1
|
Santos CL, Weber FB, Belló-Klein A, Bobermin LD, Quincozes-Santos A. Glioprotective Effects of Sulforaphane in Hypothalamus: Focus on Aging Brain. Neurochem Res 2024; 49:2505-2518. [PMID: 38886329 DOI: 10.1007/s11064-024-04196-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Sulforaphane is a natural compound with neuroprotective activity, but its effects on hypothalamus remain unknown. In line with this, astrocytes are critical cells to maintain brain homeostasis, and hypothalamic astrocytes are fundamental for sensing and responding to environmental changes involved in a variety of homeostatic functions. Changes in brain functionality, particularly associated with hypothalamic astrocytes, can contribute to age-related neurochemical alterations and, consequently, neurodegenerative diseases. Thus, here, we investigated the glioprotective effects of sulforaphane on hypothalamic astrocyte cultures and hypothalamic cell suspension obtained from aged Wistar rats (24 months old). Sulforaphane showed anti-inflammatory and antioxidant properties, as well as modulated the mRNA expression of astroglial markers, such as aldehyde dehydrogenase 1 family member L1, aquaporin 4, and vascular endothelial growth factor. In addition, it increased the expression and extracellular levels of trophic factors, such as glia-derived neurotrophic factor and nerve growth factor, as well as the release of brain-derived neurotrophic factor and the mRNA of TrkA, which is a receptor associated with trophic factors. Sulforaphane also modulated the expression of classical pathways associated with glioprotection, including nuclear factor erythroid-derived 2-like 2, heme oxygenase-1, nuclear factor kappa B p65 subunit, and AMP-activated protein kinase. Finally, a cell suspension with neurons and glial cells was used to confirm the predominant effect of sulforaphane in glial cells. In summary, this study indicated the anti-aging and glioprotective activities of sulforaphane in aged astrocytes.
Collapse
Affiliation(s)
- Camila Leite Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Becker Weber
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adriane Belló-Klein
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Laboratório de Neurotoxicidade e Glioproteção (LABGLIO), Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
2
|
Conzatti A, Colombo R, Siqueira R, Campos-Carraro C, Turck P, Luz de Castro A, Belló-Klein A, Sander da Rosa Araujo A. Sulforaphane Improves Redox Homeostasis and Right Ventricular Contractility in a Model of Pulmonary Hypertension. J Cardiovasc Pharmacol 2024; 83:612-620. [PMID: 38547510 DOI: 10.1097/fjc.0000000000001557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/28/2024] [Indexed: 11/01/2024]
Abstract
ABSTRACT Pulmonary arterial hypertension (PAH) is characterized by increased pulmonary vascular resistance (PVR), imposing overload on the right ventricle (RV) and imbalance of the redox state. Our study investigated the influence of treatment with sulforaphane (SFN), found in cruciferous vegetables, on RV remodeling and redox homeostasis in monocrotaline (MCT)-induced PAH. Male Wistar rats were separated into 4 groups: control (CTR); CTR + SFN; MCT; and MCT + SFN. PAH induction was implemented by a single dose of MCT (60 mg/kg intraperitoneally). Treatment with SFN (2.5 mg/kg/day intraperitoneally) started on the seventh day after the MCT injection and persisted for 2 weeks. After 21 days of PAH induction, echocardiographic, hemodynamic, and oxidative stress evaluation was performed. The MCT group showed an increase in RV hypertrophy, RV systolic area, RV systolic, mean pulmonary artery pressure, and PVR and exhibited a decrease in the RV outflow tract acceleration time/ejection time ratio, RV fractional shortening, and tricuspid annular plane systolic excursion compared to CTR ( P < 0.05). SFN-treated PAH attenuated detrimental changes in tricuspid annular plane systolic excursion, mean pulmonary artery pressure, and PVR parameters. Catalase levels and the glutathione/Glutathione disulfide (GSSG) ratio were diminished in the MCT group compared to CTR ( P < 0.05). SFN increased catalase levels and normalized the glutathione/GSSG ratio to control levels ( P < 0.05). Data express the benefit of SFN treatment on the cardiac function of rats with PAH associated with the cellular redox state.
Collapse
MESH Headings
- Animals
- Sulfoxides/pharmacology
- Isothiocyanates/pharmacology
- Male
- Rats, Wistar
- Oxidation-Reduction
- Monocrotaline
- Disease Models, Animal
- Ventricular Function, Right/drug effects
- Oxidative Stress/drug effects
- Antioxidants/pharmacology
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/drug therapy
- Homeostasis/drug effects
- Ventricular Remodeling/drug effects
- Myocardial Contraction/drug effects
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/chemically induced
- Pulmonary Artery/drug effects
- Pulmonary Artery/physiopathology
- Pulmonary Artery/metabolism
- Rats
- Arterial Pressure/drug effects
- Pulmonary Arterial Hypertension/drug therapy
- Pulmonary Arterial Hypertension/physiopathology
- Pulmonary Arterial Hypertension/metabolism
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Dysfunction, Right/drug therapy
- Ventricular Dysfunction, Right/metabolism
Collapse
Affiliation(s)
- Adriana Conzatti
- Laboratory of Cardiovascular Physiology, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, RS, Brasil
| | | | | | | | | | | | | | | |
Collapse
|
3
|
SULFORAPHANE EFFECTS ON CARDIAC FUNCTION AND CALCIUM-HANDLING RELATED PROTEINS IN TWO EXPERIMENTAL MODELS OF HEART DISEASE. J Cardiovasc Pharmacol 2021; 79:325-334. [DOI: 10.1097/fjc.0000000000001191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/20/2021] [Indexed: 11/26/2022]
|
4
|
Zhou Y, Wang C, Kou J, Wang M, Rong X, Pu X, Xie X, Han G, Pang X. Chrysanthemi Flos extract alleviated acetaminophen-induced rat liver injury via inhibiting oxidative stress and apoptosis based on network pharmacology analysis. PHARMACEUTICAL BIOLOGY 2021; 59:1378-1387. [PMID: 34629029 PMCID: PMC8510625 DOI: 10.1080/13880209.2021.1986077] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
CONTEXT Acetaminophen (APAP) overdose is the leading cause of drug-induced liver injury. Bianliang ziyu, a variety of Chrysanthemum morifolium Ramat. (Asteraceae), has potential hepatoprotective effect. However, the mechanism is not clear yet. OBJECTIVE To investigate the hepatoprotective activity and mechanism of Bianliang ziyu flower ethanol extract (BZE) on APAP-induced rats based on network pharmacology. MATERIALS AND METHODS Potential pathways of BZE were predicted by network pharmacology. Male Sprague-Dawley rats were pre-treated with BZE (110, 220 and 440 mg/kg, i.g.) for eight days, and then APAP (800 mg/kg, i.g.) was used to induce liver injury. After 24 h, serum and liver were collected for biochemical detection and western blot measurement. RESULTS Network pharmacology indicated that liver-protective effect of BZE was associated with its antioxidant and anti-apoptotic efficacy. APAP-induced liver pathological change was alleviated, and elevated serum AST and ALT were reduced by BZE (440 mg/kg) (from 66.45 to 22.64 U/L and from 59.59 to 17.49 U/L, respectively). BZE (440 mg/kg) reduced the ROS to 65.50%, and upregulated SOD and GSH by 212.92% and 175.38%, respectively. In addition, BZE (440 mg/kg) increased levels of p-AMPK, p-GSK3β, HO-1 and NQO1, ranging from 1.66- to 10.29-fold compared to APAP group, and promoted nuclear translocation of Nrf2. BZE also inhibited apoptosis induced by APAP through the PI3K-Akt pathway and restored the ability of mitochondrial biogenesis. DISCUSSION AND CONCLUSIONS Our study demonstrated that BZE protected rats from APAP-induced liver injury through antioxidant and anti-apoptotic pathways, suggesting BZE could be further developed as a potential liver-protecting agent.
