1
|
Młynarska E, Badura K, Kurciński S, Sinkowska J, Jakubowska P, Rysz J, Franczyk B. The Role of MicroRNA in the Pathophysiology and Diagnosis of Viral Myocarditis. Int J Mol Sci 2024; 25:10933. [PMID: 39456716 PMCID: PMC11507602 DOI: 10.3390/ijms252010933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Myocarditis is a non-ischemic condition with a heterogeneous etiology, clinical course and prognosis. The most common etiology of myocarditis are viral infections, whereas the most severe complications are acute and chronic heart failure and sudden cardiac death. The heterogeneous clinical course of the disease, as well as the availability and costs of diagnostic tools such as cardiac magnetic resonance and endomyocardial biopsy, hinder the diagnosis of myocarditis and its underlying cause. Non-coding RNAs such as micro-RNAs (miRNAs; miR) have been shown to be involved in the disease's pathophysiology; however, their potential in disease diagnosis and treatment should also be considered. Non-coding RNAs are RNAs that are not translated into proteins, and they have the ability to regulate several intracellular pathways. MiRNAs regulate gene expression by binding with their targets and inhibiting protein synthesis by interfering with the translation of coding genes or causing the degradation of messenger RNA. Several miRNAs, such as miR-1, -133, -21, -15, -98, -126, -155, -148, -203, -208, -221, -222, -203 and -590, have been shown to be involved in the pathophysiology of viral myocarditis (VMC), and some of them have been shown to have diagnostic abilities. This article summarizes the available data on miRNAs and their associations with VMC.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Krzysztof Badura
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Szymon Kurciński
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Julia Sinkowska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Paulina Jakubowska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
2
|
Grodzka O, Procyk G, Wrzosek M. A Narrative Review of Preclinical In Vitro Studies Investigating microRNAs in Myocarditis. Curr Issues Mol Biol 2024; 46:1413-1423. [PMID: 38392209 PMCID: PMC10887635 DOI: 10.3390/cimb46020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
According to the World Health Organization's statement, myocarditis is an inflammatory myocardium disease. Although an endometrial biopsy remains the diagnostic gold standard, it is an invasive procedure, and thus, cardiac magnetic resonance imaging has become more widely used and is called a non-invasive diagnostic gold standard. Myocarditis treatment is challenging, with primarily symptomatic therapies. An increasing number of studies are searching for novel diagnostic biomarkers and potential therapeutic targets. Microribonucleic acids (miRNAs) are small, non-coding RNA molecules that decrease gene expression by inhibiting the translation or promoting the degradation of complementary mRNAs. Their role in different fields of medicine has been recently extensively studied. This review discusses all relevant preclinical in vitro studies regarding microRNAs in myocarditis. We searched the PubMed database, and after excluding unsuitable studies and clinical and preclinical in vivo trials, we included and discussed 22 preclinical in vitro studies in this narrative review. Several microRNAs presented altered levels in myocarditis patients in comparison to healthy controls. Moreover, microRNAs influenced inflammation, cell apoptosis, and viral replication. Finally, microRNAs were also found to determine the level of myocardial damage. Further studies may show the vital role of microRNAs as novel therapeutic agents or diagnostic/prognostic biomarkers in myocarditis management.
Collapse
Affiliation(s)
- Olga Grodzka
- Department of Neurology, Faculty of Medicine and Dentistry, Medical University of Warsaw, 80 Ceglowska St., 01-809 Warsaw, Poland
- Doctoral School, Medical University of Warsaw, 81 Żwirki i Wigury St., 02-091 Warsaw, Poland
| | - Grzegorz Procyk
- Doctoral School, Medical University of Warsaw, 81 Żwirki i Wigury St., 02-091 Warsaw, Poland
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 1A Banacha St., 02-097 Warsaw, Poland
| | - Małgorzata Wrzosek
- Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, 1B Banacha St., 02-097 Warsaw, Poland
| |
Collapse
|
3
|
Yang D, Wan X, Schwieterman N, Cavus O, Kacira E, Xu X, Laurita KR, Wold LE, Hund TJ, Mohler PJ, Deschênes I, Fu JD. MicroRNA-1 Deficiency Is a Primary Etiological Factor Disrupting Cardiac Contractility and Electrophysiological Homeostasis. Circ Arrhythm Electrophysiol 2024; 17:e012150. [PMID: 38126205 PMCID: PMC10842700 DOI: 10.1161/circep.123.012150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND MicroRNA-1 (miR1), encoded by the genes miR1-1 and miR1-2, is the most abundant microRNA in the heart and plays a critical role in heart development and physiology. Dysregulation of miR1 has been associated with various heart diseases, where a significant reduction (>75%) in miR1 expression has been observed in patient hearts with atrial fibrillation or acute myocardial infarction. However, it remains uncertain whether miR1-deficiency acts as a primary etiological factor of cardiac remodeling. METHODS miR1-1 or miR1-2 knockout mice were crossbred to produce 75%-miR1-knockdown (75%KD; miR1-1+/-:miR1-2-/- or miR1-1-/-:miR1-2+/-) mice. Cardiac pathology of 75%KD cardiomyocytes/hearts was investigated by ECG, patch clamping, optical mapping, transcriptomic, and proteomic assays. RESULTS In adult 75%KD hearts, the overall miR1 expression was reduced to ≈25% of the normal wild-type level. These adult 75%KD hearts displayed decreased ejection fraction and fractional shortening, prolonged QRS and QT intervals, and high susceptibility to arrhythmias. Adult 75%KD cardiomyocytes exhibited prolonged action potentials with impaired repolarization and excitation-contraction coupling. Comparatively, 75%KD cardiomyocytes showcased reduced Na+ current and transient outward potassium current, coupled with elevated L-type Ca2+ current, as opposed to wild-type cells. RNA sequencing and proteomics assays indicated negative regulation of cardiac muscle contraction and ion channel activities, along with a positive enrichment of smooth muscle contraction genes in 75%KD cardiomyocytes/hearts. miR1 deficiency led to dysregulation of a wide gene network, with miR1's RNA interference-direct targets influencing many indirectly regulated genes. Furthermore, after 6 weeks of bi-weekly intravenous tail-vein injection of miR1 mimics, the ejection fraction and fractional shortening of 75%KD hearts showed significant improvement but remained susceptible to arrhythmias. CONCLUSIONS miR1 deficiency acts as a primary etiological factor in inducing cardiac remodeling via disrupting heart regulatory homeostasis. Achieving stable and appropriate microRNA expression levels in the heart is critical for effective microRNA-based therapy in cardiovascular diseases.
Collapse
Affiliation(s)
- Dandan Yang
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Dept of Physiology and Cell Biology, The Ohio State University, Columbus
| | - Xiaoping Wan
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Dept of Physiology and Cell Biology, The Ohio State University, Columbus
| | - Neill Schwieterman
- The Dorothy M. Davis Heart and Lung Research Institute, Dept of Surgery, Division of Cardiac Surgery, The Ohio State University, Columbus
| | - Omer Cavus
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Dept of Physiology and Cell Biology, The Ohio State University, Columbus
- Pennsylvania State University, Heart and Vascular Institute, Hershey, PA
| | - Ege Kacira
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Dept of Physiology and Cell Biology, The Ohio State University, Columbus
| | - Xianyao Xu
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Depts of Internal Medicine & Biomedical Engineering, The Ohio State University, Columbus
| | - Kenneth R. Laurita
- Dept of Medicine, Heart and Vascular Research Center, The MetroHealth System, Case Western Reserve University, Cleveland, OH
| | - Loren E. Wold
- The Dorothy M. Davis Heart and Lung Research Institute, Dept of Surgery, Division of Cardiac Surgery, The Ohio State University, Columbus
| | - Thomas J. Hund
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Depts of Internal Medicine & Biomedical Engineering, The Ohio State University, Columbus
| | - Peter J. Mohler
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Dept of Physiology and Cell Biology, The Ohio State University, Columbus
| | - Isabelle Deschênes
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Dept of Physiology and Cell Biology, The Ohio State University, Columbus
| | - Ji-Dong Fu
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Dept of Physiology and Cell Biology, The Ohio State University, Columbus
| |
Collapse
|
4
|
Procyk G, Grodzka O, Procyk M, Gąsecka A, Głuszek K, Wrzosek M. MicroRNAs in Myocarditis-Review of the Preclinical In Vivo Trials. Biomedicines 2023; 11:2723. [PMID: 37893097 PMCID: PMC10604573 DOI: 10.3390/biomedicines11102723] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Myocarditis is an inflammatory heart disease with viruses as the most common cause. Regardless of multiple studies that have recently been conducted, the diagnostic options still need to be improved. Although endomyocardial biopsy is known as a diagnostic gold standard, it is invasive and, thus, only sometimes performed. Novel techniques of cardiac magnetic resonance are not readily available. Therapy in viral infections is based mainly on symptomatic treatment, while steroids and intravenous immunoglobulins are used in autoimmune myocarditis. The effectiveness of neither of these methods has been explicitly proven to date. Therefore, novel diagnostic and therapeutic strategies are highly needed. MiRNAs are small, non-coding molecules that regulate fundamental cell functions, including differentiation, metabolism, and apoptosis. They present altered levels in different diseases, including myocarditis. Numerous studies investigating the role of miRNAs in myocarditis have already been conducted. In this review, we discussed only the original preclinical in vivo research. We eventually included 30 studies relevant to the discussed area. The altered miRNA levels have been observed, including upregulation and downregulation of different miRNAs in the mice models of myocarditis. Furthermore, the administration of mimics or inhibitors of particular miRNAs was shown to significantly influence inflammation, morphology, and function of the heart and overall survival. Finally, some studies presented prospective advantages in vaccine development.
Collapse
Affiliation(s)
- Grzegorz Procyk
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Olga Grodzka
- Department of Neurology, Faculty of Medicine and Dentistry, Medical University of Warsaw, Ceglowska 80, 01-809 Warsaw, Poland
| | - Marcelina Procyk
- Faculty of Biology and Biotechnology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Katarzyna Głuszek
- Collegium Medicum, Jan Kochanowski University of Kielce, 25-406 Kielce, Poland
| | - Małgorzata Wrzosek
- Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
5
|
Igarashi W, Takagi D, Okada D, Kobayashi D, Oka M, Io T, Ishii K, Ono K, Yamamoto H, Okamoto Y. Bioinformatic Identification of Potential RNA Alterations on the Atrial Fibrillation Remodeling from Human Pulmonary Veins. Int J Mol Sci 2023; 24:10501. [PMID: 37445678 DOI: 10.3390/ijms241310501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Atrial fibrillation (AF) is the most frequent persistent arrhythmia. Many genes have been reported as a genetic background for AF. However, most transcriptome analyses of AF are limited to the atrial samples and have not been evaluated by multiple cardiac regions. In this study, we analyzed the expression levels of protein-coding and long noncoding RNAs (lncRNAs) in six cardiac regions by RNA-seq. Samples were donated from six subjects with or without persistent AF for left atria, left atrial appendages, right atria, sinoatrial nodes, left ventricles, right ventricles, and pulmonary veins (PVs), and additional four right atrial appendages samples were collected from patients undergoing mitral valve replacement. In total, 23 AF samples were compared to 23 non-AF samples. Surprisingly, the most influenced heart region in gene expression by AF was the PV, not the atria. The ion channel-related gene set was significantly enriched upon analysis of these significant genes. In addition, some significant genes are cancer-related lncRNAs in PV in AF. A co-expression network analysis could detect the functional gene clusters. In particular, the cancer-related lncRNA, such as SAMMSON and FOXCUT, belong to the gene network with the cancer-related transcription factor FOXC1. Thus, they may also play an aggravating role in the pathogenesis of AF, similar to carcinogenesis. In the least, this study suggests that (1) RNA alteration is most intense in PVs and (2) post-transcriptional gene regulation by lncRNA may contribute to the progression of AF. Through the screening analysis across the six cardiac regions, the possibility that the PV region can play a role other than paroxysmal triggering in the pathogenesis of AF was demonstrated for the first time. Future research with an increase in the number of PV samples will lead to a novel understanding of the pathophysiology of AF.
