1
|
Yeast Protein Asf1 Possesses Modulating Activity towards Protein Kinase CK2. Int J Mol Sci 2022; 23:ijms232415764. [PMID: 36555405 PMCID: PMC9779303 DOI: 10.3390/ijms232415764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/30/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Protein kinase CK2 plays an important role in cell survival and protects regulatory proteins from caspase-mediated degradation during apoptosis. The consensus sequence of proteins phosphorylated by CK2 contains a cluster of acidic amino acids around the phosphorylation site. The poly-acidic sequence in yeast protein Asf1 is similar to the acidic loop in CK2β, which possesses a regulatory function. We observed that the overexpression of Asf1 in yeast cells influences cell growth. Experiments performed in vitro and in vivo indicate that yeast protein Asf1 inhibits protein kinase CK2. Our data suggest that each CK2 isoform might be regulated in a different way. Deletion of the amino or carboxyl end of Asf1 reveals that the acidic cluster close to the C-terminus is responsible for the activation or inhibition of CK2 activity.
Collapse
|
2
|
Alaalm L, Crunden JL, Butcher M, Obst U, Whealy R, Williamson CE, O'Brien HE, Schaffitzel C, Ramage G, Spencer J, Diezmann S. Identification and Phenotypic Characterization of Hsp90 Phosphorylation Sites That Modulate Virulence Traits in the Major Human Fungal Pathogen Candida albicans. Front Cell Infect Microbiol 2021; 11:637836. [PMID: 34513723 PMCID: PMC8431828 DOI: 10.3389/fcimb.2021.637836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/24/2021] [Indexed: 01/13/2023] Open
Abstract
The highly conserved, ubiquitous molecular chaperone Hsp90 is a key regulator of cellular proteostasis and environmental stress responses. In human pathogenic fungi, which kill more than 1.6 million patients each year worldwide, Hsp90 governs cellular morphogenesis, drug resistance, and virulence. Yet, our understanding of the regulatory mechanisms governing fungal Hsp90 function remains sparse. Post-translational modifications are powerful components of nature’s toolbox to regulate protein abundance and function. Phosphorylation in particular is critical in many cellular signaling pathways and errant phosphorylation can have dire consequences for the cell. In the case of Hsp90, phosphorylation affects its stability and governs its interactions with co-chaperones and clients. Thereby modulating the cell’s ability to cope with environmental stress. Candida albicans, one of the leading human fungal pathogens, causes ~750,000 life-threatening invasive infections worldwide with unacceptably high mortality rates. Yet, it remains unknown if and how Hsp90 phosphorylation affects C. albicans virulence traits. Here, we show that phosphorylation of Hsp90 is critical for expression of virulence traits. We combined proteomics, molecular evolution analyses and structural modeling with molecular biology to characterize the role of Hsp90 phosphorylation in this non-model pathogen. We demonstrated that phosphorylation negatively affects key virulence traits, such as the thermal stress response, morphogenesis, and drug susceptibility. Our results provide the first record of a specific Hsp90 phosphorylation site acting as modulator of fungal virulence. Post-translational modifications of Hsp90 could prove valuable in future exploitations as antifungal drug targets.
