1
|
Han A, Lee T, Lee J, Song SW, Lee SS, Jung IM, Kang JM, Gwon JG, Yun WS, Cho YP, Ko H, Park YJ, Min SK. A multicenter, randomized, open-labelled, non-inferiority trial of sustained-release sarpogrelate versus clopidogrel after femoropopliteal artery intervention. Sci Rep 2023; 13:2502. [PMID: 36781928 PMCID: PMC9925771 DOI: 10.1038/s41598-023-29006-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Optimal antiplatelet therapy after endovascular therapy (EVT) for peripheral artery disease is controversial. This trial aimed to evaluate whether sarpogrelate plus aspirin was non-inferior for preventing early restenosis after femoropopliteal (FP) EVT compared to clopidogrel plus aspirin. In this open-label, prospective randomized trial, 272 patients were enrolled after successful EVT for FP lesions. Patients in each group received aspirin 100 mg and clopidogrel 75 mg or sarpogrelate 300 mg orally once per day for 6 months. The primary outcome was target lesion restenosis at 6 months, tested for noninferiority. Patient characteristics and EVT patterns were similar, except for increased inflow procedures in the sarpogrelate group and increased outflow procedures in the clopidogrel group. The sarpogrelate group showed a tendency of less restenosis at 6 months than the clopidogrel group (13.0% vs. 19.1%, difference 6.1 percentage points, 95% CI for noninferiority - 0.047 to 0.169). Secondary endpoints related to safety outcomes were rare in both groups. Risks of target lesion restenosis of the two intervention arm were uniform across most major subgroups except for those with coronary artery disease. In conclusion, Sarpogrelate plus aspirin is non-inferior to clopidogrel plus aspirin in preventing early restenosis after FP EVT. Larger multi-ethnic trials are required to generalize these findings. Trial registration: National Institutes of Health Clinical Trials Registry (ClinicalTrials.gov identifier: NCT02959606; 09/11/2016).
Collapse
Affiliation(s)
- Ahram Han
- Division of Vascular Surgery, Department of Surgery, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
- Seoul National University College of Medicine, Seoul, South Korea
| | - Taeseung Lee
- Seoul National University College of Medicine, Seoul, South Korea
- Division of Vascular Surgery, Bundang Seoul National University Hospital, Seongnam, South Korea
| | - Joongyub Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Suk-Won Song
- Department of Cardiovascular Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang-Su Lee
- Division of Vascular and Endovascular Surgery, Department of Surgery, School of Medicine, Pusan National University, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - In Mok Jung
- Seoul National University College of Medicine, Seoul, South Korea
- Department of Surgery, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Jin Mo Kang
- Department of Surgery, Gil Hospital, Gachon University of Medicine and Science, Incheon, South Korea
| | - Jun Gyo Gwon
- Department of Surgery, Korea University Hospital, Seoul, South Korea
| | - Woo-Sung Yun
- Department of Surgery, Yeungnam University Medical Center, Daegu, South Korea
| | - Yong-Pil Cho
- Division of Vascular Surgery, Department of Surgery, Asan Medical Center, Seoul, South Korea
| | - Hyunmin Ko
- Department of Surgery, College of Medicine, Kyung Hee University, Seoul, South Korea
| | - Yang-Jin Park
- Division of Vascular Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, South Korea.
| | - Seung-Kee Min
- Division of Vascular Surgery, Department of Surgery, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea.
- Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
2
|
Cai Y, Li X, Zhou H, Zhou J. The serotonergic system dysfunction in diabetes mellitus. Front Cell Neurosci 2022; 16:899069. [PMID: 35910256 PMCID: PMC9331500 DOI: 10.3389/fncel.2022.899069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Most peripheral serotonin (5-HT) is synthesized in enterochromaffin cells, and most circulating 5-HT is stored in platelets. As a monoamine, 5-HT has several functions in various non-neuronal and neuronal systems. In the central nervous system, it functions as a neurotransmitter to modulate feeding behavior and mood. Numerous clinical trials have focused on increasing 5-HT activation in the central nervous system, including those involving anti-obesity drugs currently in the market, although severe side effects on peripheral system can lead to the withdrawal of certain drugs. Recent studies have revealed that both the peripheral and central serotonergic systems play a vital role in diabetes and its complications. This review summarizes the roles of the serotonergic system in blood glucose regulation, diabetic macroangiopathy, diabetic peripheral neuropathy, and diabetic encephalopathy, indicating its potential clinical significance as a therapeutic target for the treatment of diabetes and its complications.