Collapse
Affiliation(s)
- Wataru Igarashi
- Department of Cardiovascular Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Daichi Takagi
- Department of Cardiovascular Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Daigo Okada
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Shogoinkawahara-cho, Kyoto 606-8507, Japan
| | - Daiki Kobayashi
- Department of Cell Physiology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Miho Oka
- Research Department, Ono Pharmaceutical Co., Ltd., Kyutaromachi, Osaka 541-0056, Japan
| | - Toshiro Io
- Research Department, Ono Pharmaceutical Co., Ltd., Kyutaromachi, Osaka 541-0056, Japan
| | - Kuniaki Ishii
- Department of Pharmacology, Faculty of Medicine, Yamagata University, Iida-Nishi, Yamagata 990-9585, Japan
| | - Kyoichi Ono
- Department of Cell Physiology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Hiroshi Yamamoto
- Department of Cardiovascular Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Yosuke Okamoto
- Department of Cell Physiology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| |
Collapse
|
6
|
Chimenti C, Magnocavallo M, Vetta G, Alfarano M, Manguso G, Ajmone F, Ballatore F, Costantino J, Ciaramella P, Severino P, Miraldi F, Lavalle C, Vizza CD. The Role of MicroRNA in the Myocarditis: a Small Actor for a Great Role. Curr Cardiol Rep 2023:10.1007/s11886-023-01888-5. [PMID: 37269474 DOI: 10.1007/s11886-023-01888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 06/05/2023]
Abstract
PURPOSE OF REVIEW Myocarditis is an inflammation of the myocardium secondary to a variety of agents such as infectious pathogens, toxins, drugs, and autoimmune disorders. In our review, we provide an overview of miRNA biogenesis and their role in the etiology and pathogenesis of myocarditis, evaluating future directions for myocarditis management. RECENT FINDINGS Advances in genetic manipulation techniques allowed to demonstrate the important role of RNA fragments, especially microRNAs (miRNAs), in cardiovascular pathogenesis. miRNAs are small non-coding RNA molecules that regulate the post-transcriptional gene expression. Advances in molecular techniques allowed to identify miRNA's role in pathogenesis of myocarditis. miRNAs are related to viral infection, inflammation, fibrosis, and apoptosis of cardiomyocytes, making them not only promising diagnostic markers but also prognostics and therapeutic targets in myocarditis. Of course, further real-world studies will be needed to assess the diagnostic accuracy and applicability of miRNA in the myocarditis diagnosis.
Collapse
Affiliation(s)
- Cristina Chimenti
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy.
| | - Michele Magnocavallo
- Cardiology Division, Arrhythmology Unit, S. Giovanni Calibita Hospital, Isola Tiberina, Rome, Italy
| | - Giampaolo Vetta
- Department of Clinical and Experimental Medicine, Cardiology Unit, University of Messina, Mesina, Italy
| | - Maria Alfarano
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Giulia Manguso
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Francesco Ajmone
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Federico Ballatore
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Jacopo Costantino
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Piera Ciaramella
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Paolo Severino
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Fabio Miraldi
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Carlo Lavalle
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Carmine Dario Vizza
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
miR-454-3p and miR-194-5p targeting cardiac sarcolemma ion exchange transcripts are potential noninvasive diagnostic biomarkers for childhood dilated cardiomyopathy in Egyptian patients. Egypt Heart J 2022; 74:65. [PMID: 36076093 PMCID: PMC9458794 DOI: 10.1186/s43044-022-00300-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
Background Childhood dilated cardiomyopathy (CDCM) is the most common cardiomyopathy in children and it is risk factor to heart failure and sudden death. Most of the different etiologic factors which have been postulated to DCM are idiopathic, and its pathogenesis remains uncertain. So it was worth investigating the potential DCM pathogenicity models to establish early noninvasive diagnosis parameters especially in CDCM patients. Beside that miRNAs in the circulatory blood are genetically considered the best option for noninvasive diagnosis; also, implementation of miRNAs as early diagnostic markers for children with DCM is urgent because those children have high risk to sudden heart death. We aimed to identify discriminator diagnostic circulatory miRNA expression levels in CDCM patients.
Results The expression levels of miR-454-3p and miR-194-5p were found significant upregulated (p value = 0.001 and 0.018; CI 95%, respectively), while miR-875-3p was found significant downregulated (p value = 0.040; CI 95%). A receiver operating characteristic (ROC) curve analysis showed significant AUC = 1.000 and 0.798 for miR-454-3p and miR-194-5p, respectively, and the optimal discriminated diagnostic cut-points were computed by index of union (IU) method. Enrichment analysis for the potential targeted mature mRNAs by miR-454-3p and miR-194-5p pointed that Ca, Na and K ions homeostasis in cardiac sarcolemma consider potential CDCM pathogenicity model.
Conclusions miR-454-3p and miR-194-5p are highly influencing noninvasive biomarkers for CDCM, and further circulatory miRNAs-implicated studies are highly recommended.
Collapse
|
8
|
Oh JH, Kim GB, Seok H. Implication of microRNA as a potential biomarker of myocarditis. Clin Exp Pediatr 2022; 65:230-238. [PMID: 35240034 PMCID: PMC9082251 DOI: 10.3345/cep.2021.01802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/29/2022] [Indexed: 12/15/2022] Open
Abstract
Myocarditis was previously attributed to an epidemic viral infection. Additional harmful reagents, in addition to viruses, play a role in its etiology. Coronavirus disease 2019 (COVID-19) vaccine-induced myocarditis has recently been described, drawing attention to vaccine-induced myocarditis in children and adolescents. Its pathology is based on a series of complex immune responses, including initial innate immune responses in response to viral entry, adaptive immune responses leading to the development of antigen-specific antibodies, and autoimmune responses to cellular injury caused by cardiomyocyte rupture that releases antigens. Chronic inflammation and fibrosis in the myocardium eventually result in cardiac failure. Recent advancements in molecular biology have remarkably increased our understanding of myocarditis. In particular, microRNAs (miRNAs) are a hot topic in terms of the role of new biomarkers and the pathophysiology of myocarditis. Myocarditis has been linked with microRNA-221/222 (miR-221/222), miR-155, miR-10a*, and miR-590. Despite the lack of clinical trials of miRNA intervention in myocarditis yet, multiple clinical trials of miRNAs in other cardiac diseases have been aggressively conducted to help pave the way for future research, which is bolstered by the success of recently U.S. Food and Drug Administration-approved small-RNA medications. This review presents basic information and recent research that focuses on myocarditis and related miRNAs as a potential novel biomarker and the therapeutics.
Collapse
Affiliation(s)
- Jin-Hee Oh
- Department of Pediatrics, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Gi Beom Kim
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Heeyoung Seok
- Department of Transdisciplinary Research and Collaboration, Genomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
9
|
Yang D, Deschênes I, Fu JD. Multilayer control of cardiac electrophysiology by microRNAs. J Mol Cell Cardiol 2022; 166:107-115. [PMID: 35247375 PMCID: PMC9035102 DOI: 10.1016/j.yjmcc.2022.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
Abstract
The electrophysiological properties of the heart include cardiac automaticity, excitation (i.e., depolarization and repolarization of action potential) of individual cardiomyocytes, and highly coordinated electrical propagation through the whole heart. An abnormality in any of these properties can cause arrhythmias. MicroRNAs (miRs) have been recognized as essential regulators of gene expression through the conventional RNA interference (RNAi) mechanism and are involved in a variety of biological events. Recent evidence has demonstrated that miRs regulate the electrophysiology of the heart through fine regulation by the conventional RNAi mechanism of the expression of ion channels, transporters, intracellular Ca2+-handling proteins, and other relevant factors. Recently, a direct interaction between miRs and ion channels has also been reported in the heart, revealing a biophysical modulation by miRs of cardiac electrophysiology. These advanced discoveries suggest that miR controls cardiac electrophysiology through two distinct mechanisms: immediate action through biophysical modulation and long-term conventional RNAi regulation. Here, we review the recent research progress and summarize the current understanding of how miR manipulates the function of ion channels to maintain the homeostasis of cardiac electrophysiology.
Collapse
Affiliation(s)
- Dandan Yang
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Department of Physiology and Cell Biology, The Ohio State University, 333 W. 10(th) Avenue, Columbus, OH 43210, USA
| | - Isabelle Deschênes
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Department of Physiology and Cell Biology, The Ohio State University, 333 W. 10(th) Avenue, Columbus, OH 43210, USA
| | - Ji-Dong Fu
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Department of Physiology and Cell Biology, The Ohio State University, 333 W. 10(th) Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
10
|
Tymińska A, Ozierański K, Skwarek A, Kapłon-Cieślicka A, Baritussio A, Grabowski M, Marcolongo R, Caforio ALP. Personalized Management of Myocarditis and Inflammatory Cardiomyopathy in Clinical Practice. J Pers Med 2022; 12:jpm12020183. [PMID: 35207671 PMCID: PMC8874629 DOI: 10.3390/jpm12020183] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Myocarditis is an inflammatory heart disease induced by infectious and non-infectious causes frequently triggering immune-mediated pathologic mechanisms leading to myocardial damage and dysfunction. In approximately half of the patients, acute myocarditis resolves spontaneously while in the remaining cases, it may evolve into serious complications including inflammatory cardiomyopathy, arrhythmias, death, or heart transplantation. Due to the large variability in clinical presentation, unpredictable course of the disease, and lack of established causative treatment, myocarditis represents a challenging diagnosis in modern cardiology. Moreover, an increase in the incidence of myocarditis and inflammatory cardiomyopathy has been observed in recent years. However, there is a growing potential of available non-invasive diagnostic methods (biomarkers, serum anti-heart autoantibodies (AHA), microRNAs, speckle tracking echocardiography, cardiac magnetic resonance T1 and T2 tissue mapping, positron emission tomography), which may refine the diagnostic workup and/or noninvasive follow-up. Personalized management should include the use of endomyocardial biopsy and AHA, which may allow the etiopathogenetic subsets of myocarditis (infectious, non-infectious, and/or immune-mediated) to be distinguished and implementation of disease-specific therapies. In this review, we summarize current knowledge on myocarditis and inflammatory cardiomyopathy, and outline some practical diagnostic, therapeutic, and follow-up algorithms to facilitate comprehensive individualized management of these patients.
Collapse
Affiliation(s)
- Agata Tymińska
- First Department of Cardiology, Medical University of Warsaw, 1a Banacha St., 02-097 Warsaw, Poland; (A.T.); (A.S.); (A.K.-C.); (M.G.)
| | - Krzysztof Ozierański
- First Department of Cardiology, Medical University of Warsaw, 1a Banacha St., 02-097 Warsaw, Poland; (A.T.); (A.S.); (A.K.-C.); (M.G.)
- Correspondence: ; Tel.: +48-22-599-29-58; Fax: +48-22-599-19-57
| | - Aleksandra Skwarek
- First Department of Cardiology, Medical University of Warsaw, 1a Banacha St., 02-097 Warsaw, Poland; (A.T.); (A.S.); (A.K.-C.); (M.G.)
| | - Agnieszka Kapłon-Cieślicka
- First Department of Cardiology, Medical University of Warsaw, 1a Banacha St., 02-097 Warsaw, Poland; (A.T.); (A.S.); (A.K.-C.); (M.G.)
| | - Anna Baritussio
- Division of Cardiology, Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 2-35128 Padova, Italy; (A.B.); (R.M.); (A.L.C.)
| | - Marcin Grabowski
- First Department of Cardiology, Medical University of Warsaw, 1a Banacha St., 02-097 Warsaw, Poland; (A.T.); (A.S.); (A.K.-C.); (M.G.)
| | - Renzo Marcolongo
- Division of Cardiology, Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 2-35128 Padova, Italy; (A.B.); (R.M.); (A.L.C.)
| | - Alida LP Caforio
- Division of Cardiology, Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 2-35128 Padova, Italy; (A.B.); (R.M.); (A.L.C.)
| |
Collapse
|
11
|
Jayawardena E, Medzikovic L, Ruffenach G, Eghbali M. Role of miRNA-1 and miRNA-21 in Acute Myocardial Ischemia-Reperfusion Injury and Their Potential as Therapeutic Strategy. Int J Mol Sci 2022; 23:ijms23031512. [PMID: 35163436 PMCID: PMC8836257 DOI: 10.3390/ijms23031512] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Coronary artery disease remains the leading cause of death. Acute myocardial infarction (MI) is characterized by decreased blood flow to the coronary arteries, resulting in cardiomyocytes death. The most effective strategy for treating an MI is early and rapid myocardial reperfusion, but restoring blood flow to the ischemic myocardium can induce further damage, known as ischemia-reperfusion (IR) injury. Novel therapeutic strategies are critical to limit myocardial IR injury and improve patient outcomes following reperfusion intervention. miRNAs are small non-coding RNA molecules that have been implicated in attenuating IR injury pathology in pre-clinical rodent models. In this review, we discuss the role of miR-1 and miR-21 in regulating myocardial apoptosis in ischemia-reperfusion injury in the whole heart as well as in different cardiac cell types with special emphasis on cardiomyocytes, fibroblasts, and immune cells. We also examine therapeutic potential of miR-1 and miR-21 in preclinical studies. More research is necessary to understand the cell-specific molecular principles of miRNAs in cardioprotection and application to acute myocardial IR injury.
Collapse
|
12
|
Abstract
Conduction disorders and arrhythmias remain difficult to treat and are increasingly prevalent owing to the increasing age and body mass of the general population, because both are risk factors for arrhythmia. Many of the underlying conditions that give rise to arrhythmia - including atrial fibrillation and ventricular arrhythmia, which frequently occur in patients with acute myocardial ischaemia or heart failure - can have an inflammatory component. In the past, inflammation was viewed mostly as an epiphenomenon associated with arrhythmia; however, the recently discovered inflammatory and non-canonical functions of cardiac immune cells indicate that leukocytes can be arrhythmogenic either by altering tissue composition or by interacting with cardiomyocytes; for example, by changing their phenotype or perhaps even by directly interfering with conduction. In this Review, we discuss the electrophysiological properties of leukocytes and how these cells relate to conduction in the heart. Given the thematic parallels, we also summarize the interactions between immune cells and neural systems that influence information transfer, extrapolating findings from the field of neuroscience to the heart and defining common themes. We aim to bridge the knowledge gap between electrophysiology and immunology, to promote conceptual connections between these two fields and to explore promising opportunities for future research.
