1
|
Xu JQ, Fu YL, Zhang J, Zhang KY, Ma J, Tang JY, Zhang ZW, Zhou ZY. Targeting glycolysis in non-small cell lung cancer: Promises and challenges. Front Pharmacol 2022; 13:1037341. [PMID: 36532721 PMCID: PMC9748442 DOI: 10.3389/fphar.2022.1037341] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/04/2022] [Indexed: 08/17/2023] Open
Abstract
Metabolic disturbance, particularly of glucose metabolism, is a hallmark of tumors such as non-small cell lung cancer (NSCLC). Cancer cells tend to reprogram a majority of glucose metabolism reactions into glycolysis, even in oxygen-rich environments. Although glycolysis is not an efficient means of ATP production compared to oxidative phosphorylation, the inhibition of tumor glycolysis directly impedes cell survival and growth. This review focuses on research advances in glycolysis in NSCLC and systematically provides an overview of the key enzymes, biomarkers, non-coding RNAs, and signaling pathways that modulate the glycolysis process and, consequently, tumor growth and metastasis in NSCLC. Current medications, therapeutic approaches, and natural products that affect glycolysis in NSCLC are also summarized. We found that the identification of appropriate targets and biomarkers in glycolysis, specifically for NSCLC treatment, is still a challenge at present. However, LDHB, PDK1, MCT2, GLUT1, and PFKM might be promising targets in the treatment of NSCLC or its specific subtypes, and DPPA4, NQO1, GAPDH/MT-CO1, PGC-1α, OTUB2, ISLR, Barx2, OTUB2, and RFP180 might be prognostic predictors of NSCLC. In addition, natural products may serve as promising therapeutic approaches targeting multiple steps in glycolysis metabolism, since natural products always present multi-target properties. The development of metabolic intervention that targets glycolysis, alone or in combination with current therapy, is a potential therapeutic approach in NSCLC treatment. The aim of this review is to describe research patterns and interests concerning the metabolic treatment of NSCLC.
Collapse
Affiliation(s)
- Jia-Qi Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan-Li Fu
- Department of Oncology, Shenzhen (Fu Tian) Hospital, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Jing Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai-Yu Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ma
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing-Yi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi-Wei Zhang
- Department of Oncology, Shenzhen (Fu Tian) Hospital, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Zhong-Yan Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Xu YR, Wang AL, Li YQ. Hypoxia-inducible factor 1-alpha is a driving mechanism linking chronic obstructive pulmonary disease to lung cancer. Front Oncol 2022; 12:984525. [PMID: 36338690 PMCID: PMC9634253 DOI: 10.3389/fonc.2022.984525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD), irrespective of their smoking history, are more likely to develop lung cancer than the general population. This is mainly because COPD is characterized by chronic persistent inflammation and hypoxia, which are the risk factors for lung cancer. However, the mechanisms underlying this observation are still unknown. Hypoxia-inducible factor 1-alpha (HIF-1α) plays an important role in the crosstalk that exists between inflammation and hypoxia. Furthermore, HIF-1α is the main regulator of somatic adaptation to hypoxia and is highly expressed in hypoxic environments. In this review, we discuss the molecular aspects of the crosstalk between hypoxia and inflammation, showing that HIF-1α is an important signaling pathway that drives COPD progression to lung cancer. Here, we also provide an overview of HIF-1α and its principal regulatory mechanisms, briefly describe HIF-1α-targeted therapy in lung cancer, and summarize substances that may be used to target HIF-1α at the level of COPD-induced inflammation.
Collapse
Affiliation(s)
- Yuan-rui Xu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - An-long Wang
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Ya-qing Li
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- *Correspondence: Ya-qing Li,
| |
Collapse
|
3
|
A study of miRNAs as cornerstone in lung cancer pathogenesis and therapeutic resistance: A focus on signaling pathways interplay. Pathol Res Pract 2022; 237:154053. [DOI: 10.1016/j.prp.2022.154053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/16/2022] [Accepted: 07/28/2022] [Indexed: 02/06/2023]
|
4
|
Meng W, Li Y, Chai B, Liu X, Ma Z. miR-199a: A Tumor Suppressor with Noncoding RNA Network and Therapeutic Candidate in Lung Cancer. Int J Mol Sci 2022; 23:8518. [PMID: 35955652 PMCID: PMC9369015 DOI: 10.3390/ijms23158518] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide. miR-199a, which has two mature molecules: miR-199a-3p and miR-199a-5p, plays an important biological role in the genesis and development of tumors. We collected recent research results on lung cancer and miR-199a from Google Scholar and PubMed databases. The biological functions of miR-199a in lung cancer are reviewed in detail, and its potential roles in lung cancer diagnosis and treatment are discussed. With miR-199a as the core point and a divergence outward, the interplay between miR-199a and other ncRNAs is reviewed, and a regulatory network covering various cancers is depicted, which can help us to better understand the mechanism of cancer occurrence and provide a means for developing novel therapeutic strategies. In addition, the current methods of diagnosis and treatment of lung cancer are reviewed. Finally, a conclusion was drawn: miR-199a inhibits the development of lung cancer, especially by inhibiting the proliferation, infiltration, and migration of lung cancer cells, inhibiting tumor angiogenesis, increasing the apoptosis of lung cancer cells, and affecting the drug resistance of lung cancer cells. This review aims to provide new insights into lung cancer therapy and prevention.
Collapse
Affiliation(s)
| | | | | | | | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Science, Shanghai University, Shanghai 200444, China; (W.M.); (Y.L.); (B.C.); (X.L.)
| |
Collapse
|
5
|
GABPB1-AS1 Promotes the Development of Osteosarcoma by Targeting SP1 and Activating the Wnt/ β-Catenin Pathway. JOURNAL OF ONCOLOGY 2022; 2022:8468896. [PMID: 35342417 PMCID: PMC8956396 DOI: 10.1155/2022/8468896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022]
Abstract
In this study, the role of GABPB1-AS1 in osteosarcoma (OS) was analyzed. The expression of GABPB1-AS1 in different OS cell lines U2OS, HOS, MG63, and hFOB1.19 was detected. SiRNA GABPB1-AS1 was transfected with U2OS and HOS cell lines. The effects of GABPB1-AS1 silencing on proliferation, clonal formation, and migration of U2OS and HOS were detected by CCK-8 method, plate cloning method, and Transwell chamber. Western blot analysis was used to detect the protein levels of SP1, Wnt, β-catenin, c-Myc, and SOX2 in osteosarcoma cells. The binding relationship between GABPB1-AS1 and miR-199a-3p in OS cells was detected by a dual-luciferase reporter gene assay. Results showed that GABPB1-AS1 was higher in OS cells than that in hFOB1.19. Silencing GABPB1-AS1 inhibited the proliferation, clonal formation, migration, and epithelial-mesenchymal transformation of U2OS and HOS. There was a binding relationship between GABPB1-AS1 and miR-199a-3p in OS cells. GABPB1-AS1 mediated osteosarcoma cells via the SP1/Wnt/β-catenin signaling pathway. This study suggested that GABPB1-AS1 plays a carcinogenic role in OS through the SP1/Wnt/β-catenin signaling pathway through competitive binding and inhibition of miR-199a-3p.
Collapse
|
6
|
Zhang H, Zhang H, Zhu J, Liu H, Zhou Q. PESV represses non-small cell lung cancer cell malignancy through circ_0016760 under hypoxia. Cancer Cell Int 2021; 21:628. [PMID: 34838012 PMCID: PMC8626912 DOI: 10.1186/s12935-021-02336-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/12/2021] [Indexed: 12/25/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) accounts for more than 80% of lung cancers, which is the most common malignant tumor worldwide. Polypeptide extract from scorpion venom (PESV) has been reported to inhibit NSCLC process. The present study aims to reveal the roles of PESV in NSCLC progression under hypoxia and the inner mechanism. Methods The expression levels of circular RNA 0016760 (circ_0016760) and microRNA-29b (miR-29b) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein expression was determined by western blot and immunohistochemistry assays. Cell migration, invasion, proliferation and tube formation were investigated by transwell, cell colony formation, 3-(4,5-Dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide and tube formation assays. The impacts between PESV and circ_0016760 overexpression on tumor growth in vivo were investigated by in vivo tumor formation assay. Results Circ_0016760 expression was dramatically upregulated in NSCLC tissues and cells, compared with adjacent lung tissues and cells, respectively. PESV treatment downregulated circ_0016760 expression. Circ_0016760 silencing or PESV treatment repressed cell migration, invasion, proliferation and tube formation under hypoxia in NSCLC cells. Circ_0016760 overexpression restored the effects of PESV treatment on NSCLC process under hypoxia. Additionally, circ_0016760 acted as a sponge of miR-29b, and miR-29b bound to HIF1A. Meanwhile, miR-29b inhibitor impaired the influences of circ_0016760 knockdown on NSCLC process under hypoxia. Further, ectopic circ_0016760 expression restrained the effects of PESV exposure on tumor formation in vivo. Conclusion Circ_0016760 overexpression counteracted PESV-induced repression of NSCLC cell malignancy and angiogenesis under hypoxia through miR-29b/HIF1A axis. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02336-6.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Oncology, The First Hospital of Hunan University of Chinese Medicine, No.95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, Hunan, China.
| | - Haojian Zhang
- Department of Oncology, The First Hospital of Hunan University of Chinese Medicine, No.95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, Hunan, China
| | - Jiye Zhu
- Department of Oncology, The First Hospital of Hunan University of Chinese Medicine, No.95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, Hunan, China
| | - Huan Liu
- Department of Oncology, The First Hospital of Hunan University of Chinese Medicine, No.95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, Hunan, China
| | - Qin Zhou
- Department of Oncology, The First Hospital of Hunan University of Chinese Medicine, No.95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, Hunan, China
| |
Collapse
|
7
|
Seebacher NA, Krchniakova M, Stacy AE, Skoda J, Jansson PJ. Tumour Microenvironment Stress Promotes the Development of Drug Resistance. Antioxidants (Basel) 2021; 10:1801. [PMID: 34829672 PMCID: PMC8615091 DOI: 10.3390/antiox10111801] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 01/18/2023] Open
Abstract
Multi-drug resistance (MDR) is a leading cause of cancer-related death, and it continues to be a major barrier to cancer treatment. The tumour microenvironment (TME) has proven to play an essential role in not only cancer progression and metastasis, but also the development of resistance to chemotherapy. Despite the significant advances in the efficacy of anti-cancer therapies, the development of drug resistance remains a major impediment to therapeutic success. This review highlights the interplay between various factors within the TME that collectively initiate or propagate MDR. The key TME-mediated mechanisms of MDR regulation that will be discussed herein include (1) altered metabolic processing and the reactive oxygen species (ROS)-hypoxia inducible factor (HIF) axis; (2) changes in stromal cells; (3) increased cancer cell survival via autophagy and failure of apoptosis; (4) altered drug delivery, uptake, or efflux and (5) the induction of a cancer stem cell (CSC) phenotype. The review also discusses thought-provoking ideas that may assist in overcoming the TME-induced MDR. We conclude that stressors from the TME and exposure to chemotherapeutic agents are strongly linked to the development of MDR in cancer cells. Therefore, there remains a vast area for potential research to further elicit the interplay between factors existing both within and outside the TME. Elucidating the mechanisms within this network is essential for developing new therapeutic strategies that are less prone to failure due to the development of resistance in cancer cells.
