1
|
Chiba N, Tada R, Ohnishi T, Matsuguchi T. TLR4/7-mediated host-defense responses of gingival epithelial cells. J Cell Biochem 2024; 125:e30576. [PMID: 38726711 DOI: 10.1002/jcb.30576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 07/12/2024]
Abstract
Gingival epithelial cells (GECs) are physical and immunological barriers against outward pathogens while coping with a plethora of non-pathogenic commensal bacteria. GECs express several members of Toll-like receptors (TLRs) and control subsequent innate immune responses. TLR4 senses lipopolysaccharide (LPS) while TLR7/8 recognizes single-strand RNA (ssRNA) playing important roles against viral infection. However, their distinct roles in GECs have not been fully demonstrated. Here, we analyzed biological responses of GECs to LPS and CL075, a TLR7/8 agonist. GE1, a mouse gingival epithelial cell line, constitutively express TLR4 and TLR7, but not TLR8, like primary skin keratinocytes. Stimulation of GE1 cells with CL075 induced cytokine, chemokine, and antimicrobial peptide expressions, the pattern of which is rather different from that with LPS: higher mRNA levels of interferon (IFN) β, CXCL10, and β-defensin (BD) 14 (mouse homolog of human BD3); lower levels of tumor necrosis factor (TNF), CCL5, CCL11, CCL20, CXCL2, and CX3CL1. As for the intracellular signal transduction of GE1 cells, CL075 rapidly induced significant AKT phosphorylation but failed to activate IKKα/β-NFκB pathway, whereas LPS induced marked IKKα/β-NFκB activation without significant AKT phosphorylation. In contrast, both CL075 and LPS induced rapid IKKα/β-NFκB activation and AKT phosphorylation in a macrophage cell line. Furthermore, specific inhibition of AKT activity abrogated CL075-induced IFNβ, CXCL10, and BD14 mRNA expression in GE1 cells. Thus, TLR4/7 ligands appear to induce rather different host-defense responses of GECs through distinct intracellular signaling mechanisms.
Collapse
Affiliation(s)
- Norika Chiba
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ryohei Tada
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
2
|
Qi D, Li H, Wang S, Wang S, Zheng R, Liu N, Han B, Liu L. Construction of ceRNA network and key gene screening in cervical squamous intraepithelial lesions. Medicine (Baltimore) 2022; 101:e31928. [PMID: 36482542 PMCID: PMC9726336 DOI: 10.1097/md.0000000000031928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This study aimed to construct an endogenous competition network for cervical squamous intraepithelial lesions using differential gene screening. METHODS GSE149763 was used to screen differentially expressed long non-coding RNAs (lncRNAs) and mRNAs to predict correlated microRNAs (miRNAs). The correlated miRNAs and GSE105409 were used to screen differentially expressed miRNAs for differential co-expression analysis, and the co-expressed differentially expressed miRNAs were used to predict correlated mRNAs. Differentially expressed mRNAs, miRNAs, and lncRNAs were visualized, and differential gene screening, enrichment, and pathway analysis were performed. RESULTS The ceRNA network of cervical squamous intraepithelial was successfully established and a potential differentially expressed network was identified. The key genes were VEGFA and FOS, and the key pathway was the MAPK signaling pathway. CONCLUSIONS The differential expression and potential effects of the lncRNA BACH1-IT1/miR-140-5p/VEGFA axis, key genes, VEGFA and FOS, and MAPK signaling in CIN were clarified, and the occurrence and potential effects of CIN were further clarified. The underlying molecular mechanism provides a certain degree of reference for subsequent treatments and experimental research.