Collapse
|
13
|
Marketou M, Kontaraki J, Patrianakos A, Kochiadakis G, Anastasiou I, Fragkiadakis K, Plevritaki A, Papadaki ST, Chlouverakis G, Parthenakis F. Peripheral Blood MicroRNAs as Potential Biomarkers of Myocardial Damage in Acute Viral Myocarditis. Genes (Basel) 2021; 12:genes12030420. [PMID: 33804042 PMCID: PMC8000267 DOI: 10.3390/genes12030420] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 12/26/2022] Open
Abstract
Background: microRNAs (miRs) have emerged as important modulators of cardiovascular development and disease. Our aim was to determine whether cardiac-related miRs such as miR-21-5p and miR-1-3p were differentially expressed in acute viral myocarditis and whether any of them was related with the extent of myocardial damage and left ventricular dysfunction. Methods: We enrolled 40 patients with acute viral myocarditis. Blood samples were taken on admission and miRs expression levels in peripheral blood mononuclear cells were quantified by real-time reverse transcription polymerase chain reaction. Results: miR-21-5p, miR-1-3p were significantly elevated in acute myocarditis. miR-21-5p levels showed a strong correlation with global longitudinal strain (r = 0.71, p < 0.01), while miR-1-3p had significant correlations with troponin I (r = 0.79, p < 0.01). Conclusions: The expression of miR-21-5p and miR-1-3p in peripheral blood is increased in acute viral myocarditis, and this increase is correlated with myocardial damage and indicative of left ventricular systolic dysfunction in these patients.
Collapse
Affiliation(s)
- Maria Marketou
- Cardiology Department, University General Hospital of Heraklion, 71110 Heraklion, Crete, Greece; (A.P.); (G.K.); (I.A.); (K.F.); (A.P.); (S.T.P.); (F.P.)
- Correspondence:
| | - Joanna Kontaraki
- Department of Molecular Cardiology, School of Medicine, University of Crete, 71110 Heraklion, Crete, Greece;
| | - Alexandros Patrianakos
- Cardiology Department, University General Hospital of Heraklion, 71110 Heraklion, Crete, Greece; (A.P.); (G.K.); (I.A.); (K.F.); (A.P.); (S.T.P.); (F.P.)
| | - George Kochiadakis
- Cardiology Department, University General Hospital of Heraklion, 71110 Heraklion, Crete, Greece; (A.P.); (G.K.); (I.A.); (K.F.); (A.P.); (S.T.P.); (F.P.)
| | - Ioannis Anastasiou
- Cardiology Department, University General Hospital of Heraklion, 71110 Heraklion, Crete, Greece; (A.P.); (G.K.); (I.A.); (K.F.); (A.P.); (S.T.P.); (F.P.)
| | - Konstantinos Fragkiadakis
- Cardiology Department, University General Hospital of Heraklion, 71110 Heraklion, Crete, Greece; (A.P.); (G.K.); (I.A.); (K.F.); (A.P.); (S.T.P.); (F.P.)
| | - Anthoula Plevritaki
- Cardiology Department, University General Hospital of Heraklion, 71110 Heraklion, Crete, Greece; (A.P.); (G.K.); (I.A.); (K.F.); (A.P.); (S.T.P.); (F.P.)
| | - Sofia Thalia Papadaki
- Cardiology Department, University General Hospital of Heraklion, 71110 Heraklion, Crete, Greece; (A.P.); (G.K.); (I.A.); (K.F.); (A.P.); (S.T.P.); (F.P.)
| | - Gregory Chlouverakis
- Division of Biostatistics, School of Medicine, University of Crete, 71110 Heraklion, Crete, Greece;
| | - Fragiskos Parthenakis
- Cardiology Department, University General Hospital of Heraklion, 71110 Heraklion, Crete, Greece; (A.P.); (G.K.); (I.A.); (K.F.); (A.P.); (S.T.P.); (F.P.)
| |
Collapse
|
14
|
Zhu P, Chen S, Zhang W, Duan G, Jin Y. Essential Role of Non-Coding RNAs in Enterovirus Infection: From Basic Mechanisms to Clinical Prospects. Int J Mol Sci 2021; 22:ijms22062904. [PMID: 33809362 PMCID: PMC7999384 DOI: 10.3390/ijms22062904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/31/2022] Open
Abstract
Enteroviruses (EVs) are common RNA viruses that can cause various types of human diseases and conditions such as hand, foot, and mouth disease (HFMD), myocarditis, meningitis, sepsis, and respiratory disorders. Although EV infections in most patients are generally mild and self-limiting, a small number of young children can develop serious complications such as encephalitis, acute flaccid paralysis, myocarditis, and cardiorespiratory failure, resulting in fatalities. Established evidence has suggested that certain non-coding RNAs (ncRNAs) such as microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs) are involved in the occurrence and progression of many human diseases. Recently, the involvement of ncRNAs in the course of EV infection has been reported. Herein, the authors focus on recent advances in the understanding of ncRNAs in EV infection from basic viral pathogenesis to clinical prospects, providing a reference basis and new ideas for disease prevention and research directions.
Collapse
Affiliation(s)
- Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
| | - Weiguo Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
- Correspondence: ; Tel.: +86-0371-67781453
| |
Collapse
|
15
|
Li J, Tu J, Gao H, Tang L. MicroRNA-425-3p inhibits myocardial inflammation and cardiomyocyte apoptosis in mice with viral myocarditis through targeting TGF-β1. IMMUNITY INFLAMMATION AND DISEASE 2020; 9:288-298. [PMID: 33332750 PMCID: PMC7860592 DOI: 10.1002/iid3.392] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022]
Abstract
Objective Emerging articles have profiled the relations between microRNAs and viral myocarditis. This research was unearthed to explore the capacity of miR‐425‐3p on cardiomyocyte apoptosis in mice with viral myocarditis and its mechanism. Methods A total of 120 mice were classified into 4 groups in a random fashion (n = 30). The mice were intraperitoneally injected with coxsackievirus type B3 (CVB3) to induce myocarditis. On the 7th day after CVB3 infection, 10 mice in each group were euthanized to assess the heart function indices of mice, observe the pathological conditions, detect myocardial tissue apoptosis, and measure the inflammatory factor levels in myocardial tissues. Expression of miR‐425‐3p, transforming growth factor (TGF‐β1), and apoptosis‐associated proteins in myocardial tissues was determined. The remaining 20 mice in each group were used for survival observation. The luciferase activity assay was implemented to validate the relationship between miR‐425‐3p and TGF‐β1. miR‐425‐3p mimic was transfected into mouse cardiomyocytes HL‐1 and then infected with CVB3 to further verify the regulatory effect of miR‐425‐3p on the cardiomyocyte apoptosis in viral myocarditis. Results miR‐425‐3p was lowly expressed in myocardial tissues of mice with viral myocarditis. Overexpressed miR‐425‐3p improved the cardiac function, alleviated pathological conditions, reduced cardiomyocyte apoptosis, decreased Bax and cleaved Caspase‐3 expression, elevated Bcl‐2 expression, decreased levels of inflammatory factors and improved survival rate of mice with viral myocarditis. Luciferase activity assay verified that miR‐425‐3p could bind to TGF‐β1, and overexpressed miR‐425‐3p suppressed TGF‐β1, p‐smad2/smad2 and p‐smad3/smad3 expression. In vitro experiments further verified that overexpression of miR‐425‐3p inhibited the apoptosis of CVB3‐HL‐1 cells, and the addition of TGF‐β1 would reverse this effect. Conclusion Our research indicates that miR‐425‐3p is poorly expressed in myocardial tissues of mice with viral myocarditis. Overexpressed miR‐425‐3p inhibits cardiomyocyte apoptosis and myocardial inflammation in mice with viral myocarditis as well as improves their survival rates through suppressing the TGF‐β1/smad axis.
Collapse
Affiliation(s)
- Junhua Li
- Department of Cardiology, The Third Affiliated Hospital of Nanchang University (The First Hospital of Nanchang), Nanchang, Jiangxi, China
| | - Jiehong Tu
- Department of Cardiology, The Third Affiliated Hospital of Nanchang University (The First Hospital of Nanchang), Nanchang, Jiangxi, China
| | - Hong Gao
- Department of Cardiology, The Third Affiliated Hospital of Nanchang University (The First Hospital of Nanchang), Nanchang, Jiangxi, China
| | - Lu Tang
- Department of Pediatrics, XD Group Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
16
|
Lv L, Zheng N, Zhang L, Li R, Li Y, Yang R, Li C, Fang R, Shabanova A, Li X, Liu Y, Liang H, Zhou Y, Shan H. Metformin ameliorates cardiac conduction delay by regulating microRNA-1 in mice. Eur J Pharmacol 2020; 881:173131. [PMID: 32450177 DOI: 10.1016/j.ejphar.2020.173131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Cardiac conduction delay may occur as a common complication of several cardiac diseases. A few therapies and drugs have a good effect on cardiac conduction delay. Metformin (Met) has a protective effect on the heart. This study's aim was to investigate whether Met could ameliorate cardiac conduction delay and its potential mechanism. Cardiac-specific microRNA-1 (miR-1) transgenic (TG) and myocardial infarction (MI) mouse models were used. Mice were administered with Met in an intragastric manner. We found that the expression of miR-1 was significantly up-regulated in H2O2 treated cardiomyocytes as well as in TG and MI mice. The protein levels of inwardly rectifying potassium channel 2.1 (Kir2.1) and Connexin43 (CX43) were down-regulated both in cardiomyocytes treated with H2O2 as well as cardiac tissues of TG and MI mice, as compared to their controls. Furthermore, the PR and QT intervals were prolonged, action potential duration (APD) was delayed, and conduction velocity (CV) was reduced, with upregulation of miR-1 in the hearts. In the meanwhile, intercalated disc injuries were found in the hearts of MI mice. Interestingly, Met can noticeably inhibit miR-1 upregulation and attenuate the changes mentioned above. Taken together, this suggested that Met could play an important role in improving cardiac conduction delay through inhibition of miR-1 expression. Our study proposes that Met is a potential candidate for the treatment of cardiac conduction delay and provides a new idea of treating arrhythmia with a drug.
Collapse
Affiliation(s)
- Lifang Lv
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; The Centre of Functional Experiment Teaching, Department of Basic Medicine, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Nan Zheng
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University (Institute of Clinical Pharmacy, The Heilongjiang Key Laboratory of Drug Research, Harbin Medical University), Harbin, China
| | - Lijia Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Ruotong Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Yingnan Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Rui Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Chao Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Ruonan Fang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Azaliia Shabanova
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Department of Outpatient and Emergency Pediatric, Bashkir State Medical University, Ground Floor, Teatralnaya Street, 2a, 450000, Ufa, Russia
| | - Xuelian Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Yingqi Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Yuhong Zhou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China.
| | - Hongli Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China.
| |
Collapse
|
17
|
Abstract
Intercalated discs (ICDs) are highly orchestrated structures that connect neighboring cardiomyocytes in the heart. Three major complexes are distinguished in ICD: desmosome, adherens junction (AJ), and gap junction (GJ). Desmosomes are major cell adhesion junctions that anchor cell membrane to the intermediate filament network; AJs connect the actin cytoskeleton of adjacent cells; and gap junctions metabolically and electrically connect the cytoplasm of adjacent cardiomyocytes. All these complexes work as a single unit, the so-called area composita, interdependently rather than individually. Mutation or altered expression of ICD proteins results in various cardiac diseases, such as ARVC (arrhythmogenic right ventricular cardiomyopathy), dilated cardiomyopathy, and hypotrophy cardiomyopathy, eventually leading to heart failure. In this article, we first review the recent findings on the structural organization of ICD and their functions and then focus on the recent advances in molecular pathogenesis of the ICD-related heart diseases, which include two major areas: i) the ICD gene mutations in cardiac diseases, and ii) the involvement of ICD proteins in signal transduction pathways leading to myocardium remodeling and eventual heart failure. These major ICD-related signaling pathways include Wnt/β-catenin pathway, p38 MAPK cascade, Rho-dependent serum response factor (SRF) signaling, calcineurin/NFAT signaling, Hippo kinase cascade, etc., which are differentially regulated in pathological conditions.