Collapse
|
3
|
Shimizu K, Sunagawa Y, Funamoto M, Honda H, Katanasaka Y, Murai N, Kawase Y, Hirako Y, Katagiri T, Yabe H, Shimizu S, Sari N, Wada H, Hasegawa K, Morimoto T. The Selective Serotonin 2A Receptor Antagonist Sarpogrelate Prevents Cardiac Hypertrophy and Systolic Dysfunction via Inhibition of the ERK1/2-GATA4 Signaling Pathway. Pharmaceuticals (Basel) 2021; 14:ph14121268. [PMID: 34959669 PMCID: PMC8708651 DOI: 10.3390/ph14121268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/15/2021] [Accepted: 12/01/2021] [Indexed: 01/02/2023] Open
Abstract
Drug repositioning has recently emerged as a strategy for developing new treatments at low cost. In this study, we used a library of approved drugs to screen for compounds that suppress cardiomyocyte hypertrophy. We identified the antiplatelet drug sarpogrelate, a selective serotonin-2A (5-HT2A) receptor antagonist, and investigated the drug's anti-hypertrophic effect in cultured cardiomyocytes and its effect on heart failure in vivo. Primary cultured cardiomyocytes pretreated with sarpogrelate were stimulated with angiotensin II, endothelin-1, or phenylephrine. Immunofluorescence staining showed that sarpogrelate suppressed the cardiomyocyte hypertrophy induced by each of the stimuli. Western blotting analysis revealed that 5-HT2A receptor level was not changed by phenylephrine, and that sarpogrelate suppressed phenylephrine-induced phosphorylation of ERK1/2 and GATA4. C57BL/6J male mice were subjected to transverse aortic constriction (TAC) surgery followed by daily oral administration of sarpogrelate for 8 weeks. Echocardiography showed that 5 mg/kg of sarpogrelate suppressed TAC-induced cardiac hypertrophy and systolic dysfunction. Western blotting revealed that sarpogrelate suppressed TAC-induced phosphorylation of ERK1/2 and GATA4. These results indicate that sarpogrelate suppresses the development of heart failure and that it does so at least in part by inhibiting the ERK1/2-GATA4 signaling pathway.
Collapse
Affiliation(s)
- Kana Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
- National Hospital Organization Kyoto Medical Center, Division of Translational Research, Kyoto 612-8555, Japan;
| | - Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
- National Hospital Organization Kyoto Medical Center, Division of Translational Research, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Masafumi Funamoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
- National Hospital Organization Kyoto Medical Center, Division of Translational Research, Kyoto 612-8555, Japan;
| | - Hiroki Honda
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
| | - Yasufumi Katanasaka
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
- National Hospital Organization Kyoto Medical Center, Division of Translational Research, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Noriyuki Murai
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
| | - Yuto Kawase
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
| | - Yuta Hirako
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
| | - Takahiro Katagiri
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
| | - Harumi Yabe
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
| | - Satoshi Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
- National Hospital Organization Kyoto Medical Center, Division of Translational Research, Kyoto 612-8555, Japan;
| | - Nurmila Sari
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
| | - Hiromichi Wada
- National Hospital Organization Kyoto Medical Center, Division of Translational Research, Kyoto 612-8555, Japan;
| | - Koji Hasegawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
- National Hospital Organization Kyoto Medical Center, Division of Translational Research, Kyoto 612-8555, Japan;
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (K.S.); (Y.S.); (M.F.); (H.H.); (Y.K.); (N.M.); (Y.K.); (Y.H.); (T.K.); (H.Y.); (S.S.); (N.S.); (K.H.)