Collapse
Affiliation(s)
- Yunfeng Zhou
- Pharmaceutical Institute, School of Pharmacy, Henan University, Kaifeng, China
| | - Chunli Wang
- Pharmaceutical Institute, School of Pharmacy, Henan University, Kaifeng, China
| | - Jiejian Kou
- Pharmaceutical Institute, School of Pharmacy, Henan University, Kaifeng, China
| | - Minghui Wang
- Pharmaceutical Institute, School of Pharmacy, Henan University, Kaifeng, China
| | - Xuli Rong
- Pharmaceutical Institute, School of Pharmacy, Henan University, Kaifeng, China
| | - Xiaohui Pu
- Pharmaceutical Institute, School of Pharmacy, Henan University, Kaifeng, China
| | - Xinmei Xie
- Pharmaceutical Institute, School of Pharmacy, Henan University, Kaifeng, China
- CONTACT Xinmei Xie
| | - Guang Han
- Pharmaceutical Institute, School of Pharmacy, Henan University, Kaifeng, China
- Kaifeng Key Lab for Application of Local Dendranthema morifolium in Food & Drug, Kaifeng, China
- Guang Han
| | - Xiaobin Pang
- Pharmaceutical Institute, School of Pharmacy, Henan University, Kaifeng, China
- Institutes of Traditional Chinese Medicine, Henan University, Kaifeng, China
- Xiaobin Pang Pharmaceutical Institute, School of Pharmacy, Henan University, Kaifeng475004, China
| |
Collapse
|
5
|
Zimmermann M, Kolmar H, Zimmer A. S-Sulfocysteine - Investigation of cellular uptake in CHO cells. J Biotechnol 2021; 335:27-38. [PMID: 34090949 DOI: 10.1016/j.jbiotec.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
For the generation of therapeutic proteins in cell culture, high producing clones are used. These clones have a high demand in amino acids to support cell growth and productivity. l-cysteine (Cys) is critical in highly concentrated feeds due to low stability of Cys and low solubility of the oxidation product cystine at neutral pH. S-sulfocysteine (SSC) was developed to substitute the Cys source and fed-batch experiments using SSC showed good cellular performance regarding viable cell density and titer, indicating uptake and metabolization of SSC by Chinese hamster ovary cells. However, the responsible transporter allowing cellular uptake remains unclear and was studied in this work. Due to the structure similarity of SSC with cystine and glutamate, it was proposed that the cystine/glutamate antiporter (xc-) allows cellular uptake of SSC. The uptake was assessed via transporter inhibition using sulfasalazine and transporter overexpression using either sulforaphane or sulforaphane-N-acetylcysteine during fed-batch experiments. Following daily addition of 50 μM and 100 μM sulfasalazine, the extracellular SSC concentration was increased by 65 % and 177 % respectively, suggesting a reduced uptake due to xc- inhibition. In contrast, enhanced transporter activity through 15 μM sulforaphane and sulforaphane-N-acetylcysteine treatment, induced a 60 % and 52 % reduced extracellular SSC concentration, respectively. These inverse uptake results strongly suggest that xc- is facilitating the transport of SSC.
Collapse
Affiliation(s)
- Martina Zimmermann
- Merck Life Science, Upstream R&D, Frankfurter Strasse 250, 64293 Darmstadt, Germany; Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich‑Weiss‑Strasse 4, 64287 Darmstadt, Germany.
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich‑Weiss‑Strasse 4, 64287 Darmstadt, Germany.
| | - Aline Zimmer
- Merck Life Science, Upstream R&D, Frankfurter Strasse 250, 64293 Darmstadt, Germany.
| |
Collapse
|
6
|
Bobermin LD, Weber FB, Dos Santos TM, Belló-Klein A, Wyse ATS, Gonçalves CA, Quincozes-Santos A. Sulforaphane Induces Glioprotection After LPS Challenge. Cell Mol Neurobiol 2020; 42:829-846. [PMID: 33079284 DOI: 10.1007/s10571-020-00981-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/10/2020] [Indexed: 01/01/2023]
Abstract
Sulforaphane is a natural compound that presents anti-inflammatory and antioxidant properties, including in the central nervous system (CNS). Astroglial cells are involved in several functions to maintain brain homeostasis, actively participating in the inflammatory response and antioxidant defense systems. We, herein, investigated the potential mechanisms involved in the glioprotective effects of sulforaphane in the C6 astrocyte cell line, when challenged with the inflammogen, lipopolysaccharide (LPS). Sulforaphane prevented the LPS-induced increase in the expression and/or release of pro-inflammatory mediators, possibly due to nuclear factor κB and hypoxia-inducible factor-1α activation. Sulforaphane also modulated the expressions of the Toll-like and adenosine receptors, which often mediate inflammatory processes induced by LPS. Additionally, sulforaphane increased the mRNA levels of nuclear factor erythroid-derived 2-like 2 (Nrf2) and heme oxygenase-1 (HO1), both of which mediate several cytoprotective responses. Sulforaphane also prevented the increase in NADPH oxidase activity and the elevations of superoxide and 3-nitrotyrosine that were stimulated by LPS. In addition, sulforaphane and LPS modulated superoxide dismutase activity and glutathione metabolism. Interestingly, the anti-inflammatory and antioxidant effects of sulforaphane were blocked by HO1 pharmacological inhibition, suggesting its dependence on HO1 activity. Finally, in support of a glioprotective role, sulforaphane prevented the LPS-induced decrease in glutamate uptake, glutamine synthetase activity, and glial-derived neurotrophic factor (GDNF) levels, as well as the augmentations in S100B release and Na+, K+ ATPase activity. To our knowledge, this is the first study that has comprehensively explored the glioprotective effects of sulforaphane on astroglial cells, reinforcing the beneficial effects of sulforaphane on astroglial functionality.