Collapse
|
18
|
Wang J, Han B. Dysregulated CD4+ T Cells and microRNAs in Myocarditis. Front Immunol 2020; 11:539. [PMID: 32269577 PMCID: PMC7109299 DOI: 10.3389/fimmu.2020.00539] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
Myocarditis is a polymorphic disease complicated with indeterminate etiology and pathogenesis, and represents one of the most challenging clinical problems lacking specific diagnosis and effective therapy. It is caused by a complex interplay of environmental and genetic factors, and causal links between dysregulated microribonucleic acids (miRNAs) and myocarditis have also been supported by recent epigenetic researches. Both dysregulated CD4+ T cells and miRNAs play critical roles in the pathogenesis of myocarditis, and the classic triphasic model of its pathogenesis consists of the acute infectious, subacute immune, and recovery/chronic myopathic phase. CD4+ T cells are key pathogenic factors underlying the development and progression of myocarditis, and the effector and regulatory subsets, respectively, promote and inhibit autoimmune responses. Furthermore, the reciprocal interplay of these subsets influences the pathogenesis as well. Dysregulated miRNAs along with their mRNA and protein targets have been identified in heart biopsies (intracellular miRNAs) and body fluids (circulating miRNAs) during myocarditis. These miRNAs show phase-dependent changes, and correlate with viral infection, immune status, fibrosis, destruction of cardiomyocytes, arrhythmias, cardiac functions, and outcomes. Thus, miRNAs are promising diagnostic markers and therapeutic targets in myocarditis. In this review, we review myocarditis with an emphasis on its pathogenesis, and present a summary of current knowledge of dysregulated CD4+ T cells and miRNAs in myocarditis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Bo Han
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
19
|
Nakamura T, Iwamoto T, Nakamura HM, Shindo Y, Saito K, Yamada A, Yamada Y, Fukumoto S, Nakamura T. Regulation of miR-1-Mediated Connexin 43 Expression and Cell Proliferation in Dental Epithelial Cells. Front Cell Dev Biol 2020; 8:156. [PMID: 32258035 PMCID: PMC7089876 DOI: 10.3389/fcell.2020.00156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Many genes encoding growth factors, receptors, and transcription factors are induced by the epithelial-mesenchymal interaction during tooth development. Recently, numerous functions of microRNAs (miRNAs) are reportedly involved in organogenesis and disease. miRNAs regulate gene expression by inhibiting translation and destabilizing mRNAs. However, the expression and function of miRNAs in tooth development remain poorly understood. This study aimed to analyze the expression of miRNAs produced during tooth development using a microarray system to clarify the role of miRNAs in dental development. miR-1 showed a unique expression pattern in the developing tooth. miR-1 expression in the tooth germ peaked on embryonic day 16.5, decreasing gradually on postnatal days 1 and 3. An in situ hybridization assay revealed that miR-1 is expressed at the cervical loop of the dental epithelium. The expression of miR-1 and connexin (Cx) 43, a target of miR-1, were inversely correlated both in vitro and in vivo. Knockdown of miR-1 induced the expression of Cx43 in dental epithelial cells. Interestingly, cells with miR-1 downregulation proliferated slower than the control cells. Immunocytochemistry revealed that Cx43 in cells with miR-1 knockdown formed both cell-cell gap junctions and hemichannels at the plasma membrane. Furthermore, the rate of ATP release was higher in cells with miR-1 knockdown than in control cells. Furthermore, Cx43 downregulation in developing molars was observed in Epiprofin-knockout mice, along with the induction of miR-1 expression. These results suggest that the expression pattern of Cx43 is modulated by miR-1 to control cell proliferation activity during dental epithelial cell differentiation.
Collapse
Affiliation(s)
- Tomoaki Nakamura
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Tsutomu Iwamoto
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hannah M Nakamura
- Division of Nephrology and Endocrinology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yuki Shindo
- Division of Molecular Pharmacology and Cell Biophysics, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kan Saito
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Aya Yamada
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yoshihiko Yamada
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, United States
| | - Satoshi Fukumoto
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Takashi Nakamura
- Division of Molecular Pharmacology and Cell Biophysics, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
20
|
Tong R, Jia T, Shi R, Yan F. Inhibition of microRNA-15 protects H9c2 cells against CVB3-induced myocardial injury by targeting NLRX1 to regulate the NLRP3 inflammasome. Cell Mol Biol Lett 2020; 25:6. [PMID: 32099552 PMCID: PMC7031959 DOI: 10.1186/s11658-020-00203-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
Background Viral myocarditis (VMC) is a type of cardiac inflammation that is generally caused by coxsackievirus B3 (CVB3) infection. Several MicroRNAs (miRNAs) are known to play crucial roles in VMC pathogenesis. MiR-15 is reportedly associated with myocardial injury, inflammatory responses and viral infection. Whether miR-15 affects the occurrence and development of VMC remains largely unknown. The roles of miR-15 and their underlying mechanisms in CVB3-stimulated H9c2 cells were assessed in this study. Methods We infected H9c2 cells with CVB3 to establish a VMC cellular model. We then determined the effects of miR-15 inhibition on three cardiomyocyte injury markers: lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB) and cardiac troponin-I (cTn-I). The impact on CVB3-induced cell apoptosis and pro-inflammatory cytokines was also investigated. The effects of miR-15 inhibition on NLRP3 inflammasome activation were also assessed. The target relationship between miR-15 and NOD-like receptor X1 (NLRX1) was determined using a luciferase reporter assay. Results MiR-15 expression was significantly upregulated in H9c2 cells after CVB3 infection. Inhibition of miR-15 significantly decreased the CVB3-induced levels of LDH, CK-MB and cTn-I. It also elevated cell viability, reduced CVB3-induced cell apoptosis and decreased the generation of the interleukins IL-1β, IL-6 and IL-18. Furthermore, we determined that miR-15 inhibition suppressed NLRP3 inflammasome activation by downregulating NLRP3 and caspase-1 p20 expression. We found a direct target relationship between miR-15 and NLRX1. Additionally, inhibition of NLRX1 reversed the protective effects of miR-15 inhibition against CVB3-induced myocardial cell injury by regulating the NLRP3 inflammasome. Conclusion Our results indicate that miR-15 inhibition alleviates CVB3-induced myocardial inflammation and cell injury. This may be partially due to NLRX1-mediated NLRP3 inflammasome inactivation.
Collapse
Affiliation(s)
- Ru Tong
- 1Laboratory Dept., Second Hospital of Shanxi Medical University, Taiyuan, 030001 Shanxi China
| | - Tiewen Jia
- 1Laboratory Dept., Second Hospital of Shanxi Medical University, Taiyuan, 030001 Shanxi China
| | - Ruijie Shi
- 2Laboratory Dept., Shaanxi Provincial People's Hospital, No. 256, West Youyi Road, Xi'an, 710068 Shaanxi province China
| | - Futang Yan
- 2Laboratory Dept., Shaanxi Provincial People's Hospital, No. 256, West Youyi Road, Xi'an, 710068 Shaanxi province China
| |
Collapse
|
21
|
Šustr F, Stárek Z, Souček M, Novák J. Non-coding RNAs and Cardiac Arrhythmias. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:287-300. [PMID: 32285419 DOI: 10.1007/978-981-15-1671-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Cardiac arrhythmias represent wide and heterogenic group of disturbances in the cardiac rhythm. Pathophysiology of individual arrhythmias is highly complex and dysfunction in ion channels/currents involved in generation or spreading of action potential is usually documented. Non-coding RNAs (ncRNAs) represent highly variable group of molecules regulating the heart expression program, including regulation of the expression of individual ion channels and intercellular connection proteins, e.g. connexins.Within this chapter, we will describe basic electrophysiological properties of the myocardium. We will focus on action potential generation and spreading in pacemaker and non-pacemaker cells, including description of individual ion channels (natrium, potassium and calcium) and their ncRNA-mediated regulation. Most of the studies have so far focused on microRNAs, thus, their regulatory function will be described into greater detail. Clinical consequences of altered ncRNA regulatory function will also be described together with potential future directions of the research in the field.
Collapse
Affiliation(s)
- Filip Šustr
- Second Department of Internal Medicine of St. Anne's University Hospital in Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zdeněk Stárek
- First Department of Internal Medicine and Cardioangiology of St. Anne's University Hospital in Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Miroslav Souček
- Second Department of Internal Medicine of St. Anne's University Hospital in Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Novák
- Second Department of Internal Medicine of St. Anne's University Hospital in Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- CEITEC - Central European Institute for Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
22
|
Mirna M, Paar V, Rezar R, Topf A, Eber M, Hoppe UC, Lichtenauer M, Jung C. MicroRNAs in Inflammatory Heart Diseases and Sepsis-Induced Cardiac Dysfunction: A Potential Scope for the Future? Cells 2019; 8:cells8111352. [PMID: 31671621 PMCID: PMC6912436 DOI: 10.3390/cells8111352] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/18/2019] [Accepted: 10/26/2019] [Indexed: 02/06/2023] Open
Abstract
Background: MicroRNAs (miRNAs) are small, single-stranded RNA sequences that regulate gene expression on a post-transcriptional level. In the last few decades, various trials have investigated the diagnostic and therapeutic potential of miRNAs in several disease entities. Here, we provide a review of the available evidence on miRNAs in inflammatory heart diseases (myocarditis, endocarditis, and pericarditis) and sepsis-induced cardiac dysfunction. Methods: Systematic database research using the PubMed and Medline databases was conducted between July and September 2019 using predefined search terms. The whole review was conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Results: In total, 131 studies were screened, 96 abstracts were read, and 69 studies were included in the review. Discussion: In the future, circulating miRNAs could serve as biomarkers for diagnosis and disease monitoring in the context of inflammatory heart diseases and sepsis-induced cardiac dysfunction. Considering the promising results of different animal models, certain miRNAs could also emerge as novel therapeutic approaches in this setting.
Collapse
Affiliation(s)
- Moritz Mirna
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria.
| | - Vera Paar
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria.
| | - Richard Rezar
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria.
| | - Albert Topf
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria.
| | - Miriam Eber
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria.
| | - Uta C Hoppe
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria.
| | - Michael Lichtenauer
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria.
| | - Christian Jung
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Duesseldorf, 40225 Duesseldorf, Germany.
| |
Collapse
|
23
|
Up-regulation of miR-27 extenuates lipopolysaccharide-induced injury in H9c2 cells via modulating ICAM1 expression. Genes Genomics 2019; 41:1467-1474. [PMID: 31576518 DOI: 10.1007/s13258-019-00863-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/25/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND MiR-27 has been found to present an overt myocardial expression during cardiogenesis. However, whether miR-27 involves in myocarditis development and the possible molecular mechanism remain unknown. The purpose of this study was to investigate the biological characteristic of miR-27 in LPS-damaged H9c2 cells. METHODS H9c2 cells were treated with lipopolysaccharide (LPS, 10 µg/ml) for 12 h to form cell injury. MiR-27 mimic and inhibitor were used to up-regulate or down-regulate miR-27 expression. MTT assay and flow cytometry analysis were conducted to test cell viability and apoptosis. The relative RNA expression level of miR-27 and intercellular adhesion molecule 1 (ICAM1) was determined by qRT-PCR. Luciferase reporter gene assay was utilized to confirm the interaction between miR-27 and ICAM1. Western blot was used to determine the protein expression levels. RESULTS We observed that LPS treatment significantly decreased the level of miR-27 in H9c2 cells. Moreover, LPS exposure suppressed cell viability, promoted cell apoptosis and increased the relative expression of p-NF-κB p65/NF-κB p65 and p-IκBα/IκBα. Up-regulation of miR-27 increased cell proliferation and reduced cell apoptosis, while down-regulation of miR-27 suppressed cell growth and promoted cell apoptosis. ICAM1 was predicted and verified as a target of miR-27, and the expression of ICAM1 is negatively regulated by miR-27. The relative expression of p-NF-κB p65/NF-κB p65 and p-IκBα/IκBα was dramatically decreased by miR-27 mimic and increased by miR-27 inhibitor. CONCLUSION Our study illustrated that up-regulation of miR-27 exhibits a protective effect on LPS-damaged H9c2 cells, which may be achieved by regulating ICAM1 and NF-κB signaling.
Collapse
|
24
|
Yuan X, Guo Y, Chen D, Luo Y, Chen D, Miao J, Chen Y. Long non-coding RNA MALAT1 functions as miR-1 sponge to regulate Connexin 43-mediated ossification of the posterior longitudinal ligament. Bone 2019; 127:305-314. [PMID: 31280017 DOI: 10.1016/j.bone.2019.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/03/2019] [Accepted: 06/20/2019] [Indexed: 01/09/2023]
Abstract
Ossification of the posterior longitudinal ligament (OPLL) is the major cause for several deteriorate bone and joint diseases. Its development is a highly organized dynamic process as modulated by various physiological and pathophysiological factors. Both long non-coding RNAs (lncRNAs) and small non-coding RNAs (miRNAs) have been postulated to involve into almost all the biological conditions. Here, we applied high through-put transcriptome screening to unveil lncRNAs highly regulated under OPLL condition. siRNA assay in combination with western blot and quantitative PCR deciphered the lncRNA and miRNA functions in OPLL and their underlying mechanism. Here we identified an lncRNA, named Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1) engaged into the development of OPLL by indirectly targeting Connexin 43 (Cx43) gene. As previously reported, Cx43 is one of the main proteins contributing to OPLL partially through enhancing inflammatory signaling. On top of that, we provided another regulatory layer that MALAT1 served as the upstream effector governing the transcription of Cx43 gene. Perturbation of MALAT1 significantly inhibited Cx43 expression, inflammation, and osteogenesis. Mechanistically, in silico analysis and experimental validation both confirmed that microRNA-1 (miR-1) was the mediator connecting MALAT1-Cx43 axis: overexpression of miR-1 diminished Cx43 expression and OPLL process; meanwhile, MALAT1 acted as miR-1 sponge to inhibit its suppressive transcription effect on downstream ossification related genes. Knock-down of MALAT1 released sequestered miR-1, which repressed Cx43 expression and associated OPLL. Likewise, induced OPLL caused by overexpression of MALAT1 can be ameliorated by enhanced miR-1 function, knock-down of Cx43 or inhibition of inflammation. More importantly, further validation using patient ligament samples from non-OPLL and OPLL individuals identified MALAT1-miR-1-Cx43 regulatory axis. Collectively, we found a novel mechanism through lncRNA-miRNA interaction that provides more insights into understanding the development of OPLL.