Collapse
Affiliation(s)
- Ding Qi
- Heilongjiang University of Traditional Chinese Medicine, Heilongjiang, China
| | - Hongmei Li
- The 2nd Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Heilongjiang, China
| | - Shuoqi Wang
- Heilongjiang University of Traditional Chinese Medicine, Heilongjiang, China
| | - Shimeng Wang
- Heilongjiang University of Traditional Chinese Medicine, Heilongjiang, China
| | - Rui Zheng
- Heilongjiang University of Traditional Chinese Medicine, Heilongjiang, China
| | - Ning Liu
- Heilongjiang University of Traditional Chinese Medicine, Heilongjiang, China
| | - Buwei Han
- Heilongjiang University of Traditional Chinese Medicine, Heilongjiang, China
| | - Li Liu
- The 1st Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Heilongjiang, China
- * Correspondence: Li Liu, Department of Gynecology, The 1st Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150036, China (e-mail: )
| |
Collapse
|
3
|
Phytochemical Profiling and Assessment of Anticancer Activity of Leptocarpha rivularis Extracts Obtained from In Vitro Cultures. PLANTS 2022; 11:plants11040546. [PMID: 35214880 PMCID: PMC8878025 DOI: 10.3390/plants11040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/16/2022]
Abstract
Plant cell culture is a source of plant material from which bioactive metabolites can be extracted. In this work, the in vitro propagation of Leptocarpha rivularis, an endemic Chilean shrub with anticancer activity, is described. Different media were tested and optimized for the introduction, propagation, and rooting steps of the micropropagation process. At the end of this process, 83% of plants were successfully acclimatized under greenhouse conditions. Callus induction from the internodal stem segment was performed using various combinations of phytohormones. Green-colored, friable, and non-organogenic callus was generated with a callus induction index higher than 90%. The chemical composition of extracts and callus, obtained from clonal plants, was assessed and the results indicate that the phytochemical profiles of extracts from micropropagated plants are like those found for plants collected from natural habitats, leptocarpine (LTC) being the major component. However, no LTC was detected in callus extract. HeLa and CoN cells, treated with LTC or extract of micropropagated plants, exhibit important diminution on cell viability and a drastic decrease in gene expression of IL-6 and mmp2, genes associated with carcinogenic activity. These effects are more important in cancer cells than in normal cells. Thus, micropropagated L. rivularis could be developed as a potential source of efficient antiproliferative agents.
Collapse
|
4
|
Lipid rafts promote liver cancer cell proliferation and migration by up-regulation of TLR7 expression. Oncotarget 2018; 7:63856-63869. [PMID: 27588480 PMCID: PMC5325409 DOI: 10.18632/oncotarget.11697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/24/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) occurs predominantly in patients with underlying chronic liver disease and cirrhosis. Toll-like receptors (TLRs) play an important role in innate immune responses and TLR signaling has been associated with various chronic liver diseases. Lipid rafts provide the necessary microenvironment for certain specialized signaling events to take place, such as the innate immune recognition. The purpose of this study was to determine the pattern of TLR7 expression in HCC, how to recruit TLR7 into lipid rafts responded to ligands and whether targeting TLR7 might have beneficial effects. The study group was comprised of 130 human liver tissues: 23 chronic hepatitis B (CHB), 18 liver cirrhosis (LC), 68 HCC and 21 normal livers. The expression of TLR7 was evaluated using immunohistochemistry, western blotting, and flow cytometry. Proliferation and migration of human HepG2 cells were studied following stimulation of TLR7 using the agonist gardiquimod and inhibition with a specific antagonist 20S-protopanaxadiol (aPPD). The activation of lipid raft-associated TLR7 signaling was measured using western blotting, double immunohistochemistry and immunoprecipitation in liver tissues and HepG2 cells. TLR7 expression was up-regulated in human HCC tissues and hepatoma cell line. Proliferation and migration of HepG2 cells in vitro increased significantly in response to stimulation of TLR7. TLR7 inhibition using aPPD significantly reduced HepG2 cell migration in vitro. The lipid raft protein caveolin-1 and flotillin-1 were involved with enhanced TLR7 signaling in HCC.