- National Hospital Organization Kyoto Medical Center, Division of Translational Research, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, Shizuoka 420-8527, Japan
- Correspondence: ; Tel.: +81-54-264-5763
| |
Collapse
|
4
|
Shuai J, Gao Y, Chen L, Wang Z. Role of serotonin in regulation of pancreatic and mesenteric arterial function in diabetic mice. Eur J Pharmacol 2021; 901:174070. [PMID: 33798598 DOI: 10.1016/j.ejphar.2021.174070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 11/19/2022]
Abstract
The aim of this study was to investigate the reaction of pancreatic and mesenteric artery to 5-hydroxytryptamine (5-HT, serotonin) and the mechanism of nitric oxide in diabetes. Diabetic mice were induced by streptozotocin through intraperitoneal injection. The vascular tension of the pancreatic, mesenteric and brain basilar arteries in diabetic and control mice were measured by myograph in the applications of angiotensin II, 5-HT, 5-HT2A receptor agonist 2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI), 5-HT1B/1D receptor agonist sumatriptan, 5-HT2B receptor agonist BW723C86, 5-HT1D receptor antagonist Palonosetron and 5-HT2 receptor antagonist Sarpogrelate. The effect of 5-HT on arteries pretreated with L-NAME and sodium nitroprusside (SNP) on arteries pretreated with norepinephrine were measured. The mRNA expressions of eNOS, 5-HT1B, 5-HT1D, 5-HT2A and 5-HT2B in pancreatic and mesenteric arteries were measured by Real-time PCR. The concentration of 5-HT in plasma and eNOS in pancreatic and mesenteric arteries were tested. Our results showed that the tension of pancreatic and mesenteric arteries in diabetic mice impaired to 5-HT, but not Ang II, and to DOI and sumatriptan, but normalized by incubation with L-NAME. Pancreatic and mesenteric arteries showed no differences to SNP after pretreated with NE between diabetic and control mice. The mRNA of eNOS and 5-HT receptors in pancreatic and mesenteric artery showed no difference between control and diabetic mice. We conclude that the effect of 5-HT on the tension of pancreatic and mesenteric arteries decrease in diabetic mice. It may due to the decreased activity of 5-HT receptors and the activation of eNOS, which causes nitric oxide to release more and makes the tension of vessels decreased.
Collapse
Affiliation(s)
- Jian Shuai
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital, Wuhan University School of Medicine, Wuhan, 430071, China
| | - Yufang Gao
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ling Chen
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital, Wuhan University School of Medicine, Wuhan, 430071, China
| | - Zhongli Wang
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital, Wuhan University School of Medicine, Wuhan, 430071, China.
| |
Collapse
|
5
|
Ahn S, Lee J, Min SK, Ha J, Min SI, Kim SY, Cho MJ, Cho S. SAFE (Sarpogrelate Anplone in Femoro-popliteal artery intervention Efficacy) study: study protocol for a randomized controlled trial. Trials 2017; 18:439. [PMID: 28938905 PMCID: PMC5610452 DOI: 10.1186/s13063-017-2155-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/11/2017] [Indexed: 12/02/2022] Open
Abstract
Background Sarpogrelate is expected to reduce restenosis by protecting blood vessels from oxidative stress and vascular endothelial dysfunction as well as by acting as an antiplatelet agent after endovascular treatment (EVT). This trial was designed to compare aspirin plus sustained-release (SR) sarpogrelate with aspirin plus clopidogrel for the prevention of restenosis in patients with femoro-popliteal (FP) peripheral artery disease (PAD) who underwent EVT. Methods/Design This is an open label, multicenter, prospective randomized controlled clinical trial. Patients will be eligible for inclusion in this study if they require EVT for stenosis or occlusion of a de novo FP lesion. Patients in each group will receive aspirin 100 mg with clopidogrel 75 mg or aspirin 100 mg with SR sarpogrelate 300 mg (Anplone®) orally once a day for six months. The primary outcome of the study is the restenosis rate, defined as > 50% luminal reduction by computed tomography angiography or catheter angiography in the six-month follow-up period. Secondary outcomes include target lesion revascularization, major bleeding, ipsilateral major amputation, all-cause mortality, and all adverse events that take place in those six months. Discussion This study is a multicenter randomized controlled trial designed to show non-inferiority in terms of the re-stenosis rate of SR sarpogrelate compared to clopidogrel for EVT for PAD in FP lesion patients. Trial registration ClinicalTrials.gov, NCT02959606. Registered on 9 November 2016. Electronic supplementary material The online version of this article (doi:10.1186/s13063-017-2155-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sanghyun Ahn
- Department of Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Joongyub Lee
- Division of Clinical Epidemiology, Medical Research Collaborating Center, Biomedical Research Institution, Seoul National University Hospital, Seoul, South Korea
| | - Seung-Kee Min
- Department of Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| | - Jongwon Ha
- Department of Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Sang-Il Min
- Department of Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Song-Yi Kim
- Department of Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Min-Ji Cho
- Department of Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Sungsin Cho
- Department of Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | | |
Collapse
|
6
|
Yang Y, Huang H, Xu Z, Duan JK. Serotonin and Its Receptor as a New Antioxidant Therapeutic Target for Diabetic Kidney Disease. J Diabetes Res 2017; 2017:7680576. [PMID: 28929122 PMCID: PMC5591914 DOI: 10.1155/2017/7680576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/13/2017] [Indexed: 12/11/2022] Open
Abstract
Diabetic kidney disease (DKD) is a widespread chronic microvascular complication of diabetes mellitus (DM), affects almost 30-50% of patients, and represents a leading cause of death of DM. Serotonin or 5-hydroxytryptamine (5-HT) is a multifunctional bioamine that has crucial roles in many physiological pathways. Recently, emerging evidence from experimental and clinical studies has demonstrated that 5-HT is involved in the pathogenesis of diabetic vascular complications. The 5-HT receptor (5-HTR) antagonists exert renoprotective effects by suppressing oxidative stress, suggesting that 5-HTR can be used as a potential target for treating DKD. In this review, therefore, we summarize the published information available for the involvement of 5-HT and 5-HTR antagonists in the pathogenesis of various diabetic complications with a particular focus of DKD. We conclude that 5-HTR is a potential therapeutic target for treating DKD, as it has been successfully applied in animal models and has currently being investigated in randomized and controlled clinical trials.
