1
|
Yang W, Liu C, Liu Y, Gao N, Huang B, Han Y, Wang X. Identification of a T-box transcription factor TBX2 and its negative regulatory role in melanin production in the Pacific oyster Crassostrea gigas. Int J Biol Macromol 2024; 282:136772. [PMID: 39447786 DOI: 10.1016/j.ijbiomac.2024.136772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024]
Abstract
Oyster shells exhibit varying color patterns-black, white, or black and white striations-attributable to differences in melanin content and distribution. In this study, we identified a new homolog of TBX2, a member of the T-box transcription factor family, in the Pacific oyster (Crassostrea gigas) named CgTBX2. The mRNA expression of CgTBX2 was higher in tissues from white-shelled oysters than in those from black-shelled oysters. Knockdown of CgTBX2 in C. gigas significantly upregulated the expression of two key genes involved in melanin synthesis, CgTYR and CgTYR2. The tissue expression profile revealed that CgTBX2 is highly expressed in gill and mantle. CgTBX2 protein is mainly localized in the nucleus and can combine with TBX-binding elements (TBEs) present in the CgOCA2 promoter. CgTBX2 repressed the activity of the CgOCA2 promoter, with a strong transcriptional inhibition effect on the -2000 to -878 and -211 to -1 regions. Furthermore, the combination of CgTBX2 with GTTGACACCTT sequence is responsible for the transcriptional inhibition on the -211 to -1 region of the CgOCA2 promoter. Our findings reveal that CgTBX2, a novel regulator of melanin pigmentation in C. gigas, negatively regulates melanin deposition by inhibiting tyrosinase genes expression and repressing the transcriptional activity of the CgOCA2 promoter.
Collapse
Affiliation(s)
- Wenhao Yang
- School of Fisheries, Ludong University, Yantai 264025, China
| | - Chen Liu
- School of Fisheries, Ludong University, Yantai 264025, China
| | - Yaqiong Liu
- School of Fisheries, Ludong University, Yantai 264025, China.
| | - Nan Gao
- School of Fisheries, Ludong University, Yantai 264025, China
| | - Baoyu Huang
- School of Fisheries, Ludong University, Yantai 264025, China
| | - Yijing Han
- School of Fisheries, Ludong University, Yantai 264025, China
| | - Xiaotong Wang
- School of Fisheries, Ludong University, Yantai 264025, China.
| |
Collapse
|
2
|
Cho E, Hyung KE, Choi YH, Chun H, Kim D, Jun SH, Kang NG. Modulating OCA2 Expression as a Promising Approach to Enhance Skin Brightness and Reduce Dark Spots. Biomolecules 2024; 14:1284. [PMID: 39456217 PMCID: PMC11506640 DOI: 10.3390/biom14101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
The oculocutaneous albinism II (OCA2) gene encodes a melanosomal transmembrane protein involved in melanogenesis. Recent genome-wide association studies have identified several single nucleotide polymorphisms within OCA2 genes that are involved in skin pigmentation. Nevertheless, there have been no attempts to modulate this gene to improve skin discoloration. Accordingly, our aim was to identify compounds that can reduce OCA2 expression and to develop a formula that can improve skin brightness and reduce hyperpigmented spots. In this study, we investigated the effects of OCA2 expression reduction on melanin levels, melanosome pH, and autophagy induction through siRNA knockdown. Additionally, we identified several bioactives that effectively reduce OCA2 expression. Ultimately, in a clinical trial, we demonstrated that topical application of those compounds significantly improved skin tone and dark spots compared to vitamin C, a typical brightening agent. These findings demonstrate that OCA2 is a promising target for the development of efficacious cosmetics and therapeutics designed to treat hyperpigmentation.
Collapse
Affiliation(s)
| | | | | | | | | | - Seung-Hyun Jun
- LG Household and Health Care, R & D Center, Seoul 07795, Republic of Korea; (E.C.); (K.E.H.); (Y.-H.C.); (H.C.); (D.K.)
| | - Nae-Gyu Kang
- LG Household and Health Care, R & D Center, Seoul 07795, Republic of Korea; (E.C.); (K.E.H.); (Y.-H.C.); (H.C.); (D.K.)