Collapse
Affiliation(s)
| | - Maria Krchniakova
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| | - Alexandra E. Stacy
- Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia;
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| | - Patric J. Jansson
- Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia;
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St. Leonards, NSW 2065, Australia
| |
Collapse
|
8
|
Zhu Z, Zheng Z, Liu J. Comparison of COVID-19 and Lung Cancer via Reactive Oxygen Species Signaling. Front Oncol 2021; 11:708263. [PMID: 34277453 PMCID: PMC8283805 DOI: 10.3389/fonc.2021.708263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
COVID-19 and lung cancer are two severe pulmonary diseases that cause millions of deaths globally each year. Understanding the dysregulated signaling pathways between them can benefit treating the related patients. Recent studies suggest the critical role of reactive oxygen species (ROS) in both diseases, indicating an interplay between them. Here we reviewed references showing that ROS and ROS-associated signaling pathways, specifically via NRF2, HIF-1, and Nf-κB pathways, may bridge mutual impact between COVID-19 and lung cancer. As expected, typical ROS-associated inflammation pathways (HIF-1 and Nf-κB) are activated in both diseases. The activation of both pathways in immune cells leads to an overloading immune response and exacerbates inflammation in COVID-19. In lung cancer, HIF-1 activation facilitates immune escape, while Nf-κB activation in T cells suppresses tumor growth. However, the altered NRF2 pathway show opposite trends between them, NRF2 pathways exert immunosuppressive effects in both diseases, as it represses the immune response in COVID-19 patients while facilitates the immune escape of tumor cells. Furthermore, we summarized the therapeutic targets (e.g., phytochemicals) on these ROS pathways. In sum, our review focus on the understanding of ROS Signaling in COVID-19 and lung cancer, showing that modulating ROS signaling pathways may alleviate the potentially mutual impacts between COVID-19 and lung cancer patients.
Collapse
Affiliation(s)
- Zilan Zhu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Ziyi Zheng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Jian Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, China
| |
Collapse
|
9
|
Xu LM, Yu H, Yuan YJ, Zhang J, Ma Y, Cao XC, Wang J, Zhao LJ, Wang P. Overcoming of Radioresistance in Non-small Cell Lung Cancer by microRNA-320a Through HIF1α-Suppression Mediated Methylation of PTEN. Front Cell Dev Biol 2020; 8:553733. [PMID: 33304897 PMCID: PMC7693713 DOI: 10.3389/fcell.2020.553733] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/18/2020] [Indexed: 11/13/2022] Open
Abstract
Background Radioresistance is a major challenge in the use of radiotherapy for the treatment of lung cancer while microRNAs (miRs) have been reported to participate in multiple essential cellular processes including radiosensitization. This study was conducted with the main objective of investigating the potential role of miR-320a in radioresistance of non-small cell lung cancer (NSCLC) via the possible mechanism related to HIF1α, KDM5B, and PTEN. Methods Firstly, NSCLC radiosensitivity-related microarray dataset GSE112374 was obtained. Then, the expression of miR-320a, HIF1α, KDM5B, and PTEN was detected in the collected clinical NSCLC samples, followed by Pearson's correlation analysis. Subsequently, ChIP assay was conducted to determine the content of the PTEN promoter fragment enriched by the IgG antibody and H3K4me3 antibody. Finally, a series of in vitro and in vivo assays were performed in order to evaluate the effects of miR-320a on radioresistance of NSCLC with the involvement of HIF1α, KDM5B, and PTEN. Results The microarray dataset GSE112374 presented with a high expression of miR-320a in NSCLC radiosensitivity samples, which was further confirmed in our clinical samples with the use of reverse transcription-quantitative polymerase chain reaction. Moreover, miR-320a negatively targeted HIF1α, inhibiting radioresistance of NSCLC. Interestingly, miR-320a suppressed the expression of KDM5B, and KDM5B was found to enhance the radioresistance of NSCLC through the downregulation of PTEN expression. The inhibition of miR-320a in radioresistance of NSCLC was also reproduced by in vivo assay. Conclusion Taken together, our findings were suggestive of the inhibitory effect of miR-320a on radioresistance of NSCLC through HIF1α-suppression mediated methylation of PTEN.
Collapse
Affiliation(s)
- Li-Ming Xu
- Department of Radiotherapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.,Department of Radiotherapy, Tianjin Medical University Cancer Hospital Airport Hospital, Tianjin, China
| | - Hao Yu
- Department of Radiotherapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Ya-Jing Yuan
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Anesthesia, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Jiao Zhang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.,The First Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yue Ma
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.,The First Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Xu-Chen Cao
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.,The First Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Jun Wang
- Department of Radiotherapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.,Department of Radiotherapy, Tianjin Medical University Cancer Hospital Airport Hospital, Tianjin, China
| | - Lu-Jun Zhao
- Department of Radiotherapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Ping Wang
- Department of Radiotherapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| |
Collapse
|
10
|
Ahn YH, Ko YH. Diagnostic and Therapeutic Implications of microRNAs in Non-Small Cell Lung Cancer. Int J Mol Sci 2020; 21:E8782. [PMID: 33233641 PMCID: PMC7699705 DOI: 10.3390/ijms21228782] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
microRNAs (miRNAs), endogenous suppressors of target mRNAs, are deeply involved in every step of non-small cell lung cancer (NSCLC) development, from tumor initiation to progression and metastasis. They play roles in cell proliferation, apoptosis, angiogenesis, epithelial-to-mesenchymal transition, migration, invasion, and metastatic colonization, as well as immunosuppression. Due to their versatility, numerous attempts have been made to use miRNAs for clinical applications. miRNAs can be used as cancer subtype classifiers, diagnostic markers, drug-response predictors, prognostic markers, and therapeutic targets in NSCLC. Many challenges remain ahead of their actual clinical application; however, when achieved, the use of miRNAs in the clinic is expected to enable great progress in the diagnosis and treatment of patients with NSCLC.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Biomarkers, Pharmacological/analysis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Carcinoma, Non-Small-Cell Lung/diagnosis
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/immunology
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Epithelial-Mesenchymal Transition/drug effects
- Epithelial-Mesenchymal Transition/genetics
- Epithelial-Mesenchymal Transition/immunology
- Gene Expression Regulation, Neoplastic
- Humans
- Lung Neoplasms/diagnosis
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Lymphatic Metastasis
- MicroRNAs/agonists
- MicroRNAs/antagonists & inhibitors
- MicroRNAs/genetics
- MicroRNAs/immunology
- Neovascularization, Pathologic/diagnosis
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/immunology
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Signal Transduction
- Tumor Escape/drug effects
- Tumor Escape/genetics
Collapse
Affiliation(s)
- Young-Ho Ahn
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul 07804, Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Yoon Ho Ko
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
11
|
Bai L, Peng X, Sun R. Knockdown of circPRKCA Restrained Cell Growth, Migration, and Invasion of NSCLC Cells Both in vitro and in vivo via Regulating miR-330-5p/PDK1/AKT Pathway. Cancer Manag Res 2020; 12:9125-9137. [PMID: 33061606 PMCID: PMC7524182 DOI: 10.2147/cmar.s258370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/20/2020] [Indexed: 12/26/2022] Open
Abstract
Background Protein kinase Cα (PRKCA) is an oncogene in multiple cancers including non-small-cell lung cancer (NSCLC) and can be transcribed into a number of circular PRKCAs (circPRKCAs). Here, we aimed to elaborate the role and mechanism of circPRKCA_024 (circPRKCA) in malignant progression of NSCLC. Methods Expression of circPRKCA, miRNA (miR)-330-5p and 3-phosphoinositide-dependent protein kinase-1 (PDK1) was measured by real-time quantitative PCR and Western blotting, and their relationship was testified by dual-luciferase reporter assay, RNA immunoprecipitation, and RNA pull-down assay. Cell behaviors were evaluated by cell counting kit (CCK)-8, flow cytometry, and transwell assays. AKT activity was confirmed by Western blotting. Xenograft experiment assessed tumor growth. Results Expression of circPRKCA and PDK1 was upregulated, and miR-330-5p was downregulated in NSCLC tissues and cell lines. High circPRKCA was correlated with TNM stage and lymph node metastasis of NSCLC patients. Silencing circPRKCA could suppress cell viability, migration, and invasion in A549 and H1299 cells, accompanied with apoptosis rate promotion. Moreover, circPRKCA knockdown retarded tumor growth of A549 cells in vivo. Molecularly, miR-330-5p was sponged by circPRKCA, and PDK1 was a target of miR-330-5p. Inhibiting miR-330-5p could attenuate the suppression of circPRKCA knockdown on cell growth, migration, and invasion; contrarily, promoting miR-330-5p caused inhibition on those cell behaviors by downregulating PDK1. Analogously, AKT activity was suppressed by circPRKCA downregulation and miR-330-5p upregulation in NSCLC cells both in vitro and in vivo. Conclusion Depleting circPRKCA inhibited PDK1 to suppress NSCLC cell malignant behaviors through miR-330-5p/PDK1/AKT pathway.