Collapse
Affiliation(s)
- Leenah Alaalm
- Department of Biology & Biochemistry, University of Bath, Bath, United Kingdom
| | - Julia L Crunden
- Department of Biology & Biochemistry, University of Bath, Bath, United Kingdom.,School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Mark Butcher
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Ulrike Obst
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Ryann Whealy
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | | | - Heath E O'Brien
- MRC Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | | | - Gordon Ramage
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Stephanie Diezmann
- Department of Biology & Biochemistry, University of Bath, Bath, United Kingdom.,School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
3
|
Demulder M, De Veylder L, Loris R. Crystal structure of Arabidopsis thaliana casein kinase 2 α1. Acta Crystallogr F Struct Biol Commun 2020; 76:182-191. [PMID: 32254052 PMCID: PMC7137383 DOI: 10.1107/s2053230x20004537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/01/2020] [Indexed: 11/11/2022] Open
Abstract
Casein kinase 2 (CK2) is a ubiquitous pleiotropic enzyme that is highly conserved across eukaryotic kingdoms. CK2 is singular amongst kinases as it is highly rigid and constitutively active. Arabidopsis thaliana is widely used as a model system in molecular plant research; the biological functions of A. thaliana CK2 are well studied in vivo and many of its substrates have been identified. Here, crystal structures of the α subunit of A. thaliana CK2 in three crystal forms and of its complex with the nonhydrolyzable ATP analog AMppNHp are presented. While the C-lobe of the enzyme is highly rigid, structural plasticity is observed for the N-lobe. Small but significant displacements within the active cleft are necessary in order to avoid steric clashes with the AMppNHp molecule. Binding of AMppNHp is influenced by a rigid-body motion of the N-lobe that was not previously recognized in maize CK2.
Collapse
Affiliation(s)
- Manon Demulder
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Center for Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 71, B-9052 Ghent, Belgium
| | - Remy Loris
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Center for Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
4
|
Matsuzaki K, Shinohara M. Casein kinase II phosphorylates the C-terminal region of Lif1 to promote the Lif1-Xrs2 interaction needed for non-homologous end joining. Biochem Biophys Res Commun 2018; 501:1080-1084. [PMID: 29778533 DOI: 10.1016/j.bbrc.2018.05.111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 05/15/2018] [Indexed: 12/25/2022]
Abstract
A DNA double strand break (DSB) is one of the most cytotoxic DNA lesions, but it can be repaired by non-homologous end joining (NHEJ) or by homologous recombination. The choice between these two repair pathways depends on the cell cycle stage. Although NHEJ constitutes a simple re-ligation reaction, the regulatory mechanism(s) controlling its activity has not been fully characterized. Lif1 is a regulatory subunit of the NHEJ-specific DNA ligase IV and interacts with Xrs2 of the MRX complex which is a key factor in DSB repair. Specifically, the C-terminal region of Lif1, which contains a CK2-specific phosphorylation motif, interacts with the FHA domain of Xrs2 during canonical- NHEJ (C-NHEJ). Herein, we show that Lif1 and Cka2, a catalytic subunit of yeast CK2, interact and that the C-terminal phosphorylation consensus motif in Lif1 is phosphorylated by recombinant CK2. These observations suggest that phosphorylation of Lif1 by CK2 at a DSB site promotes the Lif1-Xrs2 interaction and facilitates C-NHEJ.
Collapse
Affiliation(s)
- Kenichiro Matsuzaki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Miki Shinohara
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan; Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, 3327-204, Nakamachi, Nara, 631-8505, Japan.
| |
Collapse
|
5
|
Baier A, Nazaruk J, Galicka A, Szyszka R. Inhibitory influence of natural flavonoids on human protein kinase CK2 isoforms: effect of the regulatory subunit. Mol Cell Biochem 2017; 444:35-42. [PMID: 29188536 PMCID: PMC6002439 DOI: 10.1007/s11010-017-3228-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/24/2017] [Indexed: 11/25/2022]
Abstract
CK2 is a pleiotropic, constitutively active protein kinase responsible for the phosphorylation of more than 300 physiological substrates. Typically, this enzyme is found in tetrameric form consisting of two regulatory subunits CK2β and two catalytic subunits CK2α or CK2α′. Several natural occurring flavonoids were tested for their ability to inhibit both CK2 holoenzymes, CK2α2β2 and CK2α′2β2. We identified few substances selectively inhibiting only the α′ subunit. Other compounds showed similar effect towards all four isoforms. In some cases, like chrysoeriol, pedalitin, apigenin, and luteolin, the α2β2 holoenzyme was at least six times better inhibited than the free α subunit. Otherwise, we have found a luteolin derivative decreased the kinase activity of CK2α′ with an IC50 value of 0.8 μM, but the holoenzyme only with 9.5 µM.