| |
Collapse
|
3
|
Yuan X, Dang Q, Li XL. Functional analysis of two mutation sites in the OCA2 gene. Sci Rep 2024; 14:14789. [PMID: 38926510 PMCID: PMC11208167 DOI: 10.1038/s41598-024-64782-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
To analyse the genetic aetiology of a child with oculocutaneous albinism and to explore the effects of two mutation sites on the function of the OCA2 protein at the mRNA and protein levels via the use of recombinant carriers in vitro. Whole-exome sequencing (WES) and Sanger sequencing were used to analyse the pathogenic genes of the child and validate the mutations in the parents. pEGFP and phage vectors carrying wild-type and mutant OCA2 were constructed using the coding DNA sequence (CDS) of the whole gene-synthesized OCA2 as a template and transfected into HEK293T cells, after which expression analysis was performed. The child in this study was born with white skin, hair, eyelashes, and eyebrows and exhibited nystagmus. Genetic analysis indicated that the child carried two heterozygous mutations: c.1079C > T (p.Ser360Phe) of maternal origin and c.1095_1103delAGCACTGGC (p.Ala366_Ala368del) of paternal origin, conforming to an autosomal recessive inheritance pattern. In vitro analysis showed that the expression of the c.1079C > T (p.Ser360Phe) mutant did not significantly change at the mRNA level but did increase at the protein level, suggesting that the mutation may lead to enhanced protein stability, and the c.1095_1103delAGCACTGGC (p.Ala366_Ala368del) mutation resulted in the loss of three amino acids in exon 10, producing a truncated protein. In vitro expression analysis also revealed that the expression of the mutant gene was significantly downregulated at both the mRNA and protein levels, suggesting that the mutation can simultaneously produce truncated proteins and lead to protein degradation. This case study enriches the phenotypic spectrum of OCA2 gene disease. In vitro expression analysis confirmed that both mutations affect protein expression, providing a theoretical basis for analysing the pathogenicity of these two mutations.
Collapse
Affiliation(s)
- XiaoHua Yuan
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, 710061, China.
| | - Qun Dang
- Department of Gynaecology and Obstetrics, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Xue Lan Li
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, 710061, China.
| |
Collapse
|
4
|
Deng Y, Qu X, Yao Y, Li M, He C, Guo S. Investigating the impact of pigmentation variation of breast muscle on growth traits, melanin deposition, and gene expression in Xuefeng black-bone chickens. Poult Sci 2024; 103:103691. [PMID: 38598910 PMCID: PMC11017053 DOI: 10.1016/j.psj.2024.103691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
The blackness traits, considered an important economic factor in the black-bone chicken industry, still exhibits a common phenomenon of significant difference in blackness of breast muscle. To improve this phenomenon, this study compared growth traits, blackness traits, and transcriptome of breast muscles between the High Blackness Group (H group) and Low Blackness Group (L group) in the Xuefeng black-bone chickens. The results are as follows: 1) There was no significant difference in growth traits between the H group and the L group (P > 0.05). 2) The skin/breast muscle L values in the H group were significantly lower than those in the L group, while the breast muscle melanin content exhibited the opposite trend (P < 0.05). 3) A significant negative correlation was observed between breast muscle melanin content and skin/breast muscle L value (P < 0.05), and skin L value exhibiting a significant positive correlation with breast muscle L value (P < 0.05). 4) The breast muscle transcriptome comparison between the H group and L group revealed 831 and 405 DEGs in female and male chickens, respectively. This included 37 shared DEGs significantly enriched in melanosome, pigment granule, and the melanogenesis pathway. Seven candidate genes (DCT, PMEL, MLANA, TYRP1, OCA2, EDNRB2, and CALML4) may play a crucial role in the melanin production of breast muscle in Xuefeng black-bone chicken. The findings could accelerate the breeding process for achieving desired levels of breast muscle blackness and contribute to the exploration of the mechanisms underlying melanin production in black-bone chickens.
Collapse
Affiliation(s)
- Yuying Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Xiangyong Qu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Yaling Yao
- Animal Husbandry and Aquatic Products Bureau of Huaihua City, Huaihua 418200, Hunan, China
| | - Meichun Li
- Hunan Yunfeifeng Agriculture Co. Ltd., Huaihua 418200, Hunan, China
| | - Changqing He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Songchang Guo
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China.
| |
Collapse
|
5
|
Lin R, Li J, Zhao F, Zhou M, Wang J, Xiao T. Transcriptome analysis of genes potentially associated with white and black plumage formation in Chinese indigenous ducks ( Anas platyrhynchos). Br Poult Sci 2022; 63:466-474. [PMID: 35094630 DOI: 10.1080/00071668.2022.2035676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. Plumage colour is an important recognisable characteristic of duck (Anas platyrhynchos), but the coloration mechanisms remain largely unknown. To elucidate the