Collapse
Affiliation(s)
- Lanxiang Bai
- Disinfection Supply Center, Yantai Yuhuangding Hospital, Yantai 264000, Shandong, People's Republic of China
| | - Xiaonu Peng
- Department of Thoracic Surgery, Yantai Yuhuangding Hospital, Yantai 264000, Shandong, People's Republic of China
| | - Ruimei Sun
- Department of Laboratory, Weifang No.2 People's Hospital, Weifang 261041, Shandong, People's Republic of China
| |
Collapse
|
12
|
Pozza DH, De Mello RA, Araujo RLC, Velcheti V. MicroRNAs in Lung Cancer Oncogenesis and Tumor Suppression: How it Can Improve the Clinical Practice? Curr Genomics 2020; 21:372-381. [PMID: 33093800 PMCID: PMC7536806 DOI: 10.2174/1389202921999200630144712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022] Open
Abstract
Background Lung cancer (LC) development is a process that depends on genetic mutations. The DNA methylation, an important epigenetic modification, is associated with the expression of non-coding RNAs, such as microRNAs. MicroRNAs are particularly essential for cell physiology, since they play a critical role in tumor suppressor gene activity. Furthermore, epigenetic disruptions are the primary event in cell modification, being related to tumorigenesis. In this context, microRNAs can be a useful tool in the LC suppression, consequently improving prognosis and predicting treatment. Conclusion This manuscript reviews the main microRNAs involved in LC and its potential clinical applications to improve outcomes, such as survival and better quality of life.
Collapse
Affiliation(s)
- Daniel Humberto Pozza
- 1Departamento de Biomedicina da Faculdade de Medicina, and Faculdade de Ciências da Nutrição e Alimentação, and I3s, Universidade do Porto, Porto, Portugal; 2Algarve Biomedical Centre, Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal; 3Department of Clinical & Experimental Oncology, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil; 4Precision Oncology and Health Economic Group, Nine of July University, São Paulo, Brazil; 5Department of Digestive Surgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, Brazil; 6Department of Oncology, Albert Einstein Israelite Hospital, São Paulo, Brazil; 7Thoracic Oncology Program, NYU Langone, Perlmutter Cancer Center, New York, NY, 10016, USA
| | - Ramon Andrade De Mello
- 1Departamento de Biomedicina da Faculdade de Medicina, and Faculdade de Ciências da Nutrição e Alimentação, and I3s, Universidade do Porto, Porto, Portugal; 2Algarve Biomedical Centre, Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal; 3Department of Clinical & Experimental Oncology, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil; 4Precision Oncology and Health Economic Group, Nine of July University, São Paulo, Brazil; 5Department of Digestive Surgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, Brazil; 6Department of Oncology, Albert Einstein Israelite Hospital, São Paulo, Brazil; 7Thoracic Oncology Program, NYU Langone, Perlmutter Cancer Center, New York, NY, 10016, USA
| | - Raphael L C Araujo
- 1Departamento de Biomedicina da Faculdade de Medicina, and Faculdade de Ciências da Nutrição e Alimentação, and I3s, Universidade do Porto, Porto, Portugal; 2Algarve Biomedical Centre, Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal; 3Department of Clinical & Experimental Oncology, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil; 4Precision Oncology and Health Economic Group, Nine of July University, São Paulo, Brazil; 5Department of Digestive Surgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, Brazil; 6Department of Oncology, Albert Einstein Israelite Hospital, São Paulo, Brazil; 7Thoracic Oncology Program, NYU Langone, Perlmutter Cancer Center, New York, NY, 10016, USA
| | - Vamsidhar Velcheti
- 1Departamento de Biomedicina da Faculdade de Medicina, and Faculdade de Ciências da Nutrição e Alimentação, and I3s, Universidade do Porto, Porto, Portugal; 2Algarve Biomedical Centre, Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal; 3Department of Clinical & Experimental Oncology, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil; 4Precision Oncology and Health Economic Group, Nine of July University, São Paulo, Brazil; 5Department of Digestive Surgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, Brazil; 6Department of Oncology, Albert Einstein Israelite Hospital, São Paulo, Brazil; 7Thoracic Oncology Program, NYU Langone, Perlmutter Cancer Center, New York, NY, 10016, USA
| |
Collapse
|
13
|
MicroRNA-130a targeting hypoxia-inducible factor 1 alpha suppresses cell metastasis and Warburg effect of NSCLC cells under hypoxia. Life Sci 2020; 255:117826. [PMID: 32450163 DOI: 10.1016/j.lfs.2020.117826] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
MicroRNAs have been demonstrated to play critical role in the development of non-small cell lung cancer (NSCLC) and hypoxia is a common hallmark of NSCLC. MiRNA-130a-3p (miR-130a) is a well-known tumor suppressor, and we intended to explore the role and mechanism of miR-130a in NSCLC cells under hypoxia. We used real-time quantitative polymerase chain reaction method to measure miR-130a expression, and found that miR-130a was downregulated in human NSCLC tumors and cell lines (A549 and H1299), accompanied with upregulation of hypoxia-inducible factor 1 alpha (HIF1A), a marker of hypoxia. Besides, miR-130a low expression was associated with tumor burden and poor overall survival. Moreover, miR-130a expression was even downregulated in hypoxia-treated A549 and H1299 cells. Ectopic expression of miR-130a suppressed Warburg effect, migration and invasion in hypoxic A549 and H1299 cells, as evidenced by decreased glucose consumption, lactate production, hexokinase 2 expression, and numbers of migration cells and invasion cells analyzed by commercial glucose and lactate assay kits, western blotting and transwell assays. Furthermore, overexpression of miR-130a restrained xenograft tumor growth of A549 cells in mice. However, recovery of HIF1A could reverse the suppressive effect of miR-130a overexpression on cell migration, invasion and Warburg effect in hypoxic A549 and H1299 cells. Mechanically, dual-luciferase reporter assay, RNA immunoprecipitation and RNA pull-down assay confirmed a target relationship between miR-130a and HIF1A. Collectively, we demonstrated an anti-tumor role of miR-130a in NSCLC cells under hypoxia through targeting HIF1A, suggesting a potential target for the interfering of NSCLC.
Collapse
|
14
|
Jin Y, Wang H, Zhu Y, Feng H, Wang G, Wang S. miR-199a-5p is involved in doxorubicin resistance of non-small cell lung cancer (NSCLC) cells. Eur J Pharmacol 2020; 878:173105. [PMID: 32278855 DOI: 10.1016/j.ejphar.2020.173105] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
Abstract
Non-small cell lung cancer (NSCLC) is one of the prevalent and deadly cancers worldwide. Chemotherapy resistance is one of the most challenging problems for NSCLC and other cancer treatment. Recent study suggested that miRNAs are involved in therapeutic functions of chemotherapy during cancer treatment. Our present study established doxorubicin (Dox) resistant NSCLC A549 and H460 cells (named A549Dox/R and H460 Dox/R). We found that miR-199a-5p was significantly down regulated in Dox resistant cells. Over expression of miR-199a-5p can increase the Dox sensitivity of resistant cells. Among various targets of miR-199a-5p, chemoresistance can increase the expression of ABCC1 and HIF-1α. Gain and loss of function studies confirmed that both ABCC1 and HIF-1α were involved in the chemoresistance of NSCLC cells. Collectively, our data showed that miR-199a-5p regulated expression of ABCC1 and HIF-1α were involved in Dox resistance of NSCLC.
Collapse
Affiliation(s)
- Yonglong Jin
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Huiyun Wang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Yingqian Zhu
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Hui Feng
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Guanqun Wang
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Shasha Wang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
15
|
Wang Q, Ye B, Wang P, Yao F, Zhang C, Yu G. Overview of microRNA-199a Regulation in Cancer. Cancer Manag Res 2019; 11:10327-10335. [PMID: 31849522 PMCID: PMC6911337 DOI: 10.2147/cmar.s231971] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/23/2019] [Indexed: 12/17/2022] Open
Abstract
microRNAs (miRNAs) are a class of endogenous short, non-coding RNAs that regulate a multitude of genes at the post-transcriptional level. miR-199, which is a highly conserved miRNA family, consists of miR-199a and miR-199b. Researchers mainly focused on miR-199a over the past few years. Functional studies have demonstrated that mature miR-199a is a key player in the maintenance of normal homeostasis and in the regulation of disease pathogenesis. Here, we summarize the biological functions of miR-199a and review recent research on its roles in the physiological processes of cancer cells, such as proliferation, migration, invasion, apoptosis, autophagy and glycometabolism.
Collapse
Affiliation(s)
- Qiwen Wang
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, Henan, People's Republic of China.,State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Bingyu Ye
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, Henan, People's Republic of China.,State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Ping Wang
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, Henan, People's Republic of China.,State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Fenjie Yao
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, Henan, People's Republic of China.,State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Chunyan Zhang
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, Henan, People's Republic of China.,State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Guoying Yu
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, Henan, People's Republic of China.,State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, People's Republic of China
| |
Collapse
|
16
|
Noncoding RNAs and Liquid Biopsy in Lung Cancer: A Literature Review. Diagnostics (Basel) 2019; 9:diagnostics9040216. [PMID: 31818027 PMCID: PMC6963838 DOI: 10.3390/diagnostics9040216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023] Open
Abstract
Lung cancer represents a genetically heterogeneous disease with low survival rates. Recent data have evidenced key roles of noncoding RNAs in lung cancer initiation and progression. These functional RNA molecules that can act as both oncogenes and tumor suppressors may become future biomarkers and more efficient therapeutic targets. In the precision medicine era, circulating nucleic acids have the potential to reshape the management and prognosis of cancer patients. Detecting genomic alterations and level variations of circulating nucleic acids in liquid biopsy samples represents a noninvasive method for portraying tumor burden. Research is currently trying to validate the potential role of liquid biopsy in lung cancer screening, prognosis, monitoring of disease progression, and treatment response. However, this method requires complex detection assays, and implementation of plasma genotyping in clinical practice continues to be hindered by discrepancies that arise when compared to tissue genotyping. Understanding the genomic landscape of lung cancer is essential in order to provide useful and innovative research in the age of patient-tailored therapy. In this landscape, the noncoding RNAs play a crucial role due to their target genes that dramatically influence the tumor microenvironment and the response to therapy. This article addresses present and future possible roles of liquid biopsy in lung cancer. It also discusses how the complex role of noncoding RNAs in lung tumorigenesis could influence the management of this pathology.