Collapse
Affiliation(s)
- Andrea Baier
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, ul. Konstantynow 1i, 20-708, Lublin, Poland.
| | - Jolanta Nazaruk
- Department of Pharmacognosy, Medical University of Białystok, ul. Mickiewicza 2a, 15-089, Białystok, Poland
| | - Anna Galicka
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2a, 15-089, Białystok, Poland
| | - Ryszard Szyszka
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, ul. Konstantynow 1i, 20-708, Lublin, Poland
| |
Collapse
|
6
|
Johnson AJ, Zaman MS, Veljanoski F, Phrakaysone AA, Li S, O'Doherty PJ, Petersingham G, Perrone GG, Molloy MP, Wu MJ. Unravelling the role of protein kinase CK2 in metal toxicity using gene deletion mutants. Metallomics 2017; 9:301-308. [PMID: 28194465 DOI: 10.1039/c6mt00230g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Metal ions, biologically essential or toxic, are present in the surrounding environment of living organisms. Understanding their uptake, homeostasis or detoxification is critical in cell biology and human health. In this study, we investigated the role of protein kinase CK2 in metal toxicity using gene deletion strains of Saccharomyces cerevisiae against a panel of six metal ions. The deletion of CKA2, the yeast orthologue of mammalian CK2α', leads to a pronounced resistant phenotype against Zn2+ and Al3+, whilst the deletion of CKB1 or CKB2 results in tolerance to Cr6+ and As3+. The individual deletion mutants of CK2 subunits (CKA1, CKA2, CKB1 and CKB2) did not have any benefit against Co2+ and Cd2+. The metal ion content in the treated cells was then measured by inductively coupled plasma mass spectrometry. Two contrasting findings were obtained for the CKA2 deletion mutant (cka2Δ) against Al3+ or Zn2+. Upon exposure to Al3+, cka2Δ had markedly lower Al3+ content than the wild type and other CK2 mutants, congruous to the resistant phenotype of cka2Δ against Al3+, indicating that CKA2 is responsible for Al3+ uptake. Upon zinc exposure the same mutant showed similar Zn2+ content to the wild type and cka1Δ. Strikingly, the selective inhibitor of CK2 TBB (4,5,6,7-tetrabromo-1H-benzotriazole) abolished the resistant phenotype of cka2Δ against Zn2+. Hence, the CK2 subunit CKA1 plays a key role in Zn2+ sequestration of the cell. Given that both zinc and CK2 are implicated in cancer development, the findings herein are of significance to cancer research and anticancer drug development.
Collapse
Affiliation(s)
- Adam J Johnson
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Mohammad S Zaman
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Filip Veljanoski
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Alex A Phrakaysone
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Suhua Li
- College of Life Sciences, Southwest Forestry University, 300 Bailong Road, Kunming 650024, Yunnan Province, P. R. China
| | - Patrick J O'Doherty
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Gayani Petersingham
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Gabriel G Perrone
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Mark P Molloy
- Australian Proteome Analysis Facility (APAF), Dept. Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ming J Wu
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia. and Molecular Medicine Research Group, School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| |
Collapse
|
7
|
Baier A, Galicka A, Nazaruk J, Szyszka R. Selected flavonoid compounds as promising inhibitors of protein kinase CK2α and CK2α', the catalytic subunits of CK2. PHYTOCHEMISTRY 2017; 136:39-45. [PMID: 28043654 DOI: 10.1016/j.phytochem.2016.12.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
CK2 is a ubiquitous protein kinase involved in many cell functions. During the last years it became an interesting target in cancer research. A series of flavonoid compounds was tested as inhibitors of protein kinase CK2. Several substances were found to be highly active against both catalytic subunits with IC50 values below 1 μM in case of CK2α'. The most promising inhibitor we identified is chrysoeriol with IC50 values of 250 and 34 nM for CK2α and CK2α', respectively.
