1
|
Zhang J, Chen Y, Luo G, Luo Y. Molecular mechanism of geniposide against ANIT-induced intrahepatic cholestasis by integrative analysis of transcriptomics and metabolomics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03320-3. [PMID: 39052058 DOI: 10.1007/s00210-024-03320-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Geniposide (GE), a bioactive compound extracted from the fruit of Gardenia jasminoides Ellis, has attracted significant attention for its hepatoprotective therapeutic applications. Although GE displays a protective effect on treating intrahepatic cholestasis (IC), the underlying mechanism remains elusive. In this study, we aimed to elucidate the pharmacological mechanisms of GE in treating IC by an integrated analysis of transcriptomics and metabolomics. Firstly, we evaluated the hepatoprotective effect of GE in α-naphthylisothiocyanate (ANIT)-induced IC rats by examining biochemical indices, inflammatory factors, and oxidative stress levels. Secondly, by transcriptomics and serum metabolomics, we identified differentially expressed genes and metabolites, revealing phenotype-related metabolic pathways and gene functions. Lastly, we screened the core targets of GE in the treatment of IC by integrating transcriptomic and metabolomic data and validated these targets using western blotting. The results indicated that GE improved serum indexes and alleviated inflammation reactions and oxidative stress in the liver. The transcriptomics analysis revealed 739 differentially expressed genes after GE treatment, mainly enriched in retinol metabolism, steroid hormone synthesis, PPAR signal transduction, bile secretion metabolism, and other pathways. The metabolomics analysis identified 98 differential metabolites and 10 metabolic pathways. By constructing a "genes-targets-pathways-compounds" network, we identified two pathways: the bile secretion pathway and the glutathione pathway. Within these pathways, we discovered nine crucial targets that were subsequently validated through western blotting. The results revealed that the GE group significantly increased the expression of ABCG5, NCEH1, OAT3, and GST, compared with the ANIT group. We speculate that GE has a therapeutic effect on IC by modulating the bile secretion pathway and the glutathione pathway and regulating the expression of ABCG5, NCEH1, OAT3, and GST.
Collapse
Affiliation(s)
- Junyi Zhang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Yunting Chen
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Guangming Luo
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
| | - Yangjing Luo
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
| |
Collapse
|
2
|
Frambach SJCM, de Haas R, Smeitink JAM, Rongen GA, Russel FGM, Schirris TJJ. Brothers in Arms: ABCA1- and ABCG1-Mediated Cholesterol Efflux as Promising Targets in Cardiovascular Disease Treatment. Pharmacol Rev 2020; 72:152-190. [PMID: 31831519 DOI: 10.1124/pr.119.017897] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular disease worldwide, and hypercholesterolemia is a major risk factor. Preventive treatments mainly focus on the effective reduction of low-density lipoprotein cholesterol, but their therapeutic value is limited by the inability to completely normalize atherosclerotic risk, probably due to the disease complexity and multifactorial pathogenesis. Consequently, high-density lipoprotein cholesterol gained much interest, as it appeared to be cardioprotective due to its major role in reverse cholesterol transport (RCT). RCT facilitates removal of cholesterol from peripheral tissues, including atherosclerotic plaques, and its subsequent hepatic clearance into bile. Therefore, RCT is expected to limit plaque formation and progression. Cellular cholesterol efflux is initiated and propagated by the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. Their expression and function are expected to be rate-limiting for cholesterol efflux, which makes them interesting targets to stimulate RCT and lower atherosclerotic risk. This systematic review discusses the molecular mechanisms relevant for RCT and ABCA1 and ABCG1 function, followed by a critical overview of potential pharmacological strategies with small molecules to enhance cellular cholesterol efflux and RCT. These strategies include regulation of ABCA1 and ABCG1 expression, degradation, and mRNA stability. Various small molecules have been demonstrated to increase RCT, but the underlying mechanisms are often not completely understood and are rather unspecific, potentially causing adverse effects. Better understanding of these mechanisms could enable the development of safer drugs to increase RCT and provide more insight into its relation with atherosclerotic risk. SIGNIFICANCE STATEMENT: Hypercholesterolemia is an important risk factor of atherosclerosis, which is a leading pathological mechanism underlying cardiovascular disease. Cholesterol is removed from atherosclerotic plaques and subsequently cleared by the liver into bile. This transport is mediated by high-density lipoprotein particles, to which cholesterol is transferred via ATP-binding cassette transporters ABCA1 and ABCG1. Small-molecule pharmacological strategies stimulating these transporters may provide promising options for cardiovascular disease treatment.