Collapse
Affiliation(s)
- Larissa Daniele Bobermin
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Becker Weber
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tiago Marcon Dos Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adriane Belló-Klein
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos-Alberto Gonçalves
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
7
|
Peng N, Jin L, He A, Deng C, Wang X. Effect of sulphoraphane on newborn mouse cardiomyocytes undergoing ischaemia/reperfusion injury. PHARMACEUTICAL BIOLOGY 2019; 57:753-759. [PMID: 31686558 PMCID: PMC6844446 DOI: 10.1080/13880209.2019.1680705] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/23/2019] [Accepted: 10/11/2019] [Indexed: 05/30/2023]
Abstract
Context: Sulphoraphane (SFN) is an isothiocyanate, having antioxidant activity, antitumor, and therapeutic effects on cardiovascular disease.Objective: This study explores the mechanisms of SFN preconditioning on ischaemia/reperfusion injury (IRI).Materials and methods: Cardiomyocytes were divided into four groups as follows: control group (normoxic condition), SFN group (5 μmol/L), hypoxia/reoxygenation (H/R) group (1 h, 3 h) and SFN + H/R group. Cell viability was determined by MTT method. Levels of creatine kinase (CK), nitric oxide (NO), superoxide dismutase (SOD) and maleic dialdehyde (MDA) were determined by colorimetric method. Cell apoptosis, levels of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were determined by flow cytometry. Levels of Bax, Bcl-2, C caspase-3, NF-E2-related factor 2 (Nrf2) and haem oxygenase-1 (HO-1) were detected by Western blot.Results: H/R model inhibited cell viability, increased the levels of LDH, CK, Bax and C caspase-3, and decreased the levels of NO, Bcl-2, while the effect of H/R was partially reversed by SFN. SFN treatment reduced ROS, MDA (from 4.9 nM to 2.8 nM) production, elevated SOD level (from 39.5 U/mL to 61.7 U/mL) and improved MMP damage. Under the effect of SFN, up-regulation of nuclear Nrf2 expression and down-regulation of cytosolic Nrf2 expression were observed, which led to Nrf2 nuclear translocation and enhanced the expression of HO-1.Conclusion: These results suggested that SFN had a protective effect on cardiomyocytes undergoing IRI, and its mechanism may be realized via activating the Nrf2/HO-1 pathway, thereby inhibiting apoptosis. This might provide a new approach for the treatment of ischaemic heart disease.
Collapse
Affiliation(s)
- Na Peng
- Department of Cardiology, Jingmen No. 1 People’s Hospital, Jingmen, China
| | - Luping Jin
- Department of Cardiology, Jingmen No. 1 People’s Hospital, Jingmen, China
| | - Aizhen He
- Department of Cardiology, Jingmen No. 1 People’s Hospital, Jingmen, China
| | - Changjin Deng
- Department of Cardiology, Jingmen No. 1 People’s Hospital, Jingmen, China
| | - Xiaoqin Wang
- Department of Cardiology, Jingmen No. 1 People’s Hospital, Jingmen, China
| |
Collapse
|
8
|
Protective Effects of Euthyroidism Restoration on Mitochondria Function and Quality Control in Cardiac Pathophysiology. Int J Mol Sci 2019; 20:ijms20143377. [PMID: 31295805 PMCID: PMC6678270 DOI: 10.3390/ijms20143377] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunctions are major contributors to heart disease onset and progression. Under ischemic injuries or cardiac overload, mitochondrial-derived oxidative stress, Ca2+ dis-homeostasis, and inflammation initiate cross-talking vicious cycles leading to defects of mitochondrial DNA, lipids, and proteins, concurrently resulting in fatal energy crisis and cell loss. Blunting such noxious stimuli and preserving mitochondrial homeostasis are essential to cell survival. In this context, mitochondrial quality control (MQC) represents an expanding research topic and therapeutic target in the field of cardiac physiology. MQC is a multi-tier surveillance system operating at the protein, organelle, and cell level to repair or eliminate damaged mitochondrial components and replace them by biogenesis. Novel evidence highlights the critical role of thyroid hormones (TH) in regulating multiple aspects of MQC, resulting in increased organelle turnover, improved mitochondrial bioenergetics, and the retention of cell function. In the present review, these emerging protective effects are discussed in the context of cardiac ischemia-reperfusion (IR) and heart failure, focusing on MQC as a strategy to blunt the propagation of connected dangerous signaling cascades and limit adverse remodeling. A better understanding of such TH-dependent signaling could provide insights into the development of mitochondria-targeted treatments in patients with cardiac disease.
Collapse
|
9
|
Islam H, Hood DA, Gurd BJ. Looking beyond PGC-1α: emerging regulators of exercise-induced skeletal muscle mitochondrial biogenesis and their activation by dietary compounds. Appl Physiol Nutr Metab 2019; 45:11-23. [PMID: 31158323 DOI: 10.1139/apnm-2019-0069] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite its widespread acceptance as the "master regulator" of mitochondrial biogenesis (i.e., the expansion of the mitochondrial reticulum), peroxisome proliferator-activated receptor (PPAR) gamma coactivator-1 alpha (PGC-1α) appears to be dispensable for the training-induced augmentation of skeletal muscle mitochondrial content and respiratory function. In fact, a number of regulatory proteins have emerged as important players in skeletal muscle mitochondrial biogenesis and many of these proteins share key attributes with PGC-1α. In an effort to move past the simplistic notion of a "master regulator" of mitochondrial biogenesis, we highlight the regulatory mechanisms by which nuclear factor erythroid 2-related factor 2 (Nrf2), estrogen-related receptor gamma (ERRγ), PPARβ, and leucine-rich pentatricopeptide repeat-containing protein (LRP130) may contribute to the control of skeletal muscle mitochondrial biogenesis. We also present evidence supporting/refuting the ability of sulforaphane, quercetin, and epicatechin to promote skeletal muscle mitochondrial biogenesis and their potential to augment mitochondrial training adaptations. Targeted activation of specific pathways by these compounds may allow for greater mechanistic insight into the molecular pathways controlling mitochondrial biogenesis in human skeletal muscle. Dietary activation of mitochondrial biogenesis may also be useful in clinical populations with basal reductions in mitochondrial protein content, enzyme activities, and/or respiratory function as well as individuals who exhibit a blunted skeletal muscle responsiveness to contractile activity. Novelty The existence of redundant pathways leading to mitochondrial biogenesis refutes the simplistic notion of a "master regulator" of mitochondrial biogenesis. Dietary activation of specific pathways may provide greater mechanistic insight into the exercise-induced mitochondrial biogenesis in human skeletal muscle.