Collapse
|
17
|
The role of MicroRNAs on endoplasmic reticulum stress in myocardial ischemia and cardiac hypertrophy. Pharmacol Res 2019; 150:104516. [DOI: 10.1016/j.phrs.2019.104516] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/12/2019] [Accepted: 10/29/2019] [Indexed: 12/22/2022]
|
18
|
The Role of MicroRNAs upon Epithelial-to-Mesenchymal Transition in Inflammatory Bowel Disease. Cells 2019; 8:cells8111461. [PMID: 31752264 PMCID: PMC6912477 DOI: 10.3390/cells8111461] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/03/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence suggest the significance of inflammation in the progression of cancer, for example the development of colorectal cancer in Inflammatory Bowel Disease (IBD) patients. Long-lasting inflammation in the gastrointestinal tract causes serious systemic complications and breaks the homeostasis of the intestine, where the altered expression of regulatory genes and miRNAs trigger malignant transformations. Several steps lead from acute inflammation to malignancies: epithelial-to-mesenchymal transition (EMT) and inhibitory microRNAs (miRNAs) are known factors during multistage carcinogenesis and IBD pathogenesis. In this review, we outline the interactions between EMT components and miRNAs that may affect cancer development during IBD.
Collapse
|
19
|
Li Z, Xia J, Fang M, Xu Y. Epigenetic regulation of lung cancer cell proliferation and migration by the chromatin remodeling protein BRG1. Oncogenesis 2019; 8:66. [PMID: 31695026 PMCID: PMC6834663 DOI: 10.1038/s41389-019-0174-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 01/10/2023] Open
Abstract
Malignant lung cancer cells are characterized by uncontrolled proliferation and migration. Aberrant lung cancer cell proliferation and migration are programmed by altered cancer transcriptome. The underlying epigenetic mechanism is unclear. Here we report that expression levels of BRG1, a chromatin remodeling protein, were significantly up-regulated in human lung cancer biopsy specimens of higher malignancy grades compared to those of lower grades. Small interfering RNA mediated depletion or pharmaceutical inhibition of BRG1 suppressed proliferation and migration of lung cancer cells. BRG1 depletion or inhibition was paralleled by down-regulation of cyclin B1 (CCNB1) and latent TGF-β binding protein 2 (LTBP2) in lung cancer cells. Further analysis revealed that BRG1 directly bound to the CCNB1 promoter to activate transcription in response to hypoxia stimulation by interacting with E2F1. On the other hand, BRG1 interacted with Sp1 to activate LTBP2 transcription. Mechanistically, BRG1 regulated CCNB1 and LTBP2 transcription by altering histone modifications on target promoters. Specifically, BRG1 recruited KDM3A, a histone H3K9 demethylase, to remove dimethyl H3K9 from target gene promoters thereby activating transcription. KDM3A knockdown achieved equivalent effects as BRG1 silencing by diminishing lung cancer proliferation and migration. Of interest, BRG1 directly activated KDM3A transcription by forming a complex with HIF-1α. In conclusion, our data unveil a novel epigenetic mechanism whereby malignant lung cancer cells acquired heightened ability to proliferate and migrate. Targeting BRG1 may yield effective interventional strategies against malignant lung cancers.
Collapse
Affiliation(s)
- Zilong Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Jun Xia
- Department of Respiratory Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China.
| | - Mingming Fang
- Department of Clinical Medicine and Laboratory Center for Experimental Medicine, Jiangsu Health Vocational College, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China. .,Institute of Biomedical Research, Liaocheng University, Liaocheng, China.
| |
Collapse
|
20
|
Sun Y, Xiong X, Wang X. HIF1α/miR-199a/ADM feedback loop modulates the proliferation of human dermal microvascular endothelial cells (HDMECs) under hypoxic condition. Cell Cycle 2019; 18:2998-3009. [PMID: 31537150 DOI: 10.1080/15384101.2019.1666611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Hypoxia-inducible factor 1α (HIF1α) plays a protective role in the hypoxia-induced cellular injury. In the present study, we attempted to investigate the role and mechanism of HIF1αin human dermal microvascular endothelial cells (hDMECs), a common-used cell model for researches on the hypoxia-induced injury during skin wounds healing. As revealed by ChIP and online tools prediction and confirmed by luciferase reporter and ChIP assays, HIF1A can bind to the promoter regions of ADM and miR-199a, while miR-199a directly binds to the 3'UTR of HIF1A and ADM. Hypoxia stress induces HIF1α and ADM expression while inhibits miR-199a expression. Under hypoxic condition, HIF1α knockdown increases the nucleus translocation of p65 and the release of TNF-α and IL-8, inhibits the proliferation and migration, while promotes the cellular permeability in HDMECs upon hypoxic stress, while ADM overexpression and miR-199a inhibition exerted an opposite effect on HDMECs. ADM overexpression or miR-199a inhibition could partially reverse the effect of HIF1A knockdown under hypoxia. In summary, we demonstrate a feedback loop consists of HIF1α, miR-199a, and ADM which protect HDMECs from hypoxia-induced cellular injury by modulating the inflammation response, cell proliferation, migration and permeability in HDMECs.
Collapse
Affiliation(s)
- Yang Sun
- Department of plastic surgery and burns surgery, The Second Xiangya Hospital, Central South University , Changsha , Hunan , China
| | - Xiang Xiong
- Department of plastic surgery and burns surgery, The Second Xiangya Hospital, Central South University , Changsha , Hunan , China
| | - Xiancheng Wang
- Department of plastic surgery and burns surgery, The Second Xiangya Hospital, Central South University , Changsha , Hunan , China
| |
Collapse
|
21
|
Ou ZL, Zhang M, Ji LD, Luo Z, Han T, Lu YB, Li YX. Long noncoding RNA FEZF1-AS1 predicts poor prognosis and modulates pancreatic cancer cell proliferation and invasion through miR-142/HIF-1α and miR-133a/EGFR upon hypoxia/normoxia. J Cell Physiol 2019; 234:15407-15419. [PMID: 30693518 DOI: 10.1002/jcp.28188] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Nowadays, pancreatic cancer (PC) remains the most lethal tumor, partially due to the invasive and treatment-resistant phenotype induced by the extent of hypoxic stress within the tumor tissue. According to previous studies, miR-142/HIF-1α and miR-133a/EGFR could modulate PC cell proliferation under hypoxic and normoxic conditions, respectively. In the present study, FEZF1-AS1, a recently described oncogenic long noncoding RNA, was predicted to target both miR-142 and miR-133a; thus, we hypothesized that FEZF1-AS1 might affect PC cell proliferation through these two axes under hypoxic or normoxic conditions. In PC cell lines, FEZF1-AS1 acted as an oncogene via promoting PC cell proliferation and invasion through miR-142/HIF-1α axis under hypoxic condition; however, FEZF1-AS1 failed to affect the protein levels of HIF-1α and VEGF under the normoxic condition, suggesting the existence of another signaling pathway under normoxic condition. As predicted by an online tool, FEZF1-AS1 could target miR-133a to inhibit its expression; under the normoxic condition, FEZF1-AS1 exerted its effect on PC cell lines through miR-133a/EGFR axis. Taken together, FEZF1-AS1 might be a promising target in controlling the aberrant proliferation and invasion of PC cell lines.
Collapse
Affiliation(s)
- Zheng-Lin Ou
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Min Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Lian-Dong Ji
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhen Luo
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Tong Han
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Ye-Bin Lu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yi-Xiong Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
22
|
Li Y, Wang D, Li X, Shao Y, He Y, Yu H, Ma Z. MiR-199a-5p suppresses non-small cell lung cancer via targeting MAP3K11. J Cancer 2019; 10:2472-2479. [PMID: 31258753 PMCID: PMC6584351 DOI: 10.7150/jca.29426] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 04/12/2019] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) comprise a class of short, non-coding RNAs that directly target 3'UTR of mRNA, causing subsequent degradation or suppression of translation. Here, we verified that miR-199a-5p was significantly down-regulated in mouse NSCLC tissues and human patient samples. To further study the function of miR-199a-5p, lentivirus system was adopted to construct stably over-expressing miR-199a-5p A549, SPC-A1 and H1299 cell lines. Then, miR-199a-5p played a tumor suppression role via directly targeting MAP3K11 gene in non-small cell lung cancer (NSCLC). Elevated miR-199a-5p suppressed cell proliferation and arrested cell cycle in G1 phase. We found that MAP3K11 was negatively correlated with miR-199a-5p in NSCLC patient tissues and mouse xenograft tumors. Our results suggest that miR-199a-5p together with its target gene MAP3K11 is a key factor and constitutes a complicated regulation network in NSCLC.