Collapse
Affiliation(s)
- Xiaoqiu Yuan
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, China
| | - Yongfei Guo
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, China
| | - Dechun Chen
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, China
| | - Yibin Luo
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, China
| | - Deyu Chen
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, China
| | - Jinhao Miao
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, China
| | - Yu Chen
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, China.
| |
Collapse
|
25
|
Cartoski MJ, Nikolov PP, Prakosa A, Boyle PM, Spevak PJ, Trayanova NA. Computational Identification of Ventricular Arrhythmia Risk in Pediatric Myocarditis. Pediatr Cardiol 2019; 40:857-864. [PMID: 30840104 PMCID: PMC6451890 DOI: 10.1007/s00246-019-02082-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/27/2019] [Indexed: 12/11/2022]
Abstract
Children with myocarditis have increased risk of ventricular tachycardia (VT) due to myocardial inflammation and remodeling. There is currently no accepted method for VT risk stratification in this population. We hypothesized that personalized models developed from cardiac late gadolinium enhancement magnetic resonance imaging (LGE-MRI) could determine VT risk in patients with myocarditis using a previously-validated protocol. Personalized three-dimensional computational cardiac models were reconstructed from LGE-MRI scans of 12 patients diagnosed with myocarditis. Four patients with clinical VT and eight patients without VT were included in this retrospective analysis. In each model, we incorporated a personalized spatial distribution of fibrosis and myocardial fiber orientations. Then, VT inducibility was assessed in each model by pacing rapidly from 26 sites distributed throughout both ventricles. Sustained reentrant VT was induced from multiple pacing sites in all patients with clinical VT. In the eight patients without clinical VT, we were unable to induce sustained reentry in our simulations using rapid ventricular pacing. Application of our non-invasive approach in children with myocarditis has the potential to correctly identify those at risk for developing VT.
Collapse
Affiliation(s)
- Mark J Cartoski
- Divison of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Plamen P Nikolov
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Adityo Prakosa
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Patrick M Boyle
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Philip J Spevak
- Divison of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Natalia A Trayanova
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Zhang X, Gao X, Hu J, Xie Y, Zuo Y, Xu H, Zhu S. ADAR1p150 Forms a Complex with Dicer to Promote miRNA-222 Activity and Regulate PTEN Expression in CVB3-Induced Viral Myocarditis. Int J Mol Sci 2019; 20:ijms20020407. [PMID: 30669342 PMCID: PMC6359435 DOI: 10.3390/ijms20020407] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 02/06/2023] Open
Abstract
Adenosine deaminases acting on RNA (ADAR) are enzymes that regulate RNA metabolism through post-transcriptional mechanisms. ADAR1 is involved in a variety of pathological conditions including inflammation, cancer, and the host defense against viral infections. However, the role of ADAR1p150 in vascular disease remains unclear. In this study, we examined the expression of ADAR1p150 and its role in viral myocarditis (VMC) in a mouse model. VMC mouse cardiomyocytes showed significantly higher expression of ADAR1p150 compared to the control samples. Coimmunoprecipitation verified that ADAR1p150 forms a complex with Dicer in VMC. miRNA-222, which is involved in many cardiac diseases, is highly expressed in cardiomyocytes in VMC. In addition, the expression of miRNA-222 was promoted by ADAR1p150/Dicer. Among the target genes of miRNA-222, the expression of phosphatase-and-tensin (PTEN) protein was significantly reduced in VMC. By using a bioinformatics tool, we found a potential binding site of miRNA-222 on the PTEN gene’s 3′-UTR, suggesting that miRNA-222 might play a regulatory role. In cultured cells, miR-222 suppressed PTEN expression. Our findings suggest that ADAR1p150 plays a key role in complexing with Dicer and promoting the expression of miRNA-222, the latter of which suppresses the expression of the target gene PTEN during VMC. Our work reveals a previously unknown role of ADAR1p150 in gene expression in VMC.
Collapse
Affiliation(s)
- Xincai Zhang
- Institute of Forensic Medicine, Soochow University, Suzhou 215021, China.
| | - Xiangting Gao
- Department of Pathology, School of Medicine, Shihezi University, Shihezi 215021, China.
| | - Jun Hu
- Institute of Forensic Medicine, Soochow University, Suzhou 215021, China.
| | - Yuxin Xie
- Institute of Forensic Medicine, Soochow University, Suzhou 215021, China.
| | - Yuanyi Zuo
- Institute of Forensic Medicine, Soochow University, Suzhou 215021, China.
| | - Hongfei Xu
- Institute of Forensic Medicine, Soochow University, Suzhou 215021, China.
| | - Shaohua Zhu
- Institute of Forensic Medicine, Soochow University, Suzhou 215021, China.
| |
Collapse
|
27
|
Jin Y, Zhou TY, Cao JN, Feng QT, Fu YJ, Xu X, Yang CJ. MicroRNA-206 Downregulates Connexin43 in Cardiomyocytes to Induce Cardiac Arrhythmias in a Transgenic Mouse Model. Heart Lung Circ 2018; 28:1755-1761. [PMID: 30322759 DOI: 10.1016/j.hlc.2018.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/05/2018] [Accepted: 09/18/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are critical modulators of various physiological and pathological processes, but their role in cardiac arrhythmias remains yet to be completely understood. Connexin43 (Cx43) is an important cardiac gap junction protein and a potential target of miR-206, and downregulation of Cx43 induces ventricular tachyarrhythmias. METHODS We investigated the effects of miR-206 overexpression on the adult mouse heart and in cardiac arrhythmias. Luciferase activity assay was employed to validate Cx43 as a direct target of miR-206. Expression of Cx43 was measured in cardiac muscle cell line HL-1 securely expressing miR-206. An inducible miR-206 overexpression mouse model was established to evaluate the in vivo effect of miR-206 on Cx43 expression and cardiac rhythm. RESULTS MiR-206 directly recognised 3'-untranslated region of Cx43 mRNA to inhibit its expression in HL-1 cells. Induction of miR-206 in the adult mouse heart suppressed Cx43 expression, particularly in the atria and ventricle. Importantly, miR-206 overexpression also induced abnormal heart-rate and PR interval, and shortened life-span in the experimental mice. CONCLUSIONS In cardiomyocytes, miR-206 is a upstream regulator of Cx43, and its overexpression downregulates Cx43 to induce abnormal heart-rate and PR interval.
Collapse
Affiliation(s)
- Yan Jin
- Department of Cardiology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi 214002, Jiangsu, China
| | - Tian-Yi Zhou
- Department of Cardiology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi 214002, Jiangsu, China
| | - Jia-Ning Cao
- Department of Cardiology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi 214002, Jiangsu, China
| | - Qiu-Ting Feng
- Department of Cardiology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi 214002, Jiangsu, China
| | - Ya-Jing Fu
- Department of Cardiology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi 214002, Jiangsu, China
| | - Xin Xu
- Department of Cardiology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi 214002, Jiangsu, China.
| | - Cheng-Jian Yang
- Department of Cardiology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi 214002, Jiangsu, China.
| |
Collapse
|
28
|
Abstract
During the last years, it has become evident that miRNAs are important players in almost all physiological and pathological processes, including viral infections. Enterovirus infections range from mild to severe acute infections concerning several organ systems and are also associated with chronic diseases. In this review, we summarize the findings on the impact of acute and persistent enterovirus infection on the expression of cellular miRNAs. Furthermore, the currently available data on the regulation of cellular or viral targets by the dysregulated miRNAs are reviewed. Finally, a translational perspective, namely the use of miRNAs as biomarkers of enterovirus infection and as antiviral strategy is discussed.
Collapse
Affiliation(s)
- Ilka Engelmann
- a Laboratoire de Virologie EA3610, Faculté de Médecine, CHU Lille, University of Lille , Lille , France
| | - Enagnon Kazali Alidjinou
- a Laboratoire de Virologie EA3610, Faculté de Médecine, CHU Lille, University of Lille , Lille , France
| | - Antoine Bertin
- a Laboratoire de Virologie EA3610, Faculté de Médecine, CHU Lille, University of Lille , Lille , France
| | - Famara Sane
- a Laboratoire de Virologie EA3610, Faculté de Médecine, CHU Lille, University of Lille , Lille , France
| | - Didier Hober
- a Laboratoire de Virologie EA3610, Faculté de Médecine, CHU Lille, University of Lille , Lille , France
| |
Collapse
|
29
|
Wang Y, Li J, Xuan L, Liu Y, Shao L, Ge H, Gu J, Wei C, Zhao M. Astragalus Root dry extract restores connexin43 expression by targeting miR-1 in viral myocarditis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 46:32-38. [PMID: 30097120 DOI: 10.1016/j.phymed.2018.06.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 06/12/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Viral myocarditis is defined as viral infection of myocardial tissue leading to impaired heart function and heart failure. Accumulating evidences have shown that arrhythmia is one of important complicating diseases of viral myocarditis causing increased mortality and morbidity. There are no effective treatment for the viral infection and complicating arrhythmia. PURPOSE This study investigated the effect and mechanism of Astragalus Root dry extract (ARDE) on arrhythmia induced by CVB3 in mice. METHODS The mice and HL-1 cells were treated with CVB3 and ARDE. Reciprocal regulation of Cx43 and miR-1 were observed in the CVB3 infected mouse myocardium and culture HL-1 cells. RESULTS CVB3 IP injection increased immune cell infiltration in mouse left ventricle and caused irregular arrhythmia. ARDE treatment prevented the increase of immune cell infiltration and arrhythmia. Overexpression of miR-1 significantly inhibited both endogenous Cx43 expression and Cx43 3'UTR luciferase activity in HL-1 cells. Mutation of census binding site of +1586-1593 bp not +465-472 bp in Cx43 3'UTR luciferase resulted in abolishment of miR-1 inhibitory effects in HL-1 cells. Loss-of- function of miR-1 restored CVB3-induced Cx43 expression reduction in cultured HL-1 cells. The presence of ARDE attenuated the augmented miR-1 induced by CVB3 infection in vivo and in vitro. CONCLUSION This study identified that CVB3 infection reduced Cx43 expression by elevating miR-1 level in mouse viral myocarditis. For the first time, ARDE was shown to prevent arrhythmia, and rescue CVB3-induced endogenous Cx43 expression by regulating miR-1 level.
Collapse
Affiliation(s)
- Yu Wang
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, PR China
| | - Jian Li
- Intensive Care Unit, No.2 Affiliated Hospital of Jilin University, ChangChun, Jilin Province, PR China - the emergency and critical care department of the second hospital of Jilin University, Chuangchun, Jilin province, China
| | - Liying Xuan
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, PR China
| | - Yongfeng Liu
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, PR China
| | - Liqun Shao
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, PR China; First Clinical Medical of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, PR China
| | - Hongyan Ge
- First Clinical Medical of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, PR China
| | - Junyi Gu
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, PR China; First Clinical Medical of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, PR China
| | - Chengxi Wei
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, PR China.
| | - Ming Zhao
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, PR China; First Clinical Medical of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, PR China; Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, PR China.
| |
Collapse
|
30
|
The Clinical Significance of Changes in the Expression Levels of MicroRNA-1 and Inflammatory Factors in the Peripheral Blood of Children with Acute-Stage Asthma. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7632487. [PMID: 30046607 PMCID: PMC6038680 DOI: 10.1155/2018/7632487] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/18/2018] [Accepted: 05/07/2018] [Indexed: 12/21/2022]
Abstract
This study assessed the changes and clinical significance of microRNA-1 (miR-1) and inflammatory factors in the peripheral blood of children with acute-stage asthma. 100 children with acute-stage asthma (study group) and 100 healthy children (control group) were enrolled. For all enrolled children, the peripheral blood levels of miR-1, interleukin-4 (IL-4), IL-5, IL-8, tumor necrosis factor-alpha (TNF-α), and interferon-γ (IFN-γ) were measured. The relative expression levels of miR-1 and IFN-γ in the peripheral blood of children in the study group were significantly lower than those in the control group, whereas expression levels of IL-4, IL-5, IL-8, and TNF-α were significantly higher. Moreover, these levels changed to a greater extent in patients with severe disease (P < 0.05). Further analyses showed that the miR-1 expression level positively correlated with IFN-γ and negatively correlated with IL-4, IL-5, IL-8, and TNF-α expression levels (P < 0.05). ROC curve analysis to identify diagnostic specificity and sensitivity showed that, for diagnosing exacerbation in asthma, the area under the curve (AUC) for miR-1 was the highest (AUC = 0.900, P < 0.05) of all tested markers; this held true for diagnosing severe asthma as well (AUC = 0.977, P < 0.05). Compared to healthy children, children with acute-stage asthma had a low miR-1 expression level and a Th1/Th2 imbalance in their peripheral blood. The changes were closely related, became more exaggerated with an increase in disease severity, and could be used as auxiliary variables for diagnosing asthma exacerbation and evaluating disease severity.