Collapse
|
5
|
Ma L, Feng L, Ding X, Li Y. Effect of TLR4 on the growth of SiHa human cervical cancer cells via the MyD88-TRAF6-TAK1 and NF-κB-cyclin D1-STAT3 signaling pathways. Oncol Lett 2018; 15:3965-3970. [PMID: 29556281 DOI: 10.3892/ol.2018.7801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/28/2017] [Indexed: 12/25/2022] Open
Abstract
The present study aimed to investigate the effect of Toll-like receptor 4 (TLR4) on SiHa human cervical cancer cells and its potential molecular biological mechanisms. The expression of TLR4 following treatment with lipopolysaccharide (LPS) in in SiHa cervical cancer cells was detected by quantitative polymerase chain reaction (qPCR). LPS-induced cell proliferation and apoptosis were detected by MTT assay as well as staining with propidium iodide (PI) and Annexin V/PI double staining. qPCR was performed to analyze the expression levels of tumor necrosis factor receptor-associated factor 6 (TRAF6) and transforming growth factor-activated kinase 1 (TAK1) genes. Western blot analysis was performed to analyze the expression of myeloid differentiation 88 (MyD88), nuclear factor-κB (NF-κB), cyclin D1 and signal transducer and activator of transcription 3 (STAT3) proteins. In the present study, it was revealed that TLR4 expression in SiHa cervical cancer cells may be upregulated by LPS. Additionally, LPS was able to increase the proliferation of SiHa cells. However, LPS treatment did not have an effect on apoptosis of the cells. In addition, the MyD88-TRAF6-TAK1 and NF-κB-cyclin D1-STAT3 signaling pathways were induced in SiHa cells by LPS. These results suggested the effect of LPS and TLR4 on proliferation of SiHa human cervical cancer cells via the MyD88-TRAF6-TAK1 and NF-κB-cyclin D1-STAT3 signaling pathways.
Collapse
Affiliation(s)
- Li Ma
- Department of Obstetrics and Gynecology, The Second Artillery General Hospital, Beijing 100088, P.R. China
| | - Li Feng
- Department of Obstetrics and Gynecology, The Second Artillery General Hospital, Beijing 100088, P.R. China
| | - Xiaoping Ding
- Department of Obstetrics and Gynecology, The Second Artillery General Hospital, Beijing 100088, P.R. China
| | - Yongwang Li
- Department of Anesthesiology, The Second Artillery General Hospital, Beijing 100088, P.R. China
| |
Collapse
|
6
|
Torres-Odio S, Key J, Hoepken HH, Canet-Pons J, Valek L, Roller B, Walter M, Morales-Gordo B, Meierhofer D, Harter PN, Mittelbronn M, Tegeder I, Gispert S, Auburger G. Progression of pathology in PINK1-deficient mouse brain from splicing via ubiquitination, ER stress, and mitophagy changes to neuroinflammation. J Neuroinflammation 2017; 14:154. [PMID: 28768533 PMCID: PMC5541666 DOI: 10.1186/s12974-017-0928-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 07/26/2017] [Indexed: 12/18/2022] Open
Abstract
Background PINK1 deficiency causes the autosomal recessive PARK6 variant of Parkinson’s disease. PINK1 activates ubiquitin by phosphorylation and cooperates with the downstream ubiquitin ligase PARKIN, to exert quality control and control autophagic degradation of mitochondria and of misfolded proteins in all cell types. Methods Global transcriptome profiling of mouse brain and neuron cultures were assessed in protein-protein interaction diagrams and by pathway enrichment algorithms. Validation by quantitative reverse transcriptase polymerase chain reaction and immunoblots was performed, including human neuroblastoma cells and patient primary skin fibroblasts. Results In a first approach, we documented Pink1-deleted mice across the lifespan regarding brain mRNAs. The expression changes were always subtle, consistently affecting “intracellular membrane-bounded organelles”. Significant anomalies involved about 250 factors at age 6 weeks, 1300 at 6 months, and more than 3500 at age 18 months in the cerebellar tissue, including Srsf10, Ube3a, Mapk8, Creb3, and Nfkbia. Initially, mildly significant pathway enrichment for the spliceosome was apparent. Later, highly significant networks of ubiquitin-mediated proteolysis and endoplasmic reticulum protein processing occurred. Finally, an enrichment of neuroinflammation factors appeared, together with profiles of bacterial invasion and MAPK signaling changes—while mitophagy had minor significance. Immunohistochemistry showed pronounced cellular response of Iba1-positive microglia and GFAP-positive astrocytes; brain lipidomics observed increases of ceramides as neuroinflammatory signs at old age. In a second approach, we assessed PINK1 deficiency in the presence of a stressor. Marked dysregulations of microbial defense