Collapse
Affiliation(s)
- Yanli Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Detao Wang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xue Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yang Shao
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yanyun He
- Exprimental Center for Life Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Huansha Yu
- Experimental Animal Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
23
|
Li Y, Zhao L, Qi Y, Yang X. MicroRNA‑214 upregulates HIF‑1α and VEGF by targeting ING4 in lung cancer cells. Mol Med Rep 2019; 19:4935-4945. [PMID: 31059086 DOI: 10.3892/mmr.2019.10170] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/17/2018] [Indexed: 11/06/2022] Open
Abstract
Previous reports have indicated a potential link between microRNA (miR)‑214 and hypoxia. In the present study, the biological functions and potential mechanisms of miR‑214 were determined, as well as its correlation with HIF‑1α signaling in non‑small cell lung cancer (NSCLC) cells. Quantitative polymerase chain reaction revealed that miR‑214 expression was upregulated in lung cancer tissues compared with adjacent normal tissues. miR‑214 mimics were transfected into A549 cells, and MTT, colony formation, invasion and wound healing assays were performed. It was demonstrated that miR‑214 mimic transfection promoted the invasion, proliferation and migration of A549 cells. Furthermore, miR‑214 inhibitor transfection decreased H1299 cell invasion, proliferation and migration. Next, the association between miR‑214 expression and the HIF‑1α signaling cascade was examined. It was demonstrated that miR‑214 mimics upregulated the expression of hypoxia‑inducible factor (HIF)‑1α, vascular endothelial growth factor (VEGF), adenylate kinase 3 and matrix metalloproteinase (MMP)2, whereas miR‑214 inhibitor downregulated the expression of these factors. Using prediction software, it was demonstrated that tumor suppressor ING4 was a target of miR‑214. A luciferase reporter assay confirmed that ING4 was a direct target of miR‑214. There was a negative correlation between ING4 and miR‑214 expression in lung cancer tissues. In addition, ING4 siRNA and plasmid was transfected into cells in order to validate its effect on HIF‑1α, MMP2 and VEGF expression. ING4 overexpression downregulated HIF‑1α and its targets MMP2 and VEGF, while ING4 siRNA upregulated HIF‑1α, MMP2 and VEGF. In conclusion, it was demonstrated that miR‑214 targeted ING4 in lung cancer cells, and upregulated the HIF‑1α cascade, leading to MMP2 and VEGF upregulation. This approach may help to clarify the role of miRNA in non‑small lung cancer and may be a new therapeutic target for non‑small lung cancer.
Collapse
Affiliation(s)
- Yue Li
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Long Zhao
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yafei Qi
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xianghong Yang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
24
|
The Roles of MicroRNA in Lung Cancer. Int J Mol Sci 2019; 20:ijms20071611. [PMID: 30935143 PMCID: PMC6480472 DOI: 10.3390/ijms20071611] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/11/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is the most devastating malignancy in the world. Beyond genetic research, epigenomic studies—especially investigations of microRNAs—have grown rapidly in quantity and quality in the past decade. This has enriched our understanding about basic cancer biology and lit up the opportunities for potential therapeutic development. In this review, we summarize the involvement of microRNAs in lung cancer carcinogenesis and behavior, by illustrating the relationship to each cancer hallmark capability, and in addition, we briefly describe the clinical applications of microRNAs in lung cancer diagnosis and prognosis. Finally, we discuss the potential therapeutic use of microRNAs in lung cancer.
Collapse
|
25
|
Heuslein JL, Gorick CM, McDonnell SP, Song J, Annex BH, Price RJ. Exposure of Endothelium to Biomimetic Flow Waveforms Yields Identification of miR-199a-5p as a Potent Regulator of Arteriogenesis. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 12:829-844. [PMID: 30153567 PMCID: PMC6118158 DOI: 10.1016/j.omtn.2018.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
Arteriogenesis, the growth of endogenous collateral arteries bypassing arterial occlusion(s), is a fundamental shear stress-induced adaptation with implications for treating peripheral arterial disease (PAD). Nonetheless, endothelial mechano-signaling during arteriogenesis is incompletely understood. Here we tested the hypothesis that a mechanosensitive microRNA, miR-199a-5p, regulates perfusion recovery and collateral arteriogenesis following femoral arterial ligation (FAL) via control of monocyte recruitment and pro-arteriogenic gene expression. We have previously shown that collateral artery segments exhibit distinctly amplified arteriogenesis if they are exposed to reversed flow following FAL in the mouse. We performed a genome-wide analysis of endothelial cells exposed to a biomimetic reversed flow waveform. From this analysis, we identified mechanosensitive miR-199a-5p as a novel candidate regulator of collateral arteriogenesis. In vitro, miR-199a-5p inhibited pro-arteriogenic gene expression (IKKβ, Cav1) and monocyte adhesion to endothelium. In vivo, following FAL in mice, miR-199a-5p overexpression impaired foot perfusion and arteriogenesis. In contrast, a single intramuscular anti-miR-199a-5p injection elicited a robust therapeutic response, including complete foot perfusion recovery, markedly augmented arteriogenesis (>3.4-fold increase in segment conductance), and improved gastrocnemius tissue composition. Finally, we found plasma miR-199a-5p to be elevated in human PAD patients with intermittent claudication compared to a risk factor control population. Through our transformative analysis of endothelial mechano-signaling in response to a biomimetic amplified arteriogenesis flow waveform, we have identified miR-199a-5p as both a potent regulator of arteriogenesis and a putative target for treating PAD.
Collapse
Affiliation(s)
- Joshua L Heuslein
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Catherine M Gorick
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Stephanie P McDonnell
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Ji Song
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Brian H Annex
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Richard J Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
26
|
MicroRNA 199a-5p Attenuates Retrograde Transport and Protects against Toxin-Induced Inhibition of Protein Biosynthesis. Mol Cell Biol 2018; 38:MCB.00548-17. [PMID: 29555727 DOI: 10.1128/mcb.00548-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 03/08/2018] [Indexed: 01/09/2023] Open
Abstract
Retrograde transport (RT) allows cells to retrieve receptors and other cellular cargoes for delivery to the Golgi apparatus, contributing to the maintenance of cellular homeostasis. This transport route is also commonly used by several bacterial toxins to exert their deleterious actions on eukaryotic cells. While the retrograde transport process has been well characterized, the contribution of microRNAs (miRNAs) in regulating this cellular transport mechanism remains unknown. Here, we determined that mir-199a and mir-199b, members of the intronic miRNA family, coordinate genes regulating RT and endosome trafficking. We demonstrate that miR-199a-5p attenuates the expression of Vps26A, Rab9B, and M6PR, thereby controlling RT from endosomes to the trans-Golgi network (TGN). Importantly, we found that overexpression of a Vps26A construct resistant to the inhibitory action of miR-199a-5p abrogates the effect of miR-199a-5p on RT. Finally, we demonstrate that miR-199-5p overexpression attenuates Shiga toxin type 1 (Stx1)-mediated inhibition of protein biosynthesis. In summary, our work identifies the first noncoding RNA that influences RT and reduces the inhibition of protein biosynthesis caused by bacterial toxins.
Collapse
|
27
|
Wang Y, Dai YX, Wang SQ, Qiu MK, Quan ZW, Liu YB, Ou JM. miR-199a-5p inhibits proliferation and induces apoptosis in hemangioma cells through targeting HIF1A. Int J Immunopathol Pharmacol 2017; 31:394632017749357. [PMID: 29268640 PMCID: PMC5849215 DOI: 10.1177/0394632017749357] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) exhibit a crucial role in the regulation of angiogenesis and
tumor progression, of which miR-199a-5p (miR-199a) has been reported to function
as a tumor suppressor in multiple malignancies. However, the precise mechanisms
underlying miR-199a in hemangiomas (HAs) remain elusive. In this study, we found
that miR-199a had low expression level, while proliferating cell nuclear antigen
(PCNA) had high expression level in proliferating-phase HAs compared with the
involuting-phase HAs and normal tissues. Spearman correlation analysis revealed
the negative correlation of miR-199a with PCNA expression in proliferating-phase
HAs. In vitro experiments showed that restoration of miR-199a suppressed cell
proliferation capability and induced cell apoptosis in HA-derived endothelial
cells (HDEC) and CRL-2586 EOMA cells, followed with decreased PCNA expression
and increased cleaved caspase-3 expression, but miR-199a inhibitor reversed
these effects. Furthermore, HIF1A was identified as a target of miR-199a and had
negative correlation with miR-199a expression in proliferating-phase HAs.
Overexpression of HIF1A attenuated the anti-proliferation effect of miR-199a
mimic in HAs cells. Taken together, our findings demonstrate that miR-199a may
inhibit proliferation and induce apoptosis in HAs cells via targeting HIF1A and
provide a potential therapeutic target for HAs.
Collapse
Affiliation(s)
- Yang Wang
- Department of General Surgery, Xin Hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu-Xin Dai
- Department of General Surgery, Xin Hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shu-Qing Wang
- Department of General Surgery, Xin Hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ming-Ke Qiu
- Department of General Surgery, Xin Hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhi-Wei Quan
- Department of General Surgery, Xin Hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying-Bin Liu
- Department of General Surgery, Xin Hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing-Min Ou
- Department of General Surgery, Xin Hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Feng X, Liu N, Deng S, Zhang D, Wang K, Lu M. miR-199a modulates cisplatin resistance in ovarian cancer by targeting Hif1α. Onco Targets Ther 2017; 10:5899-5906. [PMID: 29276393 PMCID: PMC5731338 DOI: 10.2147/ott.s145833] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Resistance to chemotherapy is a primary problem for the effective treatment of ovarian cancer. Recently, increasing evidence has demonstrated that miRNAs modulate many important molecular pathways involved in chemotherapy. Previous studies demonstrated that miR-199a affected ovarian cancer cell resistance to cisplatin (DDP). However, the role of miR-199a and its target genes in determination of ovarian cancer sensitivity to DDP remains unclear. Quantitative reverse transcription polymerase chain reaction was used to detect the expression levels of miR-199a in ovarian cancer tissues and C13* and OV2008 cell lines. After transfection of miR-199a mimic or inhibitor, flow cytometry was used to detect cell apoptosis exposed to DDP. Enzyme-linked immunosorbent assay and Western blot assay were applied to detect tumor necrosis factor-α levels and protein expression levels of Bax, Fas, Fas-associated death domain, and caspase-8. The results indicated that the expression of miR-199a was downregulated and hypoxia-inducible factor 1α (Hif1α) upregulated in the ovarian tumors compared with those in the corresponding normal tissues. Besides, the expression levels of miR-199a were significantly higher in OV2008 cells compared with those in C13* cells. Moreover, suppression of Hif1α reversed the inhibiting function of miR-199a inhibitor on DDP-induced apoptosis in the OV2008 cells. However, overexpression of both miR-199a and Hif1α reduced DDP-induced apoptosis in C13* cells. In conclusion, miR-199a may change DDP resistance in ovarian cancer by regulating Hif1α.