Collapse
Affiliation(s)
- Hashim Islam
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - David A Hood
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON K7L 3N6, Canada
| | - Brendon J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
10
|
Wu Q, Wang J, Mao S, Xu H, Wu Q, Liang M, Yuan Y, Liu M, Huang K. Comparative transcriptome analyses of genes involved in sulforaphane metabolism at different treatment in Chinese kale using full-length transcriptome sequencing. BMC Genomics 2019; 20:377. [PMID: 31088374 PMCID: PMC6518776 DOI: 10.1186/s12864-019-5758-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/02/2019] [Indexed: 12/21/2022] Open
Abstract
Background Sulforaphane is a natural isothiocyanate available from cruciferous vegetables with multiple characteristics including antioxidant, antitumor and anti-inflammatory effect. Single-molecule real-time (SMRT) sequencing has been used for long-read de novo assembly of plant genome. Here, we investigated the molecular mechanism related to glucosinolates biosynthesis in Chinese kale using combined NGS and SMRT sequencing. Results SMRT sequencing produced 185,134 unigenes, higher than 129,325 in next-generation sequencing (NGS). NaCl (75 mM), methyl jasmonate (MeJA, 40 μM), selenate (Se, sodium selenite 100 μM), and brassinolide (BR, 1.5 μM) treatment induced 6893, 13,287, 13,659 and 11,041 differentially expressed genes (DEGs) in Chinese kale seedlings comparing with control. These genes were associated with pathways of glucosinolates biosynthesis, including phenylalanine, tyrosine and tryptophan biosynthesis, cysteine and methionine metabolism, and glucosinolate biosynthesis. We found NaCl decreased sulforaphane and glucosinolates (indolic and aliphatic) contents and downregulated expression of cytochrome P45083b1 (CYP83b1), S-alkyl-thiohydroximatelyase or carbon–sulfur lyase (SUR1) and UDP-glycosyltransferase 74B1 (UGT74b1). MeJA increased sulforaphane and glucosinolates contents and upregulated the expression of CYP83b1, SUR1 and UGT74b1; Se increased sulforaphane; BR increased expression of CYP83b1, SUR1 and UGT74b1, and increased glucosinolates contents. The desulfoglucosinolate sulfotransferases ST5a_b_c were decreased by all treatments. Conclusions We confirmed that NaCl inhibited the biosynthesis of both indolic and aliphatic glucosinolates, while MeJA and BR increased them. MeJA and BR treatments, conferred the biosynthesis of glucosinolates, and Se and MeJA contributed to sulforaphane in Chinese kale via regulating the expression of CYP83b1, SUR1 and UGT74b1. Electronic supplementary material The online version of this article (10.1186/s12864-019-5758-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiuyun Wu
- College of Horticulture and Landscape, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha, 410128, Hunan Province, China
| | - Junwei Wang
- College of Horticulture and Landscape, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha, 410128, Hunan Province, China
| | - Shuxiang Mao
- College of Horticulture and Landscape, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha, 410128, Hunan Province, China
| | - Haoran Xu
- College of Horticulture and Landscape, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha, 410128, Hunan Province, China
| | - Qi Wu
- College of Horticulture and Landscape, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha, 410128, Hunan Province, China
| | - Mantian Liang
- College of Horticulture and Landscape, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha, 410128, Hunan Province, China
| | - Yiming Yuan
- College of Horticulture and Landscape, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha, 410128, Hunan Province, China
| | - Mingyue Liu
- College of Horticulture and Landscape, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha, 410128, Hunan Province, China
| | - Ke Huang
- College of Horticulture and Landscape, Hunan Agricultural University, No.1 Nongda Road, Furong District, Changsha, 410128, Hunan Province, China.
| |
Collapse
|
11
|
Xu X, Wang D, Zheng C, Gao B, Fan J, Cheng P, Liu B, Yang L, Luo Z. Progerin accumulation in nucleus pulposus cells impairs mitochondrial function and induces intervertebral disc degeneration and therapeutic effects of sulforaphane. Theranostics 2019; 9:2252-2267. [PMID: 31149042 PMCID: PMC6531300 DOI: 10.7150/thno.30658] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 02/10/2019] [Indexed: 01/18/2023] Open
Abstract
Progerin, a truncated unprocessed lamin A protein, causes tissue aging and degeneration. In this study we explored the role of progerin in the pathogenesis of intervertebral disc degeneration (IDD). We also examined the effect of sulforaphane (SFN) on progerin accumulation and mitochondrial dysfunction in IDD. Methods: The role of progerin in IDD was explored using human nucleus pulposus (NP) tissues, rat NP cells, and Lmna G609G knock-in mice. Immunostaining, X-ray imaging, and Western blotting were performed to assess the phenotypes of intervertebral discs. Alterations in senescence and apoptosis were evaluated by SA-β-galactosidase, immunofluorescence, flow cytometry, and TUNEL assays. Mitochondrial function was investigated by JC-1 staining, transmission electron microscopy, and determination of the level of ATP and the activities of mitochondrial enzymes. Results: The progerin level was elevated in degenerated human NP tissues. Lmna G609G/G609G mice displayed IDD, as evidenced by increased matrix metalloproteinase-13 expression and decreased collagen II and aggrecan expression and disc height. Furthermore, progerin overexpression in rat NP cells induced mitochondrial dysfunction (decreased ATP synthesis, mitochondrial membrane potential, and activities of mitochondrial complex enzymes), morphologic abnormalities, and disrupted mitochondrial dynamic (abnormal expression of proteins involved in fission and fusion), resulting in apoptosis and senescence. SFN ameliorated the progerin-induced aging defects and mitochondrial dysfunction in NP cells and IDD in Lmna G609G/G609G mice. Conclusions: Progerin is involved in the pathogenesis of IDD. Also, SFN alleviates progerin‑induced IDD, which is associated with amelioration of aging defects and mitochondrial dysfunction. Thus, SFN shows promise for the treatment of IDD.