factors Ifit3 and Rsad2 were consistently observed upon five analyses: (1) Pink1−/− primary neurons in the first weeks after brain dissociation, (2) aged Pink1−/− midbrain with transgenic A53T-alpha-synuclein overexpression, (3) human neuroblastoma cells with PINK1-knockdown and murine Pink1−/− embryonal fibroblasts undergoing acute starvation, (4) triggering mitophagy in these cells with trifluoromethoxy carbonylcyanide phenylhydrazone (FCCP), and (5) subjecting them to pathogenic RNA-analogue poly(I:C). The stress regulation of MAVS, RSAD2, DDX58, IFIT3, IFIT1, and LRRK2 was PINK1 dependent. Dysregulation of some innate immunity genes was also found in skin fibroblast cells from PARK6 patients. Conclusions Thus, an individual biomarker with expression correlating to progression was not identified. Instead, more advanced disease stages involved additional pathways. Hence, our results identify PINK1 deficiency as an early modulator of innate immunity in neurons, which precedes late stages of neuroinflammation during alpha-synuclein spreading. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0928-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sylvia Torres-Odio
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Jana Key
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Hans-Hermann Hoepken
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Júlia Canet-Pons
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Lucie Valek
- Institute of Clinical Pharmacology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Bastian Roller
- Edinger-Institute (Institute of Neurology), Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Michael Walter
- Institute for Medical Genetics, Eberhard-Karls-University of Tuebingen, 72076, Tuebingen, Germany
| | - Blas Morales-Gordo
- Department of Neurology, University Hospital San Cecilio, 18012, Granada, Spain
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Patrick N Harter
- Edinger-Institute (Institute of Neurology), Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Michel Mittelbronn
- Edinger-Institute (Institute of Neurology), Goethe University Medical School, 60590, Frankfurt am Main, Germany.,Luxembourg Centre of Neuropathology (LCNP), Luxembourg, Luxembourg.,Department of Pathology, Laboratoire National de Santé, Dudelange, Luxembourg.,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg, Luxembourg.,Department of Oncology, Luxembourg Institute of Health, NORLUX Neuro-Oncology Laboratory, Luxembourg, Luxembourg
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Suzana Gispert
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
7
|
Ahsan SM, Rao CM. Condition responsive nanoparticles for managing infection and inflammation in keratitis. NANOSCALE 2017; 9:9946-9959. [PMID: 28681884 DOI: 10.1039/c7nr00922d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Keratitis is a major cause of avoidable visual impairment. About 30% of patients with fungal keratitis eventually become permanently blind in the developing world. Proteases, secreted by the pathogen and the host, damage the cornea before the infection is resolved. Treating keratitis is a challenge because both infection and inflammation need to be addressed. An additional challenge is to maintain a therapeutic dose at the corneal surface as blinking and tear film wash away the drugs, administered as eye drops. We have developed a nanoparticle-based drug delivery system that enhances the drug residence time by anchoring to the cornea, down-regulates inflammation and releases the antifungal drug: all in a condition-responsive manner. The expression of Toll-Like Receptors (TLR4) on the corneal epithelial cells increases in response to infection. We have conjugated anti-TLR4 antibodies on the surface of ketoconazole-encapsulated gelatin nanoparticles. The anti-TLR4 antibody not only facilitates binding of nanoparticles to the cornea, enhancing their residence time, but also reduces the levels of inflammatory cytokines. Host and fungal proteases degrade the gelatin nanoparticle, an alternative substrate for proteases, thereby reducing corneal damage and releasing the encapsulated drug, ketoconazole, proportional to the severity of infection. After testing the efficacy of the system with human corneal epithelial cells, we have extended our studies to a rat model of keratitis. The results show a significantly increased corneal retention, suppressed inflammation and resolution of infection in the infected eyes. We believe that this will be an excellent approach to manage keratitis as well as other topical ocular infections.