Collapse
Affiliation(s)
- Xue Feng
- Department of Obstetrics and Gynecology
| | - Ning Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, Harbin, People's Republic of China
| | - Suo Deng
- Department of Obstetrics and Gynecology
| | | | | | | |
Collapse
|
29
|
Fadejeva I, Olschewski H, Hrzenjak A. MicroRNAs as regulators of cisplatin-resistance in non-small cell lung carcinomas. Oncotarget 2017; 8:115754-115773. [PMID: 29383199 PMCID: PMC5777811 DOI: 10.18632/oncotarget.22975] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 11/15/2017] [Indexed: 12/29/2022] Open
Abstract
With more than 80% of all diagnosed lung cancer cases, non-small cell lung cancer (NSCLC) remains the leading cause of cancer death worldwide. Exact diagnosis is mostly very late and advanced-stage NSCLCs are inoperable at admission. Tailored therapies with tyrosine kinase inhibitors are only available for a minority of patients. Thus, chemotherapy is often the treatment of choice. As first-line chemotherapy for NSCLCs, platinum-based substances (e.g. cisplatin, CDDP) are mainly used. Unfortunately, the positive effects of CDDP are frequently diminished due to development of drug resistance and negative influence of microenvironmental factors like hypoxia. MicroRNAs (miRNAs) are small, non-coding molecules involved in the regulation of gene expression and modification of biological processes like cell proliferation, apoptosis and cell response to chemotherapeutics. Expression of miRNAs is often deregulated in lung cancer compared to corresponding non-malignant tissue. In this review we summarize the present knowledge about the effects of miRNAs on CDDP-resistance in NSCLCs. Further, we focus on miRNAs deregulated by hypoxia, which is an important factor in the development of CDDP-resistance in NSCLCs. This review will contribute to the general understanding of miRNA-regulated biological processes in NSCLC, with special focus on the role of miRNA in CDDP-resistance.
Collapse
Affiliation(s)
- Irina Fadejeva
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.,Ludwig Boltzmann Institute of Lung Vascular Research, Medical University of Graz, Graz, Austria
| | - Andelko Hrzenjak
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.,Ludwig Boltzmann Institute of Lung Vascular Research, Medical University of Graz, Graz, Austria
| |
Collapse
|
30
|
Wang C, Han C, Zhang Y, Liu F. LncRNA PVT1 regulate expression of HIF1α via functioning as ceRNA for miR‑199a‑5p in non‑small cell lung cancer under hypoxia. Mol Med Rep 2017; 17:1105-1110. [PMID: 29115513 DOI: 10.3892/mmr.2017.7962] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/18/2017] [Indexed: 11/05/2022] Open
Abstract
Non‑small cell lung cancer (NSCLC) represents one of the most important causes of cancer mortality in the world, and leads to the largest number of deaths in all kinds of lung cancer. Hypoxia has been confirmed to be a characteristic feature of NSCLC and has been shown to decrease the therapeutic efficacy of radiotherapy and some forms of chemotherapy. Previous studies revealed that many miRNAs have been proven to be involved in the molecular regulation of hypoxia and to affect the protein expression level of HIF‑1α. Here, we demonstrated that miR‑199a‑5p downregulated HIF‑1α expression and was involved in regulating the proliferation of NLSCS cell under hypoxia through downregulation of HIF‑1α. Recently, PVT1 has been proposed to function as a molecular sponge by competitively binding miR‑199a‑5p using miRcode. In this study, we confirmed that PVT1 was overexpressed in the hypoxic lung cancer cells, and then we further demonstrated that PVT1 functioned as competing endogenous (ce)RNA for miR‑199a‑5p, upregulated expression of its endogenous targets HIF‑1α and inhibited its function. Collectively, our study suggested that PVT1 promotes expression of HIF‑1α in NSCLC by functioning as ceRNA of miR‑199a‑5p. These findings support the hypothesis that PVT1 is a vital potential target for hypoxia therapy.
Collapse
Affiliation(s)
- Chunhong Wang
- The Third Department of Geriatrics, Weifang People's Hospital, Weifang, Shandong 261014, P.R. China
| | - Chunfang Han
- Department of Pediatrics, Weifang People's Hospital, Weifang, Shandong 261014, P.R. China
| | - Yibo Zhang
- The Third Department of Geriatrics, Weifang People's Hospital, Weifang, Shandong 261014, P.R. China
| | - Fengqin Liu
- The Third Department of Geriatrics, Weifang People's Hospital, Weifang, Shandong 261014, P.R. China
| |
Collapse
|
31
|
Yu L, Chen X, Sun X, Wang L, Chen S. The Glycolytic Switch in Tumors: How Many Players Are Involved? J Cancer 2017; 8:3430-3440. [PMID: 29151926 PMCID: PMC5687156 DOI: 10.7150/jca.21125] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/31/2017] [Indexed: 02/07/2023] Open
Abstract
Reprogramming of cellular metabolism is a hallmark of cancers. Cancer cells more readily use glycolysis, an inefficient metabolic pathway for energy metabolism, even when sufficient oxygen is available. This reliance on aerobic glycolysis is called the Warburg effect, and promotes tumorigenesis and malignancy progression. The mechanisms of the glycolytic shift in tumors are not fully understood. Growing evidence demonstrates that many signal molecules, including oncogenes and tumor suppressors, are involved in the process, but how oncogenic signals attenuate mitochondrial function and promote the switch to glycolysis remains unclear. Here, we summarize the current information on several main mediators and discuss their possible mechanisms for triggering the Warburg effect.
Collapse
Affiliation(s)
- Li Yu
- Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Xun Chen
- Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China
| | - Xueqi Sun
- Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Liantang Wang
- Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Shangwu Chen
- State Key Laboratory for Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, Key Laboratory of Gene Engineering of the Ministry of Education, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
32
|
Zhou Y, Jia WK, Jian Z, Zhao L, Liu CC, Wang Y, Xiao YB. Downregulation of microRNA-199a-5p protects cardiomyocytes in cyanotic congenital heart disease by attenuating endoplasmic reticulum stress. Mol Med Rep 2017; 16:2992-3000. [DOI: 10.3892/mmr.2017.6934] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/09/2017] [Indexed: 11/06/2022] Open
|
33
|
Foxo3a-mediated overexpression of microRNA-622 suppresses tumor metastasis by repressing hypoxia-inducible factor-1α in ERK-responsive lung cancer. Oncotarget 2016; 6:44222-38. [PMID: 26528854 PMCID: PMC4792553 DOI: 10.18632/oncotarget.5826] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 10/13/2015] [Indexed: 12/27/2022] Open
Abstract
Metastatic spread of cancer cells portends a poor prognosis and mortality for lung cancer patients. Hypoxia-inducible factor-1α (HIF-1α) enhances tumor cell motility by activating the epithelial-to-mesenchymal transition (EMT), which is considered a prerequisite for metastasis. Recent studies of microRNA involvement in cancer invasion and metastasis have highlighted the role of such RNAs in tumor development. However, little work has been done to identify tumor suppressor microRNAs that target HIF-1α to down-modulate the EMT and thereby counteract the aggressiveness and metastasis of lung cancer cells. Here, we identified the 3'-untranslated region of HIF-1α mRNA as a target of miR-622 and established that miR-622-mediated down-modulation of HIF-1α correlates with decreased levels of mesenchymal proteins, including Snail, β-catenin, and vimentin. Functional analyses revealed that increased miR-622 expression inhibited lung cancer cell migration and invasion in vitro. miR-622 also inhibited the genesis of metastatic lung nodules as demonstrated in a lung cancer xenograft model in which nude mice were transplanted with A549 cells expressing miR-622. Mechanistic analyses showed that overexpression of EGF decreased the miR-622 level in A549 cells, and this reduction could be rescued by administrating U0126, an inhibitor of ERK. Moreover, miR-622 overexpression mediated by the transcription factor FOXO3a decreased the invasiveness of lung tumor cells by inhibiting HIF-1α via inactivation of ERK signaling in U0126-treated A549 cells. These findings highlight the pivotal role of the FOXO3a/miR-622 axis in inhibiting HIF-1α to interfere with tumor metastasis, and this information may contribute to development of novel therapeutic strategies for treating aggressive lung cancer.
Collapse
|
34
|
Keßler J, Rot S, Bache M, Kappler M, Würl P, Vordermark D, Taubert H, Greither T. miR-199a-5p regulates HIF-1α and OSGIN2 and its expression is correlated to soft-tissue sarcoma patients' outcome. Oncol Lett 2016; 12:5281-5288. [PMID: 28101243 DOI: 10.3892/ol.2016.5320] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 08/10/2016] [Indexed: 12/18/2022] Open
Abstract
Soft tissue sarcomas are a heterogeneous group of malignant neoplasms of mesenchymal origin. Partly due to hypoxia, an aggressive and radioresistant phenotype frequently develops, resulting in poorer patient outcome. microRNAs (miRNAs) are tiny, non-coding regulators of gene expression and in situations of cellular stress situations may predict clinical progression and patient outcome. In the present study, hypoxia-associated miR-199a-5p expression in 96 soft tissue sarcoma samples was analysed by reverse transcription-quantitative polymerase chain reaction and associations between miR-199a-5p expression and patient clinicopathological characteristics and survival were measured. Additionally, luciferase reporter assays analyzed the post-transcriptional regulation of hypoxia-associated genes hypoxia-inducible factor 1α (HIF-1α), oxidative stress induced growth inhibitor 2 (OSGIN2) and vascular endothelial growth factor (VEGF) by miR-199a-5p. Survival analyses indicated that low expression of miR-199a-5p was significantly correlated with poorer tumor-specific survival (univariate Cox's-Regression analyses; relative risk=1.92, P=0.029). Furthermore, it was demonstrated that the 3'UTR of HIF-1α and OSGIN2 genes were regulated by miR-199a-5p in-vitro, although the 3'UTR of VEGF was not. To the best of our knowledge, this is the first report demonstrating the regulation of the 3'untranslated region of the OSGIN2 gene by miR-199a-5p and a significant correlation between low miR-199a-5p expression and a poor outcome of patients with soft tissue sarcoma.