Collapse
Affiliation(s)
- Yu Yang
- Department of Endocrinology, Metabolism, and Genetics, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Hui Huang
- Department of Endocrinology, Metabolism, and Genetics, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA
| | - Zheng Xu
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA
- Department of Cardiovascular Disorders, The First Hospital of Jilin University, Changchun, China
| | - Jun-kai Duan
- Department of Cardiovascular Disorders, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
QIU YUYU, DU BIN, XIE FENGSHAN, CAI WEIWEI, LIU YANLING, LI YUE, FENG LEI, QIU LIYING. Vaccarin attenuates high glucose-induced human EA•hy926 endothelial cell injury through inhibition of Notch signaling. Mol Med Rep 2016; 13:2143-50. [DOI: 10.3892/mmr.2016.4801] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 11/30/2015] [Indexed: 11/06/2022] Open
|
8
|
Jing L, Wang JG, Zhang JZ, Cao CX, Chang Y, Dong JD, Guo FY, Li PA. Upregulation of ICAM-1 in diabetic rats after transient forebrain ischemia and reperfusion injury. JOURNAL OF INFLAMMATION-LONDON 2014; 11:35. [PMID: 25389378 PMCID: PMC4226864 DOI: 10.1186/s12950-014-0035-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 10/21/2014] [Indexed: 01/13/2023]
Abstract
Background Hyperglycemia exacerbates brain damage caused by cerebral ischemia. Neuroinflammation may play a role in mediating such enhanced damage. The objectives of this study were to examine the mRNA and protein levels and cell type distribution of ICAM-1 after cerebral ischemia in normo-and diabetic hyperglycemic rats. Results Compared to normoglycemic ischemia animals, diabetes aggravated neuronal death, decreased Nissl body staining, and increased ICAM-1 mRNA and protein levels in the frontal cortex. The increased ICAM-1 was located not only in vascular endothelial cells but also in cortical neurons. Conclusions Our results suggest that exacerbated neuro-inflammation in the brain may mediate the detrimental effects of diabetes on the ischemic brain.
Collapse
Affiliation(s)
- Li Jing
- Department of Pathology, Ningxia Medical University and Ningxia Key Laboratory for Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia P. R. China
| | - Jian-Gang Wang
- Department of Pathology, Ningxia Medical University and Ningxia Key Laboratory for Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia P. R. China
| | - Jian-Zhong Zhang
- Department of Pathology, Ningxia Medical University and Ningxia Key Laboratory for Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia P. R. China
| | - Cai-Xia Cao
- Department of Pathology, Ningxia Medical University and Ningxia Key Laboratory for Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia P. R. China
| | - Yue Chang
- Department of Pathology, Ningxia Medical University and Ningxia Key Laboratory for Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia P. R. China
| | - Jian-Da Dong
- Department of Pathology, Ningxia Medical University and Ningxia Key Laboratory for Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia P. R. China
| | - Feng-Ying Guo
- Department of Pathology, Ningxia Medical University and Ningxia Key Laboratory for Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia P. R. China
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), North Carolina Central University, Durham, North Carolina USA
| |
Collapse
|