Collapse
Affiliation(s)
- Andrea Baier
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708 Lublin, Poland.
| | - Anna Galicka
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2a, 15-089 Białystok, Poland
| | - Jolanta Nazaruk
- Department of Pharmacognosy, Medical University of Białystok, ul. Mickiewicza 2a, 15-089 Białystok, Poland
| | - Ryszard Szyszka
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708 Lublin, Poland
| |
Collapse
|
8
|
The role and regulation of IGFBP-1 phosphorylation in fetal growth restriction. J Cell Commun Signal 2015; 9:111-23. [PMID: 25682045 DOI: 10.1007/s12079-015-0266-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 01/21/2015] [Indexed: 12/18/2022] Open
Abstract
Fetal growth restriction (FGR) increases the risk of perinatal complications and predisposes the infant to developing metabolic, cardiovascular, and neurological diseases in childhood and adulthood. The pathophysiology underlying FGR remains poorly understood and there is no specific treatment available. Biomarkers for early detection are also lacking. The insulin-like growth factor (IGF) system is an important regulator of fetal growth. IGF-I is the primary regulator of fetal growth, and fetal circulating levels of IGF-I are decreased in FGR. IGF-I activity is influenced by a family of IGF binding proteins (IGFBPs), which bind to IGF-I and decrease its bioavailability. During fetal development the predominant IGF-I binding protein in fetal circulation is IGFBP-1, which is primarily secreted by the fetal liver. IGFBP-1 binds IGF-I and thereby inhibits its bioactivity. Fetal circulating levels of IGF-I are decreased and concentrations of IGFBP-1 are increased in FGR. Phosphorylation of human IGFBP-1 at specific sites markedly increases its binding affinity for IGF-I, further limiting IGF-I bioactivity. Recent experimental evidence suggests that IGFBP-1 phosphorylation is markedly increased in the circulation of FGR fetuses suggesting an important role of IGFBP-1 phosphorylation in the regulation of fetal growth. Understanding of the significance of site-specific IGFBP-1 phosphorylation and how it is regulated to contribute to fetal growth will be an important step in designing strategies for preventing, managing, and/or treating FGR. Furthermore, IGFBP-1 hyperphosphorylation at unique sites may serve as a valuable biomarker for FGR.
Collapse
|
9
|
Janeczko M, Orzeszko A, Kazimierczuk Z, Szyszka R, Baier A. CK2α and CK2α' subunits differ in their sensitivity to 4,5,6,7-tetrabromo- and 4,5,6,7-tetraiodo-1H-benzimidazole derivatives. Eur J Med Chem 2011; 47:345-50. [PMID: 22115617 DOI: 10.1016/j.ejmech.2011.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 10/14/2011] [Accepted: 11/01/2011] [Indexed: 10/15/2022]
Abstract
The goal of this study was to test the inhibitory activity of a series of tetrahalogenobenzimidazoles, including a number of novel derivatives, on individual catalytic subunits of human CK2. 4,5,6,7-tetrabromo- and 4,5,6,7-tetraiodo-1H-benzimidazoles and their newly obtained N(1)- and 2-S-carboxyalkyl derivatives showed potent inhibitory activity against both these subunits. CK2α' was up to 6 times more sensitive to the studied compounds than CK2α. The investigated iododerivatives showed, in most cases, stronger inhibitory properties than the respective brominated congeners, but the differences showed considerable dependence on the protein substrate used.
Collapse
Affiliation(s)
- Monika Janeczko
- Department of Molecular Biology, Institute of Biotechnology, The John Paul II Catholic University of Lublin, Al. Krasnicka 102, 20-718 Lublin, Poland
| | | | | | | | | |
Collapse
|