Collapse
Affiliation(s)
- Jacqueline Keßler
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Swetlana Rot
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Matthias Bache
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Matthias Kappler
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Peter Würl
- Department of General and Visceral Surgery, Diakonie Hospital, D-06114 Halle (Saale), Germany
| | - Dirk Vordermark
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Helge Taubert
- Clinic of Urology, FA University Hospital Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Thomas Greither
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| |
Collapse
|
35
|
Rath SN, Das D, Konkimalla VB, Pradhan SK. In Silico Study of miRNA Based Gene Regulation, Involved in Solid Cancer, by the Assistance of Argonaute Protein. Genomics Inform 2016; 14:112-124. [PMID: 27729841 PMCID: PMC5056896 DOI: 10.5808/gi.2016.14.3.112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/02/2016] [Accepted: 08/09/2016] [Indexed: 02/06/2023] Open
Abstract
Solid tumor is generally observed in tissues of epithelial or endothelial cells of lung, breast, prostate, pancreases, colorectal, stomach, and bladder, where several genes transcription is regulated by the microRNAs (miRNAs). Argonaute (AGO) protein is a family of protein which assists in miRNAs to bind with mRNAs of the target genes. Hence, study of the binding mechanism between AGO protein and miRNAs, and also with miRNAs-mRNAs duplex is crucial for understanding the RNA silencing mechanism. In the current work, 64 genes and 23 miRNAs have been selected from literatures, whose deregulation is well established in seven types of solid cancer like lung, breast, prostate, pancreases, colorectal, stomach, and bladder cancer. In silico study reveals, miRNAs namely, miR-106a, miR-21, and miR-29b-2 have a strong binding affinity towards PTEN, TGFBR2, and VEGFA genes, respectively, suggested as important factors in RNA silencing mechanism. Furthermore, interaction between AGO protein (PDB ID-3F73, chain A) with selected miRNAs and with miRNAs-mRNAs duplex were studied computationally to understand their binding at molecular level. The residual interaction and hydrogen bonding are inspected in Discovery Studio 3.5 suites. The current investigation throws light on understanding miRNAs based gene silencing mechanism in solid cancer.
Collapse
Affiliation(s)
- Surya Narayan Rath
- BIF Centre, Department of Bioinformatics, Orissa University of Agriculture & Technology, Bhubaneswar 751003, India
| | - Debasrita Das
- BIF Centre, Department of Bioinformatics, Orissa University of Agriculture & Technology, Bhubaneswar 751003, India
| | - V Badireenath Konkimalla
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 751005, India
| | - Sukanta Kumar Pradhan
- BIF Centre, Department of Bioinformatics, Orissa University of Agriculture & Technology, Bhubaneswar 751003, India
| |
Collapse
|
36
|
Pinweha P, Rattanapornsompong K, Charoensawan V, Jitrapakdee S. MicroRNAs and oncogenic transcriptional regulatory networks controlling metabolic reprogramming in cancers. Comput Struct Biotechnol J 2016; 14:223-33. [PMID: 27358718 PMCID: PMC4915959 DOI: 10.1016/j.csbj.2016.05.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 12/15/2022] Open
Abstract
Altered cellular metabolism is a fundamental adaptation of cancer during rapid proliferation as a result of growth factor overstimulation. We review different pathways involving metabolic alterations in cancers including aerobic glycolysis, pentose phosphate pathway, de novo fatty acid synthesis, and serine and glycine metabolism. Although oncoproteins, c-MYC, HIF1α and p53 are the major drivers of this metabolic reprogramming, post-transcriptional regulation by microRNAs (miR) also plays an important role in finely adjusting the requirement of the key metabolic enzymes underlying this metabolic reprogramming. We also combine the literature data on the miRNAs that potentially regulate 40 metabolic enzymes responsible for metabolic reprogramming in cancers, with additional miRs from computational prediction. Our analyses show that: (1) a metabolic enzyme is frequently regulated by multiple miRs, (2) confidence scores from prediction algorithms might be useful to help narrow down functional miR-mRNA interaction, which might be worth further experimental validation. By combining known and predicted interactions of oncogenic transcription factors (TFs) (c-MYC, HIF1α and p53), sterol regulatory element binding protein 1 (SREBP1), 40 metabolic enzymes, and regulatory miRs we have established one of the first reference maps for miRs and oncogenic TFs that regulate metabolic reprogramming in cancers. The combined network shows that glycolytic enzymes are linked to miRs via p53, c-MYC, HIF1α, whereas the genes in serine, glycine and one carbon metabolism are regulated via the c-MYC, as well as other regulatory organization that cannot be observed by investigating individual miRs, TFs, and target genes.
Collapse
Key Words
- 2-HG, 2-hydroxyglutarate
- ACC, acetyl-CoA carboxylase
- ACL, ATP-citrate lyase
- BRCA1, breast cancer type 1 susceptibility protein
- Cancer
- FAS, fatty acid synthase
- FH, fumarate hydratase
- G6PD, glucose-6-phosphate dehydrogenase
- GDH, glutamate dehydrogenase
- GLS, glutaminase
- GLUT, glucose transporter
- HIF1α, hypoxia inducible factor 1α
- HK, hexokinase
- IDH, isocitrate dehydrogenase
- MCT, monocarboxylic acid transporter
- ME, malic enzyme
- Metabolism
- MicroRNA
- Oncogene
- PC, pyruvate carboxylase
- PDH, pyruvate dehydrogenase
- PDK, pyruvate dehydrogenase kinase
- PEP, phosphoenolpyruvate
- PEPCK, phosphoenolpyruvate carboxykinase
- PFK, phosphofructokinase
- PGK, phosphoglycerate kinase (PGK)
- PHGDH, phosphoglycerate dehydrogenase
- PKM, muscle-pyruvate kinase
- PPP, pentose phosphate pathway
- PSAT, phosphoserine aminotransferase
- PSPH, phosphoserine phosphatase
- SDH, succinate dehydrogenase
- SHMT, serine hydroxymethyl transferase
- SREBP1, sterol regulatory element binding protein 1
- TCA, tricarboxylic acid
- TFs, transcription factors
- Transcriptional regulation network
- c-MYC, V-myc avian myelocytomatosis viral oncogene homolog
- miR/miRNA, LDH, lactate dehydrogenase micro RNA
- p53, tumor protein p53
Collapse
Affiliation(s)
- Pannapa Pinweha
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | - Varodom Charoensawan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Sarawut Jitrapakdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
37
|
Krauskopf J, Verheijen M, Kleinjans JC, de Kok TM, Caiment F. Development and regulatory application of microRNA biomarkers. Biomark Med 2015; 9:1137-51. [PMID: 26502281 DOI: 10.2217/bmm.15.50] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs, a class of regulatory small non-coding RNAs, are emerging as promising biomarkers for different health outcomes. Due to their tissue specificity, stability in extracellular space and high conservation between preclinical test species, applications of novel miRNA-based biomarkers for drug safety testing regarding hepatotoxicity and cardiotoxicity are investigated. Furthermore, miRNA expression is altered by environmental exposure such as cigarette smoke or polychlorinated biphenyls. As a consequence, miRNAs potentially influence tumor suppressor genes and oncogenes and may influence carcinogenesis. This has raised the interest in the use of miRNA profiles for health risk assessment. This review summarizes the recent developments in miRNA research with focus on biomarkers for drug safety testing and biomarkers for health outcomes related to environmental exposures.
Collapse
Affiliation(s)
- Julian Krauskopf
- Department of Toxicogenomics, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Marcha Verheijen
- Department of Toxicogenomics, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Jos C Kleinjans
- Department of Toxicogenomics, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Theo M de Kok
- Department of Toxicogenomics, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Florian Caiment
- Department of Toxicogenomics, Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
38
|
Nagaraju GP, Bramhachari PV, Raghu G, El-Rayes BF. Hypoxia inducible factor-1α: Its role in colorectal carcinogenesis and metastasis. Cancer Lett 2015; 366:11-8. [PMID: 26116902 DOI: 10.1016/j.canlet.2015.06.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 05/29/2015] [Accepted: 06/09/2015] [Indexed: 01/05/2023]
Abstract
Tumor growth creates a hypoxic microenvironment, which promotes angiogenesis and aggressive tumor growth and invasion. HIF1α is a central molecule involved in mediating these effects of hypoxia. In colorectal cancer (CRC), hypoxia stabilizes the transcription factor HIF1α, leading to the expression of genes that are involved in tumor vascularization, metastasis/migration, cell survival and chemo-resistance. Therefore, HIF1α is a rational target for the development of new therapeutics for CRC. This article reviews the central role of HIF1α in CRC angiogenesis, metastasis, and progression as well as the strategies to target HIF1α stabilization.