Collapse
Affiliation(s)
- Saad M Ahsan
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad - 500 007, Telangana, India.
| | | |
Collapse
|
8
|
Liu CL, Santos MM, Fernandes C, Liao M, Iamarene K, Zhang JY, Sukhova GK, Shi GP. Toll-like receptor 7 deficiency protects apolipoprotein E-deficient mice from diet-induced atherosclerosis. Sci Rep 2017; 7:847. [PMID: 28405010 PMCID: PMC5429799 DOI: 10.1038/s41598-017-00977-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/20/2017] [Indexed: 02/08/2023] Open
Abstract
Toll-like receptor 7 (TLR7) mediates autoantigen and viral RNA-induced cytokine production. Increased TLR7 expression in human atherosclerotic lesions suggests its involvement in atherogenesis. Here we demonstrated TLR7 expression in macrophages, smooth muscle cells (SMCs), and endothelial cells from mouse atherosclerotic lesions. To test a direct participation of TLR7 in atherosclerosis, we crossbred TLR7-deficient (Tlr7 -/-) mice with apolipoprotein E-deficient (Apoe -/-) mice and produced Apoe -/- Tlr7 -/- and Apoe -/- Tlr7 +/+ littermates, followed by feeding them an atherogenic diet to produce atherosclerosis. Compared to Apoe -/- Tlr7 +/+ mice, Apoe -/- Tlr7 -/- mice showed reduced aortic arch and sinus lesion areas. Reduced atherosclerosis in Apoe -/- Tlr7 -/- mice did not affect lesion macrophage-positive area and CD4+ T-cell number per lesion area, but reduced lesion expression of inflammatory markers major histocompatibility complex-class II and IL6, lesion matrix-degrading proteases cathepsin S and matrix metalloproteinase-9, and systemic serum amyloid A levels. TLR7 deficiency also reduced aortic arch SMC loss and lesion intima and media cell apoptosis. However, TLR7 deficiency did not affect aortic wall elastin fragmentation and collagen contents, or plasma lipoproteins. Therefore, TLR7 contributes to atherogenesis in Apoe -/- mice by regulating lesion and systemic inflammation. A TLR7 antagonist may mitigate atherosclerosis.
Collapse
Affiliation(s)
- Cong-Lin Liu
- Department of Cardiology, Institute of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Marcela M Santos
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Cleverson Fernandes
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Mengyang Liao
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Karine Iamarene
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Jin-Ying Zhang
- Department of Cardiology, Institute of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Galina K Sukhova
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Guo-Ping Shi
- Department of Cardiology, Institute of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China. .,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Schinner E, Wetzl V, Schramm A, Kees F, Sandner P, Stasch JP, Hofmann F, Schlossmann J. Inhibition of the TGFβ signalling pathway by cGMP and cGMP-dependent kinase I in renal fibrosis. FEBS Open Bio 2017; 7:550-561. [PMID: 28396839 PMCID: PMC5377407 DOI: 10.1002/2211-5463.12202] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/16/2017] [Accepted: 01/23/2017] [Indexed: 11/29/2022] Open
Abstract
Agents that enhance production of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) ameliorate the progression of renal fibrosis. However, the molecular mechanism of this process is not fully understood. We hypothesize that the antifibrotic effects of cGMP and cGMP‐dependent kinase I (cGKI) are mediated via regulation of the TGFβ signalling pathway, both via ERK and the Smad‐dependent route. Kidney fibrosis was induced by unilateral ureter obstruction (UUO) in wild‐type and cGKI‐deficient (cGKI‐KO) mice. The cGMP/cGKI signalling pathway was activated by application of the soluble guanylate cyclase (sGC) stimulator BAY 41‐8543 (BAY), beginning 1 day after UUO. After 7 days, the antifibrotic effects of BAY were analysed by measuring mRNA and protein expression of characteristic fibrotic biomarkers. The effects of cGMP/TGFβ on cultured fibroblasts were also analysed in vitro. BAY application influenced the activity of the extracellular matrix (ECM)‐degrading matrix metalloproteases (MMP2 and MMP9) and their inhibitor tissue inhibitors of metalloproteinase‐1, the secretion of cytokines (e.g. IL‐6) and the expression pattern of ECM proteins (e.g. collagen, fibronectin) and profibrotic mediators (e.g. connective tissue growth factors and plasminogen‐activator inhibitor‐1). Activation of the cGMP/cGKI signalling pathway showed protective effects against fibrosis which were mediated by inhibition of P‐Erk1/2 and translocation of P‐smad3. The elucidation of these signalling mechanisms might support the development of new therapeutic options regarding cGMP/cGKI‐mediated antifibrotic actions.