Collapse
Affiliation(s)
- Sanne J C M Frambach
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ria de Haas
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan A M Smeitink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerard A Rongen
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom J J Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Vantaggiato C, Panzeri E, Citterio A, Orso G, Pozzi M. Antipsychotics Promote Metabolic Disorders Disrupting Cellular Lipid Metabolism and Trafficking. Trends Endocrinol Metab 2019; 30:189-210. [PMID: 30718115 DOI: 10.1016/j.tem.2019.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/04/2018] [Accepted: 01/03/2019] [Indexed: 12/21/2022]
Abstract
Antipsychotics frequently cause obesity and related metabolic disorders that current psychopharmacological/endocrinological theories do not explain consistently. An integrative/alternative theory implies metabolic alterations happening at the cellular level. Many observations in vitro and in vivo, and pivotal observations in humans, point towards chemical properties of antipsychotics, independent of receptor binding characteristics. Being amphiphilic weak bases, antipsychotics can disrupt lysosomal function, affecting cholesterol trafficking; moreover, by chemical mimicry, antipsychotics can inhibit cholesterol biosynthesis. These two molecular adverse effects may trigger a cascade of transcriptional and biochemical events, ultimately reducing available cholesterol while increasing cholesterol precursors and fatty acids. The macroscopic manifestation of these molecular alterations includes decreased high-density lipoprotein and increased very low-density lipoprotein and triglycerides that may translate into obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Chiara Vantaggiato
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini (LC), 23842, Italy
| | - Elena Panzeri
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini (LC), 23842, Italy
| | - Andrea Citterio
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini (LC), 23842, Italy
| | - Genny Orso
- Department of Pharmacological Sciences, University of Padova (PD), 35131, Italy
| | - Marco Pozzi
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini (LC), 23842, Italy.
| |
Collapse
|
5
|
Lingguizhugan Decoction Protects against High-Fat-Diet-Induced Nonalcoholic Fatty Liver Disease by Alleviating Oxidative Stress and Activating Cholesterol Secretion. Int J Genomics 2017; 2017:2790864. [PMID: 29464180 PMCID: PMC5804362 DOI: 10.1155/2017/2790864] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/11/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) has become a leading cause of liver transplantation. Lingguizhugan decoction (LGZG), a classical Chinese herbal formula, has beneficial effects on NAFLD animal models. Our study examined the impact of LGZG on hepatic global transcriptome of high-fat-diet-induced NAFLD rats. Methods Three groups of Wistar rats were included: normal, NAFLD model, and LGZG-treated NAFLD groups. Four weeks for the treatment, liver tissues were harvested for RNA sequencing. Differentially expressed genes (DEGs) and enriched pathways were detected on hepatic global transcriptome profile. Real-time PCR validated the regulatory patterns of LGZG on NAFLD rats. Results DEGs between the NAFLD model and normal groups indicated the elevated peroxisome proliferator-activated receptor (PPAR) and hedgehog signaling pathways in NAFLD rats. In bile secretion pathway, genes involved in cholesterol secretion were activated by LGZG treatment. Increased expression of antioxidant OSIGN1 and decreased expression of genes (AHR, IRF2BP2, and RASGEF1B) that induce oxidative stress and inflammation were observed in NAFLD rats treated with LGZG. The regulatory patterns of LGZG treatment on these oxidative stress-related genes were confirmed by real-time PCR. Conclusion Our study revealed a “two-hits-targeting” mechanism of LGZG in the treatment for NAFLD: alleviating oxidative stress and activating cholesterol secretion.
Collapse
|
6
|
Karimi A, Shojaei A, Tehrani P. Measurement of the mechanical properties of the human gallbladder. J Med Eng Technol 2017; 41:541-545. [PMID: 28849953 DOI: 10.1080/03091902.2017.1366561] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Gallbladder is a small organ of the body which is located in the right side of the liver. It is responsible of storing the bile and releasing it to the intestine. The gallbladder can subject to the mechanical deformation/loading as a result of the cholecystitis, cholesterolosis of the gallbladder, etc. However, so far the mechanical properties of the human gallbladder have not been measured. This study was aimed at conducting an experimental study to measure the mechanical properties of the human gallbladder under the axial and transversal tensile loadings. To do that, the gallbladder tissue of 16 male individuals was excised during the autopsy and subjected to a series of axial and transversal loadings under the strain rate of 5 mm/min. The amount of elastic modulus as well as the maximum/failure stress of the tissues were calculated via the resulted stress-strain diagrams and reported. The results revealed that the axial and transversal elastic modulus were 641.20 ± 28.12 (mean ± SD) and 255 ± 24.55 kPa, respectively. The amount of maximum stresses was also 1240 ± 99.94 and 348 ± 66.75 kPa under the axial and transversal loadings, respectively. The results revealed a significantly higher axial stiffness (p < .05, post hoc Scheffe method) compared to the transversal one. These findings have implications not only for understanding the axial and transversal mechanical properties of the human gallbladder tissue, but also for providing a diagnosis tool for the doctors to have a suitable threshold value of the healthy gallbladder tissue.
Collapse
Affiliation(s)
- Alireza Karimi
- a Department of Mechanical Engineering , Kyushu University , Fukuoka , Japan
| | | | - Pedram Tehrani
- c Department of Mechanical Engineering , Islamic Azad University , Central Tehran Branch , Tehran , Iran
| |
Collapse
|