Collapse
Affiliation(s)
- Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | | | - Godi Raghu
- Department of Biotechnology, Krishna University, Machilipatnam, AP-521001, India
| | - Bassel F El-Rayes
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
39
|
Ye H, Pang L, Wu Q, Zhu Y, Guo C, Deng Y, Zheng X. A critical role of mir-199a in the cell biological behaviors of colorectal cancer. Diagn Pathol 2015; 10:65. [PMID: 26065676 PMCID: PMC4477497 DOI: 10.1186/s13000-015-0260-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/06/2015] [Indexed: 12/12/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common cancer and the leading causes of cancer mortality worldwide. The critical role of hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF) are important in the cancer development. Methods The purpose of this study was to investigate the association of miR-199a expression in CRC and non-tumor tissues as well as assessed the effect of miR-199a on biological behaviors including cell proliferation, apoptosis, migration and invasion of CRC cells. The expression of miR-199a was distinctly decreased in colorectal cancer tissues compared with non-neoplastic colorectal tissues. Results In this study, we found that miR-199a down-regulation was associated with the CRC and metastasis incidence. Advanced study showed that miR-199a up-regulation would lead to decreased CRC proliferation, migration and invasion. However, no significant association of miR-199a treatment and apoptosis rate and cell-cycle were detected in this study. The detection for the mechanisms of miR-199a on the development of CRC showed that the anticarcinogenic effect of miR-199a might be produced through HIF-1α/VEGF pathway. Conclusion It was found that miR-199a would reduce the proliferation, migration and invasion. However, overexpression of miR-199a on the apoptosis rate and cell cycles showed no significant results. The potential functionary mechanism of miR-199a might through HIF-1α/VEGF pathway. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/9806714131513041.
Collapse
Affiliation(s)
- Hua Ye
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical College, Zhanjiang, Guangdong, 524023, China.
| | - Liping Pang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical College, Zhanjiang, Guangdong, 524023, China.
| | - Qiong Wu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical College, Zhanjiang, Guangdong, 524023, China.
| | - Yuzhen Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical College, Zhanjiang, Guangdong, 524023, China.
| | - Cancan Guo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical College, Zhanjiang, Guangdong, 524023, China.
| | - Ying Deng
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical College, Zhanjiang, Guangdong, 524023, China.
| | - Xuebao Zheng
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical College, Zhanjiang, Guangdong, 524023, China.
| |
Collapse
|
40
|
Abstract
Impaired glucose homeostasis is one of the risk factors for causing metabolic diseases including obesity, type 2 diabetes, and cancers. In glucose metabolism, pyruvate dehydrogenase complex (PDC) mediates a major regulatory step, an irreversible reaction of oxidative decarboxylation of pyruvate to acetyl-CoA. Tight control of PDC is critical because it plays a key role in glucose disposal. PDC activity is tightly regulated using phosphorylation by pyruvate dehydrogenase kinases (PDK1 to 4) and pyruvate dehydrogenase phosphatases (PDP1 and 2). PDKs and PDPs exhibit unique tissue expression patterns, kinetic properties, and sensitivities to regulatory molecules. During the last decades, the up-regulation of PDKs has been observed in the tissues of patients and mammals with metabolic diseases, which suggests that the inhibition of these kinases may have beneficial effects for treating metabolic diseases. This review summarizes the recent advances in the role of specific PDK isoenzymes on the induction of metabolic diseases and describes the effects of PDK inhibition on the prevention of metabolic diseases using pharmacological inhibitors. Based on these reports, PDK isoenzymes are strong therapeutic targets for preventing and treating metabolic diseases.
Collapse
Affiliation(s)
- Nam Ho Jeoung
- Department of Pharmaceutical Science and Technology, Catholic University of Daegu College of Medical Sciences, Gyeongsan, Korea
| |
Collapse
|
41
|
Li Y, Wei Y, Guo J, Cheng Y, He W. Interactional role of microRNAs and bHLH-PAS proteins in cancer (Review). Int J Oncol 2015; 47:25-34. [PMID: 25997457 DOI: 10.3892/ijo.2015.3007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/08/2015] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) are recognized as an emerging class of master regulators that regulate human gene expression at the post-transcriptional level and are involved in many normal and pathological cellular processes. Mammalian basic HLH (helix-loop-helix)-PER-ARNT-SIM (bHLH-PAS) proteins are heterodimeric transcriptional regulators that sense and respond to environmental signals (such as chemical pollutants) or to physiological signals (for instance hypoxia). In the normal state, bHLH-PAS proteins are responsible for multiple critical aspects of physiology to ensure the cell accurate homeostasis, but dysregulation of these proteins has been shown to contribute to carcinogenic events such as tumor initiation, promotion, and progression. Increasing epidemiological and experimental studies have shown that bHLH-PAS proteins regulate a panel of miRNAs, whereas some miRNAs also target bHLH-PAS proteins. The interaction between miRNAs and certain bHLH-PAS proteins [hypoxia-inducible factor (HIF) and aryl hydrocarbon receptor (AHR)] is relevant to many vital events associated with tumorigenesis. This review will summarize recent findings on the interesting and complicated underlying mechanisms that miRNAs interact with HIFs or AHR in tumors, hopefully to benefit the discovery of novel drug-interfering targets for cancer therapy.
Collapse
Affiliation(s)
- Yumin Li
- The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Yucai Wei
- The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Jiwu Guo
- The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Yusheng Cheng
- The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Wenting He
- The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
42
|
Yu C, Xue J, Zhu W, Jiao Y, Zhang S, Cao J. Warburg meets non-coding RNAs: the emerging role of ncRNA in regulating the glucose metabolism of cancer cells. Tumour Biol 2014; 36:81-94. [DOI: 10.1007/s13277-014-2875-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/18/2014] [Indexed: 12/26/2022] Open
|
43
|
Li C, Mpollo MSEM, Gonsalves CS, Tahara SM, Malik P, Kalra VK. Peroxisome proliferator-activated receptor-α-mediated transcription of miR-199a2 attenuates endothelin-1 expression via hypoxia-inducible factor-1α. J Biol Chem 2014; 289:36031-47. [PMID: 25389292 DOI: 10.1074/jbc.m114.600775] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Endothelin-1, a potent vasoconstrictor, plays an important role in pulmonary hypertension (PH) in sickle cell disease (SCD). Our previous studies show that higher levels of placenta growth factor (PlGF), secreted by erythroid precursor cells, correlate with increased plasma levels of endothelin-1 (ET-1) and other functional markers of PH in SCD. PlGF-mediated ET-1 expression occurs via activation of hypoxia-inducible factor-1α (HIF-1α). However, relatively less is understood regarding how PlGF-mediated expression of HIF-1α and its downstream effector ET-1 are post-transcriptionally regulated. Herein, we show that PlGF treatment of endothelial cells resulted in reduced levels of miR-199a2, which targeted the 3'-UTR of HIF-1α mRNA and concomitantly led to augmented ET-1 expression. Plasma levels of miR-199a2 in SCD subjects were significantly lower with reciprocally high levels of plasma ET-1, unlike unaffected controls. This observation provided a molecular link between miR-199a2 and high levels of ET-1 in SCD. Furthermore, we show that miR-199a2 located in the DNM3os transcription unit was co-transcriptionally regulated by peroxisome proliferator-activated receptor α (PPARα). Binding of the latter to PPARα cis-elements in the promoter of DNM3os was demonstrated by promoter mutational analysis and ChIP. Additionally, we show that fenofibrate, a PPARα agonist, increased the expression of miR-199a2 and DNM3os; the former was responsible for reduced expression of HIF-1α and ET-1. In vivo studies of fenofibrate-fed Berkeley sickle mice resulted in increased levels of miR-199a2 and reduced levels of ET-1 in lung tissues. Our studies provide a potential therapeutic approach whereby fenofibrate-induced miR-199a2 expression can ameliorate PH by reduction of ET-1 levels.
Collapse
Affiliation(s)
- Chen Li
- From the Departments of Biochemistry and Molecular Biology and
| | - Marthe-Sandrine Eiymo Mwa Mpollo
- the Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | | | - Stanley M Tahara
- Molecular Microbiology and Immunology, Keck School of Medicine of University of Southern California, Los Angeles, California 90089 and
| | - Punam Malik
- the Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Vijay K Kalra
- From the Departments of Biochemistry and Molecular Biology and
| |
Collapse
|
44
|
Liao WL, Lin SC, Sunny Sun H, Tsai SJ. Hypoxia-induced tumor malignancy and drug resistance: Role of microRNAs. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.bgm.2014.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
He J, Wang M, Jiang Y, Chen Q, Xu S, Xu Q, Jiang BH, Liu LZ. Chronic arsenic exposure and angiogenesis in human bronchial epithelial cells via the ROS/miR-199a-5p/HIF-1α/COX-2 pathway. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:255-61. [PMID: 24413338 PMCID: PMC3948041 DOI: 10.1289/ehp.1307545] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 01/06/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND Environmental and occupational exposure to arsenic is a major public health concern. Although it has been identified as a human carcinogen, the molecular mechanism underlying the arsenic-induced carcinogenesis is not well understood. OBJECTIVES We aimed to determine the role and mechanisms of miRNAs in arsenic-induced tumor angiogenesis and tumor growth. METHODS We utilized an in vitro model in which human lung epithelial BEAS-2B cells were transformed through long-term exposure to arsenic. A human xenograft tumor model was established to assess tumor angiogenesis and tumor growth in vivo. Tube formation assay and chorioallantoic membranes assay were used to assess tumor angiogenesis. RESULTS We found that miR-199a-5p expression levels were more than 100-fold lower in arsenic-transformed cells than parental cells. Re-expression of miR-199a-5p impaired arsenic-induced angiogenesis and tumor growth through its direct targets HIF-1α and COX-2. We further showed that arsenic induced COX-2 expression through HIF-1 regulation at the transcriptional level. In addition, we demonstrated that reactive oxygen species are an upstream event of miR-199a-5p/ HIF-1α/COX-2 pathway in arsenic-induced carcinogenesis. CONCLUSION The findings establish critical roles of miR-199a-5p and its downstream targets HIF-1/COX-2 in arsenic-induced tumor growth and angiogenesis. CITATION He J, Wang M, Jiang Y, Chen Q, Xu S, Xu Q, Jiang BH, Liu LZ. 2014. Chronic arsenic exposure and angiogenesis in human bronchial epithelial cells via the ROS/miR-199a-5p/HIF-1α/COX-2 Pathway. Environ Health Perspect 122:255-261; http://dx.doi.org/10.1289/ehp.1307545.
Collapse
Affiliation(s)
- Jun He
- State Key Lab of Reproductive Medicine, Department of Pathology, Nanjing Medical University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|