Collapse
Affiliation(s)
- Elisabeth Schinner
- Department of Pharmacology and Toxicology University of Regensburg Germany
| | - Veronika Wetzl
- Department of Pharmacology and Toxicology University of Regensburg Germany; Novartis Pharma GmbH Nuremberg Germany
| | - Andrea Schramm
- Department of Pharmacology and Toxicology University of Regensburg Germany
| | - Frieder Kees
- Department of Pharmacology and Toxicology University of Regensburg Germany
| | | | | | - Franz Hofmann
- Institute of Pharmacology and Toxicology Technical University of Munich Germany
| | - Jens Schlossmann
- Department of Pharmacology and Toxicology University of Regensburg Germany
| |
Collapse
|
10
|
Wang F, Jin R, Zou BB, Li L, Cheng FW, Luo X, Geng X, Zhang SQ. Activation of Toll-like receptor 7 regulates the expression of IFN-λ1, p53, PTEN, VEGF, TIMP-1 and MMP-9 in pancreatic cancer cells. Mol Med Rep 2016; 13:1807-12. [PMID: 26718740 DOI: 10.3892/mmr.2015.4730] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 07/28/2015] [Indexed: 11/05/2022] Open
Abstract
Toll-like receptors (TLRs) are critical in the induction of the immune response in tumor development. TLR7 has previously been demonstrated to be associated with the development of pancreatic cancer, and the release of cytokines and chemokines from other types of cancer cell; however, the specific expression induced by TLR7 agonists in pancreatic cancer cells remains to be elucidated. The present study aimed to investigate the effects of the TLR7 agonist, gardiquimod, on ERK1/2 signaling pathway, and on the expression of genes involved in the pathogenesis of cancer, including phosphatase and tensin homolog deleted on chromosome 10 (PTEN), p53, type Ⅲ interferon (IFN-λ1), vascular endothelial growth factor (VEGF), matrix metalloproteinase 9 (MMP-9) and tissue inhibitor of metalloproteinase 1 (TIMP-1). The results demonstrated that activation of TLR7 upregulated the expression levels of certain genes to varying degrees; the expression levels of IFN-λ1 and MMP-9 were increased by ~3 fold, whereas other genes (p53, PTEN, TIMP-1) were upregulated by ~2 fold, and VEGF was marginally upregulated after 10 min. Furthermore, gardiquimod increased the expression levels of phosphorylated-extracellular signal-regulated kinase (ERK)1/2. In addition, PD98059, a specific inhibitor of ERK phosphorylation, inhibited the ability of gardiquimod to activate ERK1/2; consequently weakening the effect of gardiquimod on gene regulation. These findings indicated that the effect of TLR7 agonists, including gardiquimod, on gene expression in BxPC-3 pancreatic cancer cells was partly associated with the mitogen-activated protein kinase-ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Fang Wang
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Rui Jin
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Bing-Bing Zou
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Lei Li
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Feng-Wei Cheng
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xin Luo
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xiaoping Geng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Sheng-Quan Zhang
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
11
|
Helminen O, Huhta H, Lehenkari PP, Saarnio J, Karttunen TJ, Kauppila JH. Nucleic acid-sensing toll-like receptors 3, 7 and 8 in esophageal epithelium, barrett's esophagus, dysplasia and adenocarcinoma. Oncoimmunology 2016; 5:e1127495. [PMID: 27467941 DOI: 10.1080/2162402x.2015.1127495] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/10/2015] [Accepted: 11/25/2015] [Indexed: 12/23/2022] Open
Abstract