Collapse
|
31
|
Wang Y, Wei CX, Shao LQ, Zhao M. MiRNA Signaling in Viral Myocarditis Novel and Unique Pathological Features. ACTA CARDIOLOGICA SINICA 2018; 34:77-86. [PMID: 29375227 DOI: 10.6515/acs.201801_34(1).20170901a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background Micro-RNAs (miRNAs) are small non-coding RNAs that modulate many target genes. Viral myocarditis is common cardiomyopathy, however, there is an absence of effective therapeutic strategies for viral myocarditis (VMC). The purpose of this research was to characterize changes in miRNAs expression in VMC mice. Methods Atrial myocytes were infected coxsackievirus B3 and miRNAs microarray was performed. miRNAs target predicted and the bioinformatics analysis was carried out by gene ontology (GO) and KEGG pathway analysis. To validate the results, Difference miRNAs were identified in heart of mice by real-time polymerase chain reaction (PCR). Results We identified 94 miRNAs that were differentially expressed (27 were up-regulated and 67 were down-regulated by at least 2.0-fold). Real time PCR analysis has confirmed that the expression levels of 7 miRNAs up-regulated, 18 miRNAs down-regulated. They were mainly involved in protein binding, small GTPase mediated signal transduction, protein phosphorylation by GO. Pathway analysis showed that a significant enrichment in several pathways related to cAMP signaling pathway, AMPK signaling pathway, RAS signaling pathway, Rap1 signaling pathway, ErbB signaling pathway, Oxytocin signaling pathway. Conclusions Our results provide a better understanding of the mechanisms of viral myocarditis pathophysiology.
Collapse
Affiliation(s)
- Yu Wang
- Inner Mongolia University for the Nationalities.,Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| | - Cheng-Xi Wei
- Inner Mongolia University for the Nationalities.,Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| | - Li-Qun Shao
- First Clinical Medical of Inner Mongolia University for Nationalities
| | - Ming Zhao
- First Clinical Medical of Inner Mongolia University for Nationalities.,Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| |
Collapse
|
32
|
Zhang Z, Dai X, Qi J, Ao Y, Yang C, Li Y. Astragalus mongholicus (Fisch.) Bge Improves Peripheral Treg Cell Immunity Imbalance in the Children With Viral Myocarditis by Reducing the Levels of miR-146b and miR-155. Front Pediatr 2018; 6:139. [PMID: 29977885 PMCID: PMC6021496 DOI: 10.3389/fped.2018.00139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/25/2018] [Indexed: 12/03/2022] Open
Abstract
Viral myocarditis (VMC) is a common cardiac disease, however, there still lacks an effective therapeutic strategy for VMC. Astragalus mongholicus (Fisch.) Bge (AB), a Chinese herb with some functional metabolites, may have some pharmacological effects on VMC. AB ingredients were measured by a full-scan LCQ mass spectrum. We aimed to explore the effects of AB on the VMC children by investigating peripheral Treg cell homeostasis. A total of 68 VMC children were random and evenly assigned into an AG group (received 10-mL AB oral liquid daily), and a CG group (received placebo daily). Peripheral blood mononuclear cells (PBMC) were obtained from peripheral blood and Treg cells were isolated. The levels of miR-146b, miR-155, Treg immunity activity and myocarditis biomarkers were measured in Treg cells. There were four main components (sucrose, calycosin, Astragaloside IV and calycosin-7-glucoside) in AB. The cases sinus tachycardia, frequent premature ventricular contractions, and supraventricular tachycardia were significantly reduced in the AG group (P < 0.05). Meanwhile, the myocardial enzymes and cardiac function indexes were improved in the AG group when compared with the CG group (P < 0.05). The time of electrocardiogram recovery, symptom duration and hospital stay was shorter in the AG group than in the CG group (P < 0.05). The levels of miR-146b and miR-155 were higher in the CG group than in the AG group (P < 0.05). The levels of ROR-γt (retinoic acid receptor-related orphan nuclear receptor gamma), FoxP3 (forkhead transcription factor), IL-10 (interleukin-11) and TGF-β (transforming growth factor beta) were lower in the CG group than in the AG group (P < 0.05). In contrast, the levels of IL-17, IL-21, CK-MB (creatine kinase-MB), cTnI (cardiac troponin I), GrB (granzyme B), sFasL (soluble fas ligand) and caspase-3 were higher in the CG group than in the AG group (P < 0.05). Furthermore, the levels of ROR-γt, FoxP3, IL-10, and TGF-β were positively, whereas the levels of IL-17, IL-21, CK-MB, cTnI, GrB, sFasL and caspase-3 were negatively, associated with the levels of miR-146b and miR-155 (P < 0.05). AB treatment improved cardiac functions, peripheral Treg cell immunity imbalance in the children with VMC by reducing the levels of miR-146b and miR-155.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of PICU, The First Hospital of Jilin University, Changchun, China
| | - Xinlun Dai
- Clinical Medical College, Jilin University, Changchun, China
| | - Ji Qi
- Department of PICU, The First Hospital of Jilin University, Changchun, China
| | - Yu Ao
- Department of PICU, The First Hospital of Jilin University, Changchun, China
| | - Chunfeng Yang
- Department of PICU, The First Hospital of Jilin University, Changchun, China
| | - Yumei Li
- Department of PICU, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
33
|
Leybaert L, Lampe PD, Dhein S, Kwak BR, Ferdinandy P, Beyer EC, Laird DW, Naus CC, Green CR, Schulz R. Connexins in Cardiovascular and Neurovascular Health and Disease: Pharmacological Implications. Pharmacol Rev 2017; 69:396-478. [PMID: 28931622 PMCID: PMC5612248 DOI: 10.1124/pr.115.012062] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Connexins are ubiquitous channel forming proteins that assemble as plasma membrane hemichannels and as intercellular gap junction channels that directly connect cells. In the heart, gap junction channels electrically connect myocytes and specialized conductive tissues to coordinate the atrial and ventricular contraction/relaxation cycles and pump function. In blood vessels, these channels facilitate long-distance endothelial cell communication, synchronize smooth muscle cell contraction, and support endothelial-smooth muscle cell communication. In the central nervous system they form cellular syncytia and coordinate neural function. Gap junction channels are normally open and hemichannels are normally closed, but pathologic conditions may restrict gap junction communication and promote hemichannel opening, thereby disturbing a delicate cellular communication balance. Until recently, most connexin-targeting agents exhibited little specificity and several off-target effects. Recent work with peptide-based approaches has demonstrated improved specificity and opened avenues for a more rational approach toward independently modulating the function of gap junctions and hemichannels. We here review the role of connexins and their channels in cardiovascular and neurovascular health and disease, focusing on crucial regulatory aspects and identification of potential targets to modify their function. We conclude that peptide-based investigations have raised several new opportunities for interfering with connexins and their channels that may soon allow preservation of gap junction communication, inhibition of hemichannel opening, and mitigation of inflammatory signaling.
Collapse
Affiliation(s)
- Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Paul D Lampe
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Stefan Dhein
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Brenda R Kwak
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Peter Ferdinandy
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Eric C Beyer
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Dale W Laird
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Christian C Naus
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Colin R Green
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Rainer Schulz
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| |
Collapse
|
34
|
Gui YJ, Yang T, Liu Q, Liao CX, Chen JY, Wang YT, Hu JH, Xu DY. Soluble epoxide hydrolase inhibitors, t-AUCB, regulated microRNA-1 and its target genes in myocardial infarction mice. Oncotarget 2017; 8:94635-94649. [PMID: 29212255 PMCID: PMC5706901 DOI: 10.18632/oncotarget.21831] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/20/2017] [Indexed: 02/04/2023] Open
Abstract
Purpose Soluble epoxide hydrolase inhibitors (sEHIs) had been demonstrated to produce cardioprotective effects against ischemia-induced lethal arrhythmias, but the exact mechanisms remain unknown. The present study was designed to investigate whether the beneficial effects of sEHIs are related to regulation of microRNA-1, which was a proarrhythmic factor in the ischemic heart. Methods A mousemyocardial infarction (MI) model was established by ligating the coronary artery. sEHI t-AUCB (0.2, 1, 5 mg/L in drinking-water) was administered daily seven days before MI. The incidence of arrhythmias was assessed by in vivo electrophysiologic studies. miR-1, KCNJ2 (encoding the K+ channel subunit Kir2.1), and GJA1 (encoding connexin 43 [Cx43]) mRNA were measured by real-time PCR; Kir2.1 and Cx43 protein were assessed by western blotting and immunohistochemistry. Results We demonstrated that sEHIs reduced the myocardium infarct size and incidence of inducible arrhythmias in MI mice. Up-regulation of miR-1 and down-regulation of KCNJ2/Kir2.1 and GJA1/Cx43 mRNA/protein were observed in ischemic myocaridum, whereas administration of sEHIs produced an opposite effect. In addition, miR-1 overexpression inhibited expression of the target mRNA and their corresponding proteins, whereas t-AUCB reversed the effects. Our results further revealed that PI3K/Akt signaling pathway might participate in the negatively regulation of miR-1 by sEHi. Conclusions We conclude that sEHIs can repress miR-1, thus stimulate expression of KCNJ2/Kir2.1 and GJA1/Cx43 mRNA/protein in MI mice, suggesting a possible mechanism for its potential therapeutic application in ischemic arrhythmias.
Collapse
Affiliation(s)
- Ya-Jun Gui
- Department of Cardiology, Internal Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Tao Yang
- Department of Cardiology, Internal Medicine, Changsha Central Hospital, Changsha, Hunan 410011, China
| | - Qiong Liu
- Department of Cardiology, Internal Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Cai-Xiu Liao
- Department of Geratology, Internal Medicine, The Third Hospital of Changsha, Changsha, Hunan 410011, China
| | - Jing-Yuan Chen
- Department of Cardiology, Internal Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Ya-Ting Wang
- Department of Cardiology, Internal Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jia-Hui Hu
- Department of Cardiology, Internal Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Dan-Yan Xu
- Department of Cardiology, Internal Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
35
|
George SA, Calhoun PJ, Gourdie RG, Smyth JW, Poelzing S. TNFα Modulates Cardiac Conduction by Altering Electrical Coupling between Myocytes. Front Physiol 2017; 8:334. [PMID: 28588504 PMCID: PMC5440594 DOI: 10.3389/fphys.2017.00334] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
Abstract
Background: Tumor Necrosis Factor α (TNFα) upregulation during acute inflammatory response has been associated with numerous cardiac effects including modulating Connexin43 and vascular permeability. This may in turn alter cardiac gap junctional (GJ) coupling and extracellular volume (ephaptic coupling) respectively. We hypothesized that acute exposure to pathophysiological TNFα levels can modulate conduction velocity (CV) in the heart by altering electrical coupling: GJ and ephaptic. Methods and Results: Hearts were optically mapped to determine CV from control, TNFα and TNFα + high calcium (2.5 vs. 1.25 mM) treated guinea pig hearts over 90 mins. Transmission electron microscopy was performed to measure changes in intercellular separation in the gap junction-adjacent extracellular nanodomain—perinexus (WP). Cx43 expression and phosphorylation were determined by Western blotting and Cx43 distribution by confocal immunofluorescence. At 90 mins, longitudinal and transverse CV (CVL and CVT, respectively) increased with control Tyrode perfusion but TNFα slowed CVT alone relative to control and anisotropy of conduction increased, but not significantly. TNFα increased WP relative to control at 90 mins, without significantly changing GJ coupling. Increasing extracellular calcium after 30 mins of just TNFα exposure increased CVT within 15 mins. TNFα + high calcium also restored CVT at 90 mins and reduced WP to control values. Interestingly, TNFα + high calcium also improved GJ coupling at 90 mins, which along with reduced WP may have contributed to increasing CV. Conclusions: Elevating extracellular calcium during acute TNFα exposure reduces perinexal expansion, increases ephaptic, and GJ coupling, improves CV and may be a novel method for preventing inflammation induced CV slowing.
Collapse
Affiliation(s)
- Sharon A George
- Department of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, United States
| | - Patrick J Calhoun
- Department of Biological Sciences, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, United States
| | - Robert G Gourdie
- Department of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, United States.,Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research InstituteRoanoke, VA, United States
| | - James W Smyth
- Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research InstituteRoanoke, VA, United States
| | - Steven Poelzing
- Department of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, United States.,Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research InstituteRoanoke, VA, United States
| |
Collapse
|
36
|
Genetic and epigenetic regulation of arrhythmogenic cardiomyopathy. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2064-2069. [PMID: 28454914 DOI: 10.1016/j.bbadis.2017.04.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 04/11/2017] [Accepted: 04/22/2017] [Indexed: 12/26/2022]
Abstract
Arrhythmogenic cardiomyopathy (AC) is most commonly characterized as a disease of the intercalated disc that promotes abnormal cardiac conduction. Previously, arrhythmogenic cardiomyopathy was frequently referred to as arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D); however, genotype-phenotype studies have defined a broader phenotypic spectrum; with the identification of left-dominant and biventricular subtypes. Molecular insight into AC has primarily focused on mutations in desmosomal proteins and the downstream signaling pathways; however, desmosomal gene mutations can only be identified in approximately 50% of patients with AC. Animal and cellular studies have shown that in addition to abnormal biomechanical properties from changes in desmosome function, crosstalk from the desmosome to the nucleus, gap junctions, and ion channels are implicated in the pathobiology of AC. In this review, we highlight some of the newly identified genetic and epigenetic mechanisms that may lead to the development of AC including the role of the Hippo pathway and microRNAs. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure - edited by Jun Ren & Megan Yingmei Zhang.