Collapse
|
12
|
Soni K, Kohli K. Sulforaphane-decorated gold nanoparticle for anti-cancer activity: in vitro and in vivo studies. Pharm Dev Technol 2018; 24:427-438. [PMID: 30063165 DOI: 10.1080/10837450.2018.1507038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This study aims to develop sulforaphane-loaded gold nanoparticles (SFN-GNPs) as a potential nanomedicine against the solid tumors. Citrate-mediated electrolysis optimized by four-factor three-level Box-Behnken experimental design was used to get nanoparticles of size <200 nm. The formulation was characterized and evaluated for cytotoxicity B16-F10, MCF-7, SW-620 and Caco-2 cell line. Single dose oral pharmacokinetics, gamma scintigraphy-based bio-distribution and tumor regression studies were conducted to evaluate the in vivo performance. Optimized SFN-GNPs showed spherical morphology with a particle size of 147.23 ± 5.321 nm, the zeta potential of -12.7 ± 1.73 mV, entrapment efficiency of 83.17 ± 3.14% and percentage drug loading of 37.26 ± 2.33%. With SFN-GNPs, both SFN (75.99 ± 2.36%) and gold (58.11 ± 2.48%) were able to permeate through the intestinal wall in 48 h. SFN-GNPs were able to bring LC50 of <100 µg/ml in all the cytotoxicity assays, more than 5-fold increase in AUC0-t, enhanced retention at tumor site as well as significant pre-induction tumor growth inhibition and post-induction tumor reduction as compared to plain SFN solution.
Collapse
Affiliation(s)
- Kriti Soni
- a Department of Pharmaceutics, Faculty of Pharmacy , Jamia Hamdard University , New Delhi , India
| | - Kanchan Kohli
- a Department of Pharmaceutics, Faculty of Pharmacy , Jamia Hamdard University , New Delhi , India
| |
Collapse
|
13
|
Couto GK, Fernandes RO, Lacerda D, Campos-Carraro C, Türck P, Bianchi SE, Ferreira GD, Brum IS, Bassani VL, Belló-Klein A, Araujo ASR. Profile of pterostilbene-induced redox homeostasis modulation in cardiac myoblasts and heart tissue. J Biosci 2018. [DOI: 10.1007/s12038-018-9815-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Briones-Herrera A, Eugenio-Pérez D, Reyes-Ocampo JG, Rivera-Mancía S, Pedraza-Chaverri J. New highlights on the health-improving effects of sulforaphane. Food Funct 2018; 9:2589-2606. [PMID: 29701207 DOI: 10.1039/c8fo00018b] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this paper, we review recent evidence about the beneficial effects of sulforaphane (SFN), which is the most studied member of isothiocyanates, on both in vivo and in vitro models of different diseases, mainly diabetes and cancer. The role of SFN on oxidative stress, inflammation, and metabolism is discussed, with emphasis on those nuclear factor E2-related factor 2 (Nrf2) pathway-mediated mechanisms. In the case of the anti-inflammatory effects of SFN, the point of convergence seems to be the downregulation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), with the consequent amelioration of other pathogenic processes such as hypertrophy and fibrosis. We emphasized that SFN shows opposite effects in normal and cancer cells at many levels; for instance, while in normal cells it has protective actions, in cancer cells it blocks the induction of factors related to the malignity of tumors, diminishes their development, and induces cell death. SFN is able to promote apoptosis in cancer cells by many mechanisms, the production of reactive oxygen species being one of the most relevant ones. Given its properties, SFN could be considered as a phytochemical at the forefront of natural medicine.
Collapse
Affiliation(s)
- Alfredo Briones-Herrera
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | | | | | | |
Collapse
|
15
|
Evans LW, Ferguson BS. Food Bioactive HDAC Inhibitors in the Epigenetic Regulation of Heart Failure. Nutrients 2018; 10:E1120. [PMID: 30126190 PMCID: PMC6115944 DOI: 10.3390/nu10081120] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 12/21/2022] Open
Abstract
Approximately 5.7 million U.S. adults have been diagnosed with heart failure (HF). More concerning is that one in nine U.S. deaths included HF as a contributing cause. Current HF drugs (e.g., β-blockers, ACEi) target intracellular signaling cascades downstream of cell surface receptors to prevent cardiac pump dysfunction. However, these drugs fail to target other redundant intracellular signaling pathways and, therefore, limit drug efficacy. As such, it has been postulated that compounds designed to target shared downstream mediators of these signaling pathways would be more efficacious for the treatment of HF. Histone deacetylation has been linked as a key pathogenetic element for the development of HF. Lysine residues undergo diverse and reversible post-translational modifications that include acetylation and have historically been studied as epigenetic modifiers of histone tails within chromatin that provide an important mechanism for regulating gene expression. Of recent, bioactive compounds within our diet have been linked to the regulation of gene expression, in part, through regulation of the epi-genome. It has been reported that food bioactives regulate histone acetylation via direct regulation of writer (histone acetyl transferases, HATs) and eraser (histone deacetylases, HDACs) proteins. Therefore, bioactive food compounds offer unique therapeutic strategies as epigenetic modifiers of heart failure. This review will highlight food bio-actives as modifiers of histone deacetylase activity in the heart.
Collapse
Affiliation(s)
- Levi W Evans
- Department of Agriculture, Nutrition, & Veterinary Sciences, University of Nevada, Reno, NV 89557, USA.
- Center for Cardiovascular Research, University of Nevada, Reno, NV 89557, USA.
- Environmental Science & Health, University of Nevada, Reno, NV 89557, USA.
| | - Bradley S Ferguson
- Department of Agriculture, Nutrition, & Veterinary Sciences, University of Nevada, Reno, NV 89557, USA.