Toll-like receptors (TLRs) are immunological receptors recognizing various microbial and endogenous ligands, such as DNA, RNA, and other microbial and host components thus activating immunological responses. The expression of TLRs in esophageal adenocarcinoma is not well known. The aim of this study was to evaluate expression patterns of those TLRs that sense nucleic acids in Barrett's esophagus with and without dysplasia and in esophageal adenocarcinoma. TLRs 3, 7 and 8 were stained immunohistochemically and evaluated in a cohort of patients with esophageal adenocarcinoma or dysplasia. Specimens with normal esophagus (n = 88), gastric (n = 67) or intestinal metaplasia (n = 51) without dysplasia, and low-grade (n = 42) or high-grade dysplasia (n = 37) and esophageal adenocarcinoma (n = 99) were studied. We used immunofluorescence to confirm the subcellular localization of TLRs. We found abundant expression of TLR3, 7 and 8 in esophageal squamous epithelium, columnar metaplasia, dysplasia and adenocarcinoma. Cytoplasmic expression of TLR3, TLR7 or TLR8 did not associate to clinicopathological parameters or prognosis in esophageal cancer. High nuclear expression of TLR8, confirmed with immunofluorescence, in cancer cells was observed in tumors of high T-stage (p < 0.01) and in tumors with organ metastasis (p < 0.001). High nuclear TLR8 expression was associated with poor prognosis (p < 0.001). The expression of TLR3, TLR7 and TLR8 increased toward dysplasia and adenocarcinoma. We demonstrated nuclear localization of TLR8, which associates with metastasis and poor prognosis. TLR3 and TLR7 do not seem to have prognostic significance in esophageal adenocarcinoma.
Collapse
Affiliation(s)
- Olli Helminen
- Department of Pathology, University of Oulu, Oulu, Finland; Department of Surgery, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu, Finland; Oulu University Hospital, Oulu, Finland
| | - Heikki Huhta
- Department of Pathology, University of Oulu, Oulu, Finland; Department of Surgery, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu, Finland; Oulu University Hospital, Oulu, Finland
| | - Petri P Lehenkari
- Department of Surgery, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu, Finland; Oulu University Hospital, Oulu, Finland; Department of Anatomy and Cell Biology, University of Oulu, Oulu, Finland
| | - Juha Saarnio
- Department of Surgery, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu, Finland; Oulu University Hospital, Oulu, Finland
| | - Tuomo J Karttunen
- Department of Pathology, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu, Finland; Oulu University Hospital, Oulu, Finland
| | - Joonas H Kauppila
- Department of Pathology, University of Oulu, Oulu, Finland; Department of Surgery, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu, Finland; Oulu University Hospital, Oulu, Finland
| |
Collapse
|
12
|
Zou BB, Wang F, Li L, Cheng FW, Jin R, Luo X, Zhu LX, Geng X, Zhang SQ. Activation of Toll-like receptor 7 inhibits the proliferation and migration, and induces the apoptosis of pancreatic cancer cells. Mol Med Rep 2015; 12:6079-85. [PMID: 26238718 DOI: 10.3892/mmr.2015.4130] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 05/13/2015] [Indexed: 11/06/2022] Open
Abstract
Pancreatic cancer is one of the most malignant types of tumor and has a poor prognosis. Toll‑like receptor 7 (TLR7) has been found to be present and have different roles in different types of cancer cells. In the present study, the roles of TLR7 in BxPC‑3 cells, a human pancreatic adenocarcinoma cell line, were investigated. The cells were treated with gardiquimod, an agonist of TLR7, following which the properties of the cells, including proliferation, migration, cell cycle and apoptosis, were analyzed. It was revealed that activation of TLR7 by gardiquimod inhibited cell proliferation and migration, and induced apoptosis of the cells. In addition, gardiquimod downregulated the expression levels of cyclin B1, cyclin E and B‑cell lymphoma 2, while upregulating the expression of B‑cell‑associated X protein. These results suggested that the activation of TLR7 suppresses the progression of pancreatic cancer.
Collapse
Affiliation(s)
- Bing-Bing Zou
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Fang Wang
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Lei Li
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Feng-Wei Cheng
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Rui Jin
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xin Luo
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Li-Xin Zhu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xiaoping Geng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Sheng-Quan Zhang
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|