Collapse
|
37
|
Over-expression of microRNA-1 causes arrhythmia by disturbing intracellular trafficking system. Sci Rep 2017; 7:46259. [PMID: 28397788 PMCID: PMC5387686 DOI: 10.1038/srep46259] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/13/2017] [Indexed: 11/08/2022] Open
Abstract
Dysregulation of intracellular trafficking system plays a fundamental role in the progression of cardiovascular disease. Up-regulation of miR-1 contributes to arrhythmia, we sought to elucidate whether intracellular trafficking contributes to miR-1-driven arrhythmia. By performing microarray analyses of the transcriptome in the cardiomyocytes-specific over-expression of microRNA-1 (miR-1 Tg) mice and the WT mice, we found that these differentially expressed genes in miR-1 Tg mice were significantly enrichment with the trafficking-related biological processes, such as regulation of calcium ion transport. Also, the qRT-PCR and western blot results validated that Stx6, Braf, Ube3a, Mapk8ip3, Ap1s1, Ccz1 and Gja1, which are the trafficking-related genes, were significantly down-regulated in the miR-1 Tg mice. Moreover, we found that Stx6 was decreased in the heart of mice after myocardial infarction and in the hypoxic cardiomyocytes, and further confirmed that Stx6 is a target of miR-1. Meanwhile, knockdown of Stx6 in cardiomyocytes resulted in the impairments of PLM and L-type calcium channel, which leads to the increased resting ([Ca2+]i). On the contrary, overexpression of Stx6 attenuated the impairments of miR-1 or hypoxia on PLM and L-type calcium channel. Thus, our studies reveals that trafficking-related gene Stx6 may regulate intracellular calcium and is involved in the occurrence of cardiac arrhythmia, which provides new insights in that miR-1 participates in arrhythmia by regulating the trafficking-related genes and pathway.
Collapse
|
38
|
Egan Benova T, Szeiffova Bacova B, Viczenczova C, Diez E, Barancik M, Tribulova N. Protection of cardiac cell-to-cell coupling attenuate myocardial remodeling and proarrhythmia induced by hypertension. Physiol Res 2017; 65 Suppl 1:S29-42. [PMID: 27643938 DOI: 10.33549/physiolres.933391] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Gap junction connexin channels are important determinants of myocardial conduction and synchronization that is crucial for coordinated heart function. One of the main risk factors for cardiovascular events that results in heart attack, congestive heart failure, stroke as well as sudden arrhythmic death is hypertension. Mislocalization and/or dysfunction of specific connexin-43 channels due to hypertension-induced myocardial remodeling have been implicated in the occurrence of life-threatening arrhythmias and heart failure in both, humans as well as experimental animals. Recent studies suggest that down-regulation of myocardial connexin-43, its abnormal distribution and/or phosphorylation might be implicated in this process. On the other hand, treatment of hypertensive animals with cardioprotective drugs (e.g. statins) or supplementation with non-pharmacological compounds, such as melatonin, omega-3 fatty acids and red palm oil protects from lethal arrhythmias. The antiarrhythmic effects are attributed to the attenuation of myocardial connexin-43 abnormalities associated with preservation of myocardial architecture and improvement of cardiac conduction. Findings uncover novel mechanisms of cardioprotective (antihypertensive and antiarrhythmic) effects of compounds that are used in clinical settings. Well-designed trials are needed to explore the antiarrhythmic potential of these compounds in patients suffering from hypertension.
Collapse
Affiliation(s)
- T Egan Benova
- Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | | | | | | | |
Collapse
|
39
|
Xu HF, Gao XT, Lin JY, Xu XH, Hu J, Ding YJ, Zhu SH. MicroRNA-20b suppresses the expression of ZFP-148 in viral myocarditis. Mol Cell Biochem 2017; 429:199-210. [PMID: 28247213 DOI: 10.1007/s11010-017-2947-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/17/2017] [Indexed: 12/19/2022]
Abstract
Viral myocarditis is a common cardiovascular disease, which seriously endangers the health of people and even leads to sudden unexpected death. MicroRNAs play very important roles in various physical and pathological processes including cardiogenesis and heart diseases. In recent years, miR-20b has been implicated in various diseases such as breast cancer, gastric cancer, hepatocellular carcinoma, cardiovascular diseases. However, the function of miR-20b in the pathological progress of viral myocarditis has not been reported. In this study, we found that miR-20b was up-regulated in mouse heart tissues post Coxsackievirus B3 (CVB3) infection. Bioinformatics analysis identified ZFP-148, a transcription factor that plays essential roles in the regulation of virus replication, is one of the predicted targets of miR-20b. MiR-20b expression was found to be up-regulated and ZFP-148 protein level was markedly repressed during viral myocarditis. Further studies demonstrated that miR-20b directly binds to the 3'-UTR of ZFP-148 and suppresses its translation. Moreover, aberrant expression of miR-20b promoted the expression of anti-apoptosis proteins Bcl-2 and Bcl-xL, suggesting that altered gene expression might promote cardiomyocytes survival in viral myocarditis. Our findings indicated that miR-20b might be a potential therapeutic target for CVB3-induced viral myocarditis and a useful marker for the diagnosis of viral myocarditis.
Collapse
Affiliation(s)
- Hong-Fei Xu
- Department of Forensic Medicine, Soochow University, Suzhou Dushuhu High Educational Town, Suzhou, Jiangsu, 215123, People's Republic of China.
| | - Xiang-Ting Gao
- Department of Forensic Medicine, Soochow University, Suzhou Dushuhu High Educational Town, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Jun-Yi Lin
- Department of Forensic Medicine, Shanghai Medical College, Fudan University, Xuhui, Shanghai, 200032, People's Republic of China
| | - Xue-Hua Xu
- Department of Forensic Medicine, Soochow University, Suzhou Dushuhu High Educational Town, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Jun Hu
- Department of Forensic Medicine, Soochow University, Suzhou Dushuhu High Educational Town, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Yu-Jie Ding
- Department of dermatological, The second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China.
| | - Shao-Hua Zhu
- Department of Forensic Medicine, Soochow University, Suzhou Dushuhu High Educational Town, Suzhou, Jiangsu, 215123, People's Republic of China.
| |
Collapse
|
40
|
Trobaugh DW, Klimstra WB. MicroRNA Regulation of RNA Virus Replication and Pathogenesis. Trends Mol Med 2016; 23:80-93. [PMID: 27989642 PMCID: PMC5836316 DOI: 10.1016/j.molmed.2016.11.003] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/30/2016] [Accepted: 11/12/2016] [Indexed: 01/08/2023]
Abstract
microRNAs (miRNAs) are non-coding RNAs that regulate many processes within a cell by manipulating protein levels through direct binding to mRNA and influencing translation efficiency, or mRNA abundance. Recent evidence demonstrates that miRNAs can also affect RNA virus replication and pathogenesis through direct binding to the RNA virus genome or through virus-mediated changes in the host transcriptome. Here, we review the current knowledge on the interaction between RNA viruses and cellular miRNAs. We also discuss how cell and tissue-specific expression of miRNAs can directly affect viral pathogenesis. Understanding the role of cellular miRNAs during viral infection may lead to the identification of novel mechanisms to block RNA virus replication or cell-specific regulation of viral vector targeting. Some RNA viruses possess miRNA-binding sites in a range of locations within the viral genome, including the 5′ and 3′ non-translated regions. Host cell miRNAs can bind to RNA virus genomes, enhancing genome stability, repressing translation of the viral genome, or altering free miRNA levels within the cell. miRNAs contribute to viral pathogenesis by promoting evasion of the host antiviral immune response, enhancing viral replication, or, potentially, altering miRNA-mediated host gene regulation. RNA virus infection can lead to widespread changes in the host transcriptome by modulating cell-specific miRNA levels.
Collapse
Affiliation(s)
- Derek W Trobaugh
- Center for Vaccine Research, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - William B Klimstra
- Center for Vaccine Research, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
41
|
Calderón JF, Retamal MA. Regulation of Connexins Expression Levels by MicroRNAs, an Update. Front Physiol 2016; 7:558. [PMID: 27932990 PMCID: PMC5122916 DOI: 10.3389/fphys.2016.00558] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/04/2016] [Indexed: 12/13/2022] Open
Abstract
Control of cell-cell coordination and communication is regulated by several factors, including paracrine and autocrine release of biomolecules, and direct exchange of soluble factors between cells through gap junction channels. Additionally, hemichannels also participate in cell-cell coordination through the release of signaling molecules, such as ATP and glutamate. A family of transmembrane proteins named connexins forms both gap junction channels and hemichannels. Because of their importance in cell and tissue coordination, connexins are controlled both by post-translational and post-transcriptional modifications. In recent years, non-coding RNAs have garnered research interest due to their ability to exert post-transcriptional regulation of gene expression. One of the most recent, well-documented control mechanisms of protein synthesis is found through the action of small, single-stranded RNA, called micro RNAs (miRNAs or miRs). Put simply, miRNAs are negative regulators of the expression of a myriad proteins involved in many physiological and pathological processes. This mini review will briefly summarize what is currently known about the action of miRNAs over Cxs expression/function in different organs under some relevant physiological and pathological conditions.
Collapse
Affiliation(s)
- Juan F Calderón
- Facultad de Medicina, Center for Genetics and Genomics, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| | - Mauricio A Retamal
- Facultad de Medicina, Centro de Fisiología Celular e Integrativa, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| |
Collapse
|
42
|
Liao C, Gui Y, Guo Y, Xu D. The regulatory function of microRNA-1 in arrhythmias. MOLECULAR BIOSYSTEMS 2016; 12:328-33. [PMID: 26671473 DOI: 10.1039/c5mb00806a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Arrhythmia, the basis of which is cardiomyocyte ion channel abnormalities, poses a serious threat to human health. A large number of studies have demonstrated that miRNA-1(miR-1) is involved in the occurrence of arrhythmia in many myocardial pathological conditions by post-transcriptionally regulating a variety of ion channels and proteins related to cardiac electrical activity. We aim at emphasizing the relationship between miR-1 and ion channels and proteins involved in the process of arrhythmia. In addition, we will pay attention to its future therapeutic prospects.
Collapse
Affiliation(s)
- Caixiu Liao
- Department of Cardiology, Internal Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China.
| | - Yajun Gui
- Department of Cardiology, Internal Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China.
| | - Yuan Guo
- Department of Cardiology, Internal Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China.
| | - Danyan Xu
- Department of Cardiology, Internal Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China.
| |
Collapse
|
43
|
Tse G, Yeo JM, Chan YW, Lai ETHL, Yan BP. What Is the Arrhythmic Substrate in Viral Myocarditis? Insights from Clinical and Animal Studies. Front Physiol 2016; 7:308. [PMID: 27493633 PMCID: PMC4954848 DOI: 10.3389/fphys.2016.00308] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/06/2016] [Indexed: 01/25/2023] Open
Abstract
Sudden cardiac death (SCD) remains an unsolved problem in the twenty-first century. It is often due to rapid onset, ventricular arrhythmias caused by a number of different clinical conditions. A proportion of SCD patients have identifiable diseases such as cardiomyopathies, but for others, the causes are unknown. Viral myocarditis is becoming increasingly recognized as a contributor to unexplained mortality, and is thought to be a major cause of SCD in the first two decades of life. Myocardial inflammation, ion channel dysfunction, electrophysiological, and structural remodeling may play important roles in generating life-threatening arrhythmias. The aim of this review article is to examine the electrophysiology of action potential conduction and repolarization and the mechanisms by which their derangements lead to triggered and reentrant arrhythmogenesis. By synthesizing experimental evidence from pre-clinical and clinical studies, a framework of how host (inflammation), and viral (altered cellular signaling) factors can induce ion electrophysiological and structural remodeling is illustrated. Current pharmacological options are mainly supportive, which may be accompanied by mechanical circulatory support. Heart transplantation is the only curative option in the worst case scenario. Future strategies for the management of viral myocarditis are discussed.