- Center for Cardiovascular Research, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
16
|
Corssac GB, Campos-Carraro C, Hickmann A, da Rosa Araujo AS, Fernandes RO, Belló-Klein A. Sulforaphane effects on oxidative stress parameters in culture of adult cardiomyocytes. Biomed Pharmacother 2018; 104:165-171. [DOI: 10.1016/j.biopha.2018.05.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/02/2018] [Accepted: 05/08/2018] [Indexed: 12/28/2022] Open
|
17
|
Finley J. Cellular stress and AMPK activation as a common mechanism of action linking the effects of metformin and diverse compounds that alleviate accelerated aging defects in Hutchinson-Gilford progeria syndrome. Med Hypotheses 2018; 118:151-162. [PMID: 30037605 DOI: 10.1016/j.mehy.2018.06.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/13/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder characterized by an accelerated aging phenotype that typically leads to death via stroke or myocardial infarction at approximately 14.6 years of age. Most cases of HGPS have been linked to the extensive use of a cryptic splice donor site located in the LMNA gene due to a de novo mutation, generating a truncated and toxic protein known as progerin. Progerin accumulation in the nuclear membrane and within the nucleus distorts the nuclear architecture and negatively effects nuclear processes including DNA replication and repair, leading to accelerated cellular aging and premature senescence. The serine-arginine rich splicing factor SRSF1 (also known as ASF/SF2) has recently been shown to modulate alternative splicing of the LMNA gene, with SRSF1 inhibition significantly reducing progerin at both the mRNA and protein levels. In 2014, we hypothesized for the first time that compounds including metformin that induce activation of AMP-activated protein kinase (AMPK), a master metabolic regulator activated by cellular stress (e.g. increases in intracellular calcium, reactive oxygen species, and/or an AMP(ADP)/ATP ratio increase, etc.), will beneficially alter gene splicing in progeria cells by inhibiting SRSF1, thus lowering progerin levels and altering the LMNA pre-mRNA splicing ratio. Recent evidence has substantiated this hypothesis, with metformin significantly reducing the mRNA and protein levels of both SRSF1 and progerin, activating AMPK, and alleviating pathological defects in HGPS cells. Metformin has also recently been shown to beneficially alter gene splicing in normal humans. Interestingly, several chemically distinct compounds, including rapamycin, methylene blue, all-trans retinoic acid, MG132, 1α,25-dihydroxyvitamin D3, sulforaphane, and oltipraz have each been shown to alleviate accelerated aging defects in patient-derived HGPS cells. Each of these compounds has also been independently shown to induce AMPK activation. Because these compounds improve accelerated aging defects in HGPS cells either by enhancing mitochondrial functionality, increasing Nrf2 activity, inducing autophagy, or by altering gene splicing and because AMPK activation beneficially modulates each of the aforementioned processes, it is our hypothesis that cellular stress-induced AMPK activation represents an indirect yet common mechanism of action linking such chemically diverse compounds with the beneficial effects of those compounds observed in HGPS cells. As normal humans also produce progerin at much lower levels through a similar mechanism, compounds that safely induce AMPK activation may have wide-ranging implications for both normal and pathological aging.
Collapse
|
18
|
Ma T, Zhu D, Chen D, Zhang Q, Dong H, Wu W, Lu H, Wu G. Sulforaphane, a Natural Isothiocyanate Compound, Improves Cardiac Function and Remodeling by Inhibiting Oxidative Stress and Inflammation in a Rabbit Model of Chronic Heart Failure. Med Sci Monit 2018. [PMID: 29527002 PMCID: PMC5859672 DOI: 10.12659/msm.906123] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background The aim of this study was to investigate the effects of sulforaphane (SFN), a natural isothiocyanate compound, in a rabbit ascending aortic cerclage model of chronic heart failure (CHF). Material/Methods Thirty New Zealand White rabbits were divided into the sham operation group (n=10), the CHF group (n=10), and the CHF + SFN group (n=10) treated with subcutaneous SFN (0.5 mg/kg) for five days per week for 12 weeks. After 12 weeks, echocardiography and biometric analysis were performed, followed by the examination of the rabbit hearts. Enzyme-linked immunosorbent assay (ELISA) and Western blot were used to detect levels of inflammatory cytokines, superoxide dismutase (SOD), and malondialdehyde (MDA). Results In the CHF group, compared with the sham operation group, there was an increase in the heart weight to body weight ratio (HW/BW), the left ventricular weight to body weight ratio (LVW/BW), the left ventricular end diastolic diameter (LVEDD), the left ventricular end systolic diameter (LVESD), plasma brain natriuretic peptide (BNP) and atrial natriuretic peptide (ANP) levels, the cardiac collagen volume fraction (CVF), apoptotic index, expression levels of collagen I, collagen III, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and malondialdehyde (MDA) in the myocardial tissue, and a decrease in the left ventricular shortening fraction (LVFS) and left ventricular ejection fraction (LVEF), and cardiac superoxide dismutase (SOD) activity. These changes were corrected in the SFN-treated group. Conclusions In a rabbit model of CHF, treatment with SFN improved cardiac function and remodeling by inhibiting oxidative stress and inflammation.
Collapse
Affiliation(s)
- Tongliang Ma
- Department of Emergency Internal Medicine, The People's Hospital of Bozhou, Bozhou, Anhui, China (mainland)
| | - Decai Zhu
- Department of Emergency Internal Medicine, The People's Hospital of Bozhou, Bozhou, Anhui, China (mainland)
| | - Duoxue Chen
- Department of Cardiology, The People's Hospital of Bozhou, Bozhou, Anhui, China (mainland)
| | - Qiaoyun Zhang
- Department of Emergency Internal Medicine, The People's Hospital of Bozhou, Bozhou, Anhui, China (mainland)
| | - Huifang Dong
- Department of Emergency Internal Medicine, The People's Hospital of Bozhou, Bozhou, Anhui, China (mainland)
| | - Wenwu Wu
- Department of Emergency Internal Medicine, The People's Hospital of Bozhou, Bozhou, Anhui, China (mainland)
| | - Huihe Lu
- Department of Cardiology, Nantong First People's Hospital, Nantong, Jiangsu, China (mainland)
| | - Guangfu Wu
- Department of Emergency Internal Medicine, The People's Hospital of Bozhou, Bozhou, Anhui, China (mainland)
| |
Collapse
|
19
|
Choi SJ, Kim HS. Deregulation of Nrf2/ARE signaling pathway causes susceptibility of dystrophin-deficient myotubes to menadione-induced oxidative stress. Exp Cell Res 2018; 364:224-233. [PMID: 29458173 DOI: 10.1016/j.yexcr.2018.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/30/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an X chromosome-linked disorder caused by a mutation in the dystrophin gene. Many previous studies reported that the skeletal muscles of DMD patients were more susceptible to oxidative stress than those of healthy people. However, not much has been known about the responsible mechanism of the differential susceptibility. In this study, we established dystrophin knock-down (DysKD) cell lines by transfection of dystrophin shRNA lentiviral particles into C2 cells and found that DysKD myotubes are more vulnerable to menadione-induced oxidative stress than control myotubes. We focused on the nuclear erythroid 2-related factor 2 (Nrf2) which is a transcription factor that regulates the expression of phase II antioxidant enzymes by binding to the antioxidant response element (ARE). Under menadione-induced oxidative stress, the translocation of Nrf2 to the nucleus is significantly decreased in the DysKD myotubes. In addition, the binding of Nrf2 to ARE site of Bcl-2 gene as well as protein expression of Bcl-2 is decreased compared to the control cells. Interestingly, sulforaphane increased Akt activation and Nrf2 translocation to the nucleus in the DysKD myotubes. These results suggest that the Nrf2 pathway might be the responsible pathway to the oxidative stress-induced muscle damage in DMD.
