traumatic brain injury (mTBI) triggers a controlled gene program as an adaptive response finalized to neuroprotection, similar to that found in hibernators and in ischemic preconditioning. A stretch injury device was used to produce an equi-biaxial strain field in rat organotypic hippocampal slice cultures at a specified Lagrangian strain of 10 % and a constant strain rate of 20 s(-1). After 24 h from injury, propidium iodide staining, HPLC analysis of metabolites and microarray analysis of cDNA were performed to evaluate cell viability, cell energy state and gene expression, respectively. Compared to control cultures, 10 % stretch injured cultures showed no change in viability, but demonstrated a hypometabolic state (decreased ATP, ATP/ADP, and nicotinic coenzymes) and a peculiar pattern of gene modulation. The latter was characterized by downregulation of genes encoding for proteins of complexes I, III, and IV of the mitochondrial electron transport chain and of ATP synthase; downregulation of transcriptional and translational genes; downregulation and upregulation of genes controlling the synthesis of glutamate and GABA receptors, upregulation of calmodulin and calmodulin-binding proteins; proper modulation of genes encoding for proapoptotic and antiapoptotic proteins. These results support the hypothesis that, following mTBI, a hibernation-type response is activated in non-hibernating species. Unlike in hibernators and ischemic preconditioning, this adaptive gene programme, aimed at achieving maximal neuroprotection, is not triggered by decrease in oxygen availability. It seems rather activated to avoid increase in oxidative/nitrosative stress and apoptosis during a transient period of mitochondrial malfunctioning.
Collapse
|
15
|
Setyawati MI, Fang W, Chia SL, Leong DT. Nanotoxicology of common metal oxide based nanomaterials: their ROS-y and non-ROS-y consequences. ASIA-PAC J CHEM ENG 2012. [DOI: 10.1002/apj.1680] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Magdiel Inggrid Setyawati
- Department of Chemical and Biomolecular Engineering; National University of Singapore; Block E5 #02-18, 4 Engineering Drive 4; Singapore; 117576
| | - Wanru Fang
- Department of Chemical and Biomolecular Engineering; National University of Singapore; Block E5 #02-18, 4 Engineering Drive 4; Singapore; 117576
| | - Sing Ling Chia
- Department of Chemical and Biomolecular Engineering; National University of Singapore; Block E5 #02-18, 4 Engineering Drive 4; Singapore; 117576
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering; National University of Singapore; Block E5 #02-18, 4 Engineering Drive 4; Singapore; 117576
| |
Collapse
|
16
|
Pavón N, Martínez-Abundis E, Hernández L, Gallardo-Pérez JC, Alvarez-Delgado C, Cerbón M, Pérez-Torres I, Aranda A, Chávez E. Sexual hormones: effects on cardiac and mitochondrial activity after ischemia-reperfusion in adult rats. Gender difference. J Steroid Biochem Mol Biol 2012; 132:135-46. [PMID: 22609314 DOI: 10.1016/j.jsbmb.2012.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 04/27/2012] [Accepted: 05/03/2012] [Indexed: 11/16/2022]
Abstract
In this work we studied the influence of sex hormones on heart and mitochondrial functions, from adult castrated female and male, and intact rats. Castration was performed at their third week of life and on the fourth month animals were subjected to heart ischemia and reperfusion. Electrocardiogram and blood pressure recordings were made, cytokines levels were measured, histopathological studies were performed and thiobarbituric acid reactive species were determined. At the mitochondrial level respiratory control, transmembranal potential and calcium management were determined; Western blot of some mitochondrial components was also performed. Alterations in cardiac function were worst in intact males and castrated females as compared with those found in intact females and castrated males, cytokine levels were modulated also by hormonal status. Regarding mitochondria, in those obtained from hearts from castrated females without ischemia-reperfusion, all evaluated parameters were similar to those observed in mitochondria after ischemia-reperfusion. The results show hormonal influences on the heart at functional and mitochondrial levels.
Collapse
Affiliation(s)
- Natalia Pavón
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, Mexico, DF, Mexico.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Singh BK, Tripathi M, Chaudhari BP, Pandey PK, Kakkar P. Natural terpenes prevent mitochondrial dysfunction, oxidative stress and release of apoptotic proteins during nimesulide-hepatotoxicity in rats. PLoS One 2012; 7:e34200. [PMID: 22509279 PMCID: PMC3317927 DOI: 10.1371/journal.pone.0034200] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 02/23/2012] [Indexed: 12/16/2022] Open
Abstract
Nimesulide, an anti-inflammatory and analgesic drug, is reported to cause severe hepatotoxicity. In this study, molecular mechanisms involved in deranged oxidant-antioxidant homeostasis and mitochondrial dysfunction during nimesulide-induced hepatotoxicity and its attenuation by plant derived terpenes, camphene and geraniol has been explored in male Sprague-Dawley rats. Hepatotoxicity due to nimesulide (80 mg/kg BW) was evident from elevated SGPT, SGOT, bilirubin and histo-pathological changes. Antioxidants and key redox enzymes (iNOS, mtNOS, Cu/Zn-SOD, Mn-SOD, GPx and GR) were altered significantly as assessed by their mRNA expression, Immunoblot analysis and enzyme activities. Redox imbalance along with oxidative stress was evident from decreased NAD(P)H and GSH (56% and 74% respectively; P<0.001), increased superoxide and secondary ROS/RNS generation along with oxidative damage to cellular macromolecules. Nimesulide reduced mitochondrial activity, depolarized mitochondria and caused membrane permeability transition (MPT) followed by release of apoptotic proteins (AIF; apoptosis inducing factor, EndoG; endonuclease G, and Cyto c; cytochrome c). It also significantly activated caspase-9 and caspase-3 and increased oxidative DNA damage (level of 8-Oxoguanine glycosylase; P<0.05). A combination of camphene and geraniol (CG; 1∶1), when pre-administered in rats (10 mg/kg BW), accorded protection against nimesulide hepatotoxicity in vivo, as evident from normalized serum biomarkers and histopathology. mRNA expression and activity of key antioxidant and redox enzymes along with oxidative stress were also normalized due to CG pre-treatment. Downstream effects like decreased mitochondrial swelling, inhibition in release of apoptotic proteins, prevention of mitochondrial depolarization along with reduction in oxidized NAD(P)H and increased mitochondrial electron flow further supported protective action of selected terpenes against nimesulide toxicity. Therefore CG, a combination of natural terpenes prevented nimesulide induced cellular damage and ensuing hepatotoxicity.
Collapse
Affiliation(s)
- Brijesh Kumar Singh
- Herbal Research Section, CSIR-Indian Institute of Toxicology Research (Formerly-Industrial Toxicology Research Centre), Lucknow, Uttar Pradesh, India
- Department of Biotechnology, Bundelkhand University, Jhansi, Uttar Pradesh, India
| | - Madhulika Tripathi
- Herbal Research Section, CSIR-Indian Institute of Toxicology Research (Formerly-Industrial Toxicology Research Centre), Lucknow, Uttar Pradesh, India
| | - Bhushan P. Chaudhari
- Pathology Laboratory, CSIR-Indian Institute of Toxicology Research (Formerly-Industrial Toxicology Research Centre), Lucknow, Uttar Pradesh, India
| | - Pramod K. Pandey
- Department of Biotechnology, Bundelkhand University, Jhansi, Uttar Pradesh, India
| | - Poonam Kakkar
- Herbal Research Section, CSIR-Indian Institute of Toxicology Research (Formerly-Industrial Toxicology Research Centre), Lucknow, Uttar Pradesh, India
- * E-mail:
| |
Collapse
|