Collapse
Affiliation(s)
- Gary Tse
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong KongHong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong KongHong Kong, China
| | - Jie M. Yeo
- Faculty of Medicine, Imperial College LondonLondon, UK
| | - Yin Wah Chan
- Department of Psychology, School of Biological Sciences, University of CambridgeCambridge, UK
| | - Eric T. H. Lai Lai
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong KongHong Kong, China
| | - Bryan P. Yan
- Department of Medicine and Therapeutics, The Chinese University of Hong KongHong Kong, China
- Department of Epidemiology and Preventive Medicine, Monash UniversityMelbourne, VIC, Australia
| |
Collapse
|
44
|
Abstract
Viral myocarditis remains a prominent infectious-inflammatory disease for patients throughout the lifespan. The condition presents several challenges including varied modes of clinical presentation, a range of timepoints when patients come to attention, a diversity of approaches to diagnosis, a spectrum of clinical courses, and unsettled perspectives on therapeutics in different patient settings and in the face of different viral pathogens. In this review, we examine current knowledge about viral heart disease and especially provide information on evolving understanding of mechanisms of disease and efforts by investigators to identify and evaluate potential therapeutic avenues for intervention.
Collapse
Affiliation(s)
- Gabriel Fung
- From the Department of Pathology and Laboratory Medicine (G.F., H.L., Y.Q., D.Y., B.M.), Centre for Heart Lung Innovation (G.F., H.L., Y.Q., D.Y., B.M.), Centre of Excellence for Prevention of Organ Failure (PROOF Centre), and Institute for Heart + Lung Health, St. Paul's Hospital (B.M.), University of British Columbia, Vancouver, British Columbia, Canada
| | - Honglin Luo
- From the Department of Pathology and Laboratory Medicine (G.F., H.L., Y.Q., D.Y., B.M.), Centre for Heart Lung Innovation (G.F., H.L., Y.Q., D.Y., B.M.), Centre of Excellence for Prevention of Organ Failure (PROOF Centre), and Institute for Heart + Lung Health, St. Paul's Hospital (B.M.), University of British Columbia, Vancouver, British Columbia, Canada
| | - Ye Qiu
- From the Department of Pathology and Laboratory Medicine (G.F., H.L., Y.Q., D.Y., B.M.), Centre for Heart Lung Innovation (G.F., H.L., Y.Q., D.Y., B.M.), Centre of Excellence for Prevention of Organ Failure (PROOF Centre), and Institute for Heart + Lung Health, St. Paul's Hospital (B.M.), University of British Columbia, Vancouver, British Columbia, Canada
| | - Decheng Yang
- From the Department of Pathology and Laboratory Medicine (G.F., H.L., Y.Q., D.Y., B.M.), Centre for Heart Lung Innovation (G.F., H.L., Y.Q., D.Y., B.M.), Centre of Excellence for Prevention of Organ Failure (PROOF Centre), and Institute for Heart + Lung Health, St. Paul's Hospital (B.M.), University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce McManus
- From the Department of Pathology and Laboratory Medicine (G.F., H.L., Y.Q., D.Y., B.M.), Centre for Heart Lung Innovation (G.F., H.L., Y.Q., D.Y., B.M.), Centre of Excellence for Prevention of Organ Failure (PROOF Centre), and Institute for Heart + Lung Health, St. Paul's Hospital (B.M.), University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
45
|
MicroRNA-19b Downregulates Gap Junction Protein Alpha1 and Synergizes with MicroRNA-1 in Viral Myocarditis. Int J Mol Sci 2016; 17:ijms17050741. [PMID: 27213338 PMCID: PMC4881563 DOI: 10.3390/ijms17050741] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/07/2016] [Accepted: 05/10/2016] [Indexed: 12/23/2022] Open
Abstract
Viral myocarditis (VMC) is a life-threatening disease that leads to heart failure or cardiac arrhythmia. A large number of researches have revealed that mircroRNAs (miRNAs) participate in the pathological processes of VMC. We previously reported that miR-1 repressed the expression of gap junction protein α1 (GJA1) in VMC. In this study, miR-19b was found to be significantly upregulated using the microarray analysis in a mouse model of VMC, and overexpression of miR-19b led to irregular beating pattern in human cardiomyocytes derived from the induced pluripotent stem cells (hiPSCs-CMs). The upregulation of miR-19b was associated with decreased GJA1 in vivo. Furthermore, a miR-19b inhibitor increased, while its mimics suppressed the expression of GJA1 in HL-1 cells. When GJA1 was overexpressed, the miR-19b mimics-mediated irregular beating was reversed in hiPSCs-CMs. In addition, the effect of miR-19b on GJA1 was enhanced by miR-1 in a dose-dependent manner. These data suggest miR-19b contributes to irregular beating through regulation of GJA1 by cooperating with miR-1. Based on the present and our previous studies, it could be indicated that miR-19b and miR-1 might be critically involved in cardiac arrhythmia associated with VMC.
Collapse
|
46
|
Chistiakov DA, Orekhov AN, Bobryshev YV. Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction). J Mol Cell Cardiol 2016; 94:107-121. [PMID: 27056419 DOI: 10.1016/j.yjmcc.2016.03.015] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/09/2016] [Accepted: 03/24/2016] [Indexed: 12/21/2022]
Abstract
Cardiac miRNAs (miR-1, miR133a, miR-208a/b, and miR-499) are abundantly expressed in the myocardium. They play a central role in cardiogenesis, heart function and pathology. While miR-1 and miR-133a predominantly control early stages of cardiogenesis supporting commitment of cardiac-specific muscle lineage from embryonic stem cells and mesodermal precursors, miR-208 and miR-499 are involved in the late cardiogenic stages mediating differentiation of cardioblasts to cardiomyocytes and fast/slow muscle fiber specification. In the heart, miR-1/133a control cardiac conductance and automaticity by regulating all phases of the cardiac action potential. miR-208/499 located in introns of the heavy chain myosin genes regulate expression of sarcomeric contractile proteins. In cardiac pathology including myocardial infarction (MI), expression of cardiac miRNAs is markedly altered that leads to deleterious effects associated with heart wounding, arrhythmia, increased apoptosis, fibrosis, hypertrophy, and tissue remodeling. In acute MI, circulating levels of cardiac miRNAs are significantly elevated making them to be a promising diagnostic marker for early diagnosis of acute MI. Great cardiospecific capacity of these miRNAs is very helpful for enhancing regenerative properties and survival of stem cell and cardiac progenitor transplants and for reprogramming of mature non-cardiac cells to cardiomyocytes.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Molecular Genetic Diagnostics and Cell Biology, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, 119991 Moscow, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia; Department of Biophysics, Biological Faculty, Moscow State University, Moscow 119991, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia
| | - Yuri V Bobryshev
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia; Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; School of Medicine, University of Western Sydney, Campbelltown, NSW 2560, Australia.
| |
Collapse
|
47
|
Ho BC, Yang PC, Yu SL. MicroRNA and Pathogenesis of Enterovirus Infection. Viruses 2016; 8:v8010011. [PMID: 26751468 PMCID: PMC4728571 DOI: 10.3390/v8010011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/04/2015] [Accepted: 12/18/2015] [Indexed: 12/15/2022] Open
Abstract
There are no currently available specific antiviral therapies for non-polio Enterovirus infections. Although several vaccines have entered clinical trials, the efficacy requires further evaluation, particularly for cross-strain protective activity. Curing patients with viral infections is a public health problem due to antigen alterations and drug resistance caused by the high genomic mutation rate. To conquer these limits in the development of anti-Enterovirus treatments, a comprehensive understanding of the interactions between Enterovirus and host cells is urgently needed. MicroRNA (miRNA) constitutes the biggest family of gene regulators in mammalian cells and regulates almost a half of all human genes. The roles of miRNAs in Enterovirus pathogenesis have recently begun to be noted. In this review, we shed light on recent advances in the understanding of Enterovirus infection-modulated miRNAs. The impacts of altered host miRNAs on cellular processes, including immune escape, apoptosis, signal transduction, shutdown of host protein synthesis and viral replication, are discussed. Finally, miRNA-based medication provides a promising strategy for the development of antiviral therapy.
Collapse
Affiliation(s)
- Bing-Ching Ho
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, No. 1 Chang-Te Street, Taipei 10048, Taiwan.
- Center of Genomic Medicine, National Taiwan University, Taipei 10048, Taiwan.
| | - Pan-Chyr Yang
- Center of Genomic Medicine, National Taiwan University, Taipei 10048, Taiwan.
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10048, Taiwan.
- Institute of Biomedical Sciences, Academia Sinica, Taipei 10048, Taiwan.
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, No. 1 Chang-Te Street, Taipei 10048, Taiwan.
- Center of Genomic Medicine, National Taiwan University, Taipei 10048, Taiwan.
- Center for Optoelectronic Biomedicine, College of Medicine, National Taiwan University, Taipei 10048, Taiwan.
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan.
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 10048, Taiwan.
| |
Collapse
|
48
|
Vinken M. Regulation of connexin signaling by the epigenetic machinery. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:262-8. [PMID: 26566120 DOI: 10.1016/j.bbagrm.2015.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 11/03/2015] [Accepted: 11/06/2015] [Indexed: 12/31/2022]
Abstract
Connexins and their channels are involved in the control of all aspects of the cellular life cycle, ranging from cell growth to cell death, by mediating extracellular, intercellular and intracellular communication. These multifaceted aspects of connexin-related cellular signaling obviously require strict regulation. While connexin channel activity is mainly directed by posttranslational modifications, connexin expression as such is managed by classical cis/trans mechanisms. Over the past few years, it has become clear that connexin production is equally dictated by epigenetic actions. This paper provides an overview of the role of major determinants of the epigenome, including DNA methylation, histone acetylation and microRNA species, in connexin expression.
Collapse
Affiliation(s)
- Mathieu Vinken
- Vrije Universiteit Brussel, Department of In Vitro Toxicology and Dermato-Cosmetology, Building G, Room G226, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| |
Collapse
|
49
|
Manipulating Cx43 expression triggers gene reprogramming events in dermal fibroblasts from oculodentodigital dysplasia patients. Biochem J 2015; 472:55-69. [PMID: 26349540 DOI: 10.1042/bj20150652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/08/2015] [Indexed: 02/06/2023]
Abstract
Oculodentodigital dysplasia (ODDD) is primarily an autosomal dominant disorder linked to over 70 GJA1 gene [connexin43 (Cx43)] mutations. For nearly a decade, our laboratory has been investigating the relationship between Cx43 and ODDD by expressing disease-linked mutants in reference cells, tissue-relevant cell lines, 3D organ cultures and by using genetically modified mouse models of human disease. Although salient features of Cx43 mutants have been revealed, these models do not necessarily reflect the complexity of the human context. To further overcome these limitations, we have acquired dermal fibroblasts from two ODDD-affected individuals harbouring D3N and V216L mutations in Cx43, along with familial controls. Using these ODDD patient dermal fibroblasts, which naturally produce less GJA1 gene product, along with RNAi and RNA activation (RNAa) approaches, we show that manipulating Cx43 expression triggers cellular gene reprogramming. Quantitative RT-PCR, Western blot and immunofluorescent analysis of ODDD patient fibroblasts show unusually high levels of extracellular matrix (ECM)-interacting proteins, including integrin α5β1, matrix metalloproteinases as well as secreted ECM proteins collagen-I and laminin. Cx43 knockdown in familial control cells produces similar effects on ECM expression, whereas Cx43 transcriptional up-regulation using RNAa decreases production of collagen-I. Interestingly, the enhanced levels of ECM-associated proteins in ODDD V216L fibroblasts is not only a consequence of increased ECM gene expression, but also due to an apparent deficit in collagen-I secretion which may further contribute to impaired collagen gel contraction in ODDD fibroblasts. These findings further illuminate the altered function of Cx43 in ODDD-affected individuals and highlight the impact of manipulating Cx43 expression in human cells.
Collapse
|
50
|
Wu J, Shen L, Chen J, Xu H, Mao L. The role of microRNAs in enteroviral infections. Braz J Infect Dis 2015; 19:510-6. [PMID: 26342975 PMCID: PMC9427576 DOI: 10.1016/j.bjid.2015.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/29/2015] [Accepted: 06/04/2015] [Indexed: 01/22/2023] Open
Abstract
The genus Enterovirus, a member of the Picornavirus family, are RNA viruses that can cause poliomyelitis, hand-food-mouth disease, viral meningitis or meningoencephalitis, viral myocarditis and so on. MicroRNAs are a class of highly conserved, small noncoding RNAs recognized as important regulators of gene expression. Recent studies found that MicroRNAs play a significant role in the infection of Enterovirus, such as enterovirus 71, coxsackievirus B3 and other Enterovirus. Enteroviral infection can alter the expression of cellular MicroRNAs, and cellular MicroRNAs can modulate viral pathogenesis and replication by regulating the expression level of viral or host's genes. Herein, this review summarizes the role of MicroRNAs in enteroviral infection.
Collapse
Affiliation(s)
- Jing Wu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Li Shen
- Department of Clinical Laboratory, Zhenjiang Center for Disease Control and Prevention, Zhenjiang, Jiangsu Province, China
| | - Jianguo Chen
- Department of Clinical Laboratory, Zhenjiang First People's Hospital, Jiangsu Province, China
| | - Huaxi Xu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Lingxiang Mao
- Department of Clinical Laboratory, Zhenjiang Center for Disease Control and Prevention, Zhenjiang, Jiangsu Province, China; School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China.
| |
Collapse
|