Collapse
Affiliation(s)
- Su Jin Choi
- Department of Biological Science, College of Natural Sciences, Ajou University, Suwon 16499, Republic of Korea
| | - Hye Sun Kim
- Department of Biological Science, College of Natural Sciences, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
20
|
Thyroid hormones improve cardiac function and decrease expression of pro-apoptotic proteins in the heart of rats 14 days after infarction. Apoptosis 2016; 21:184-94. [PMID: 26659365 DOI: 10.1007/s10495-015-1204-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Apoptosis is a key process associated with pathological cardiac remodelling in early-phase post-myocardial infarction. In this context, several studies have demonstrated an anti-apoptotic effect of thyroid hormones (TH). The aim of this study was to evaluate the effects of TH on the expression of proteins associated with the apoptotic process 14 days after infarction. Male Wistar rats (300-350 g) (n = 8/group) were divided into four groups: Sham-operated (SHAM), infarcted (AMI), sham-operated + TH (SHAMT) and infarcted + TH (AMIT). For 12 days, the animals received T3 and T4 [2 and 8 µg/(100 g day)] by gavage. After this, the rats were submitted to haemodynamic and echocardiographic analysis, and then were sacrificed and the heart tissue was collected for molecular analysis. Statistical analyses included two-way ANOVA with Student-Newman-Keuls post test. Ethics Committee number: 23262. TH administration prevented the loss of ventricular wall thickness and improved cardiac function in the infarcted rats 14 days after the injury. AMI rats presented an increase in the pro-apoptotic proteins p53 and JNK. The hormonal treatment prevented this increase in AMIT rats. In addition, TH administration decreased the Bax:Bcl-2 ratio in the infarcted rats. TH administration improved cardiac functional parameters, and decreased the expression of pro-apoptotic proteins 14 days after myocardial infarction.
Collapse
|
21
|
Sulforaphane effects on postinfarction cardiac remodeling in rats: modulation of redox-sensitive prosurvival and proapoptotic proteins. J Nutr Biochem 2016; 34:106-17. [DOI: 10.1016/j.jnutbio.2016.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/26/2016] [Accepted: 05/11/2016] [Indexed: 12/24/2022]
|
22
|
Chico L, Orsucci D, Lo Gerfo A, Marconi L, Mancuso M, Siciliano G. Biomarkers and progress of antioxidant therapy for rare mitochondrial disorders. Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2016.1178570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Lucia Chico
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Daniele Orsucci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Annalisa Lo Gerfo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Letizia Marconi
- Department of Cardiothoracic and Vascular, University of Pisa, Pisa, Italy
| | - Michelangelo Mancuso
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | |
Collapse
|
23
|
Ye JX, Wang SS, Ge M, Wang DJ. Suppression of endothelial PGC-1α is associated with hypoxia-induced endothelial dysfunction and provides a new therapeutic target in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2016; 310:L1233-42. [PMID: 27084848 DOI: 10.1152/ajplung.00356.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/13/2016] [Indexed: 01/22/2023] Open
Abstract
Endothelial dysfunction plays a principal role in the pathogenesis of pulmonary arterial hypertension (PAH), which is a fatal disease with limited effective clinical treatments. Mitochondrial dysregulation and oxidative stress are involved in endothelial dysfunction. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a key regulator of cellular energy metabolism and a master regulator of mitochondrial biogenesis. However, the roles of PGC-1α in hypoxia-induced endothelial dysfunction are not completely understood. We hypothesized that hypoxia reduces PGC-1α expression and leads to endothelial dysfunction in hypoxia-induced PAH. We confirmed that hypoxia has a negative impact on endothelial PGC-1α in experimental PAH in vitro and in vivo. Hypoxia-induced PGC-1α inhibited the oxidative metabolism and mitochondrial function, whereas sustained PGC-1α decreased reactive oxygen species (ROS) formation, mitochondrial swelling, and NF-κB activation and increased ATP formation and endothelial nitric oxide synthase (eNOS) phosphorylation. Furthermore, hypoxia-induced changes in the mean pulmonary arterial pressure and right heart hypertrophy were nearly normal after intervention. These results suggest that PGC-1α is associated with endothelial function in hypoxia-induced PAH and that improved endothelial function is associated with improved cellular mitochondrial respiration, reduced inflammation and oxygen stress, and increased PGC-1α expression. Taken together, these findings indicate that PGC-1α may be a new therapeutic target in PAH.
Collapse
Affiliation(s)
- Jia-Xin Ye
- Department of Cardio-Thoracic Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China; and
| | - Shan-Shan Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Min Ge
- Department of Cardio-Thoracic Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China; and
| | - Dong-Jin Wang
- Department of Cardio-Thoracic Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China; and
| |
Collapse
|
24
|
Bonetto JHP, Fernandes RO, Seolin BGDL, Müller DD, Teixeira RB, Araujo AS, Vassallo D, Schenkel PC, Belló-Klein A. Sulforaphane improves oxidative status without attenuating the inflammatory response or cardiac impairment induced by ischemia–reperfusion in rats. Can J Physiol Pharmacol 2016; 94:508-16. [DOI: 10.1139/cjpp-2015-0282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sulforaphane, a natural isothiocyanate, demonstrates cardioprotection associated with its capacity to stimulate endogenous antioxidants and to inhibit inflammation. The aim of this study was to investigate whether sulforaphane is capable of attenuating oxidative stress and inflammatory responses through the TLR4/MyD88/NFκB pathway, and thereby could modulate post-ischemic ventricular function in isolated rat hearts submitted to ischemia and reperfusion. Male Wistar rats received sulforaphane (10 mg·kg−1·day−1) or vehicle i.p. for 3 days. Global ischemia was performed using isolated hearts, 24 h after the last injection, by interruption of the perfusion flow. The protocol included a 20 min pre-ischemic period followed by 20 min of ischemia and a 20 min reperfusion. Although no changes in mechanical function were observed, sulforaphane induced a significant increase in superoxide dismutase and heme oxygenase-1 expression (both 66%) and significantly reduced reactive oxygen species levels (7%). No differences were observed for catalase and glutathione peroxidase expression or their activities, nor for thioredoxin reductase, glutaredoxin reductase and glutathione-S-transferase. No differences were found in lipid peroxidation or TLR4, MyD88, and NF-κB expression. In conclusion, although sulforaphane was able to stimulate endogenous antioxidants modestly, this result did not impact inflammatory signaling or cardiac function of hearts submitted to ischemia and reperfusion.
Collapse
Affiliation(s)
- Jéssica Hellen Poletto Bonetto
- Laboratory of Cardiovascular Physiology, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Rafael Oliveira Fernandes
- Laboratory of Cardiovascular Physiology, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Bruna Gazzi de Lima Seolin
- Laboratory of Cardiovascular Physiology, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Dalvana Daneliza Müller
- Laboratory of Cardiovascular Physiology, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Rayane Brinck Teixeira
- Laboratory of Cardiovascular Physiology, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Alex Sander Araujo
- Laboratory of Cardiovascular Physiology, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Dalton Vassallo
- Health Science Center of Vitória (EMESCAM), Espírito Santo, Brazil
| | - Paulo Cavalheiro Schenkel
- Laboratory of Cardiovascular Physiology, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Adriane Belló-Klein
- Laboratory of Cardiovascular Physiology, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| |
Collapse
|
25
|
Pei X, Li X, Chen H, Han Y, Fan Y. Thymoquinone Inhibits Angiotensin II-Induced Proliferation and Migration of Vascular Smooth Muscle Cells Through the AMPK/PPARγ/PGC-1α Pathway. DNA Cell Biol 2016; 35:426-33. [PMID: 27064837 DOI: 10.1089/dna.2016.3262] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The proliferation and migration of vascular smooth muscle cells (VSMCs) play crucial roles in the pathogenesis of diabetes and its complications. Thymoquinone (TQ) is the primary bioactive component of Nigella sativa L. seed oil, which exhibits antihyperglycemic effect in diabetic rats, but its role in VSMC proliferation and migration has not been investigated. The results of MTT assay and flow cytometry assay indicated that TQ dose-dependently inhibited angiotensin II (Ang II)-induced VSMCs' cell cycle progression, as well as cyclin D1 expression, whereas p21 expression was altered conversely. TQ dose-dependently suppressed Ang II-induced VSMC migration accompanied by reduced MMP-9 expression. In addition, we observed the elevated reactive oxygen species (ROS) generation and NADPH oxidase activity and reduced superoxide dismutase activity in Ang II-treated VSMCs, which were dose-dependently reversed by TQ. Western blot analysis indicated that TQ dose-dependently restored Ang II-inhibited expression of p-AMPK, PPARγ, and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) proteins. Furthermore, adenosine monophosphate-activated protein kinase (AMPK) inhibitor Compound C and PGC-1α siRNA transfection abrogated the activation of TQ on Ang II-inhibited AMPK/PPARγ/PGC-1α signaling, but abolished the inhibitory effects of TQ on Ang II-induced VSMC proliferation and migration, as well as ROS generation. Taken together, these results demonstrated that TQ inhibited Ang II-induced VSMC proliferation and migration through the AMPK/PPARγ/PGC-1α pathway.
Collapse
Affiliation(s)
- Xing Pei
- 1 Department of Internal Medicine, Hong-Hui Hospital, Xi'an Jiaotong University , College of Medicine, Xi'an, People's Republic of China
| | - Xiaoli Li
- 1 Department of Internal Medicine, Hong-Hui Hospital, Xi'an Jiaotong University , College of Medicine, Xi'an, People's Republic of China
| | - Heming Chen
- 2 Department of Endocrinology, Ankang City Central Hospital , Ankang, People's Republic of China
| | - Yong Han
- 1 Department of Internal Medicine, Hong-Hui Hospital, Xi'an Jiaotong University , College of Medicine, Xi'an, People's Republic of China
| | - Yigang Fan
- 1 Department of Internal Medicine, Hong-Hui Hospital, Xi'an Jiaotong University , College of Medicine, Xi'an, People's Republic of China
| |
Collapse
|
26
|
Metabolic Activity of Radish Sprouts Derived Isothiocyanates in Drosophila melanogaster. Int J Mol Sci 2016; 17:251. [PMID: 26901196 PMCID: PMC4783981 DOI: 10.3390/ijms17020251] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 02/07/2023] Open
Abstract
We used Drosophila melanogaster as a model system to study the absorption, metabolism and potential health benefits of plant bioactives derived from radish sprouts (Raphanus sativus cv. Rambo), a Brassicaceae species rich in glucosinolates and other phytochemicals. Flies were subjected to a diet supplemented with lyophilized radish sprouts (10.6 g/L) for 10 days, containing high amounts of glucoraphenin and glucoraphasatin, which can be hydrolyzed by myrosinase to the isothiocyanates sulforaphene and raphasatin, respectively. We demonstrate that Drosophila melanogaster takes up and metabolizes isothiocyanates from radish sprouts through the detection of the metabolite sulforaphane-cysteine in fly homogenates. Moreover, we report a decrease in the glucose content of flies, an upregulation of spargel expression, the Drosophila homolog of the mammalian PPARγ-coactivator 1 α, as well as the inhibition of α-amylase and α-glucosidase in vitro. Overall, we show that the consumption of radish sprouts affects energy metabolism in Drosophila melanogaster which is reflected by lower glucose levels and an increased expression of spargel, a central player in mitochondrial biogenesis. These processes are often affected in chronic diseases associated with aging, including type II diabetes mellitus.
Collapse
|
27
|
T3 and T4 decrease ROS levels and increase endothelial nitric oxide synthase expression in the myocardium of infarcted rats. Mol Cell Biochem 2015; 408:235-43. [DOI: 10.1007/s11010-015-2501-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 07/04/2015] [Indexed: 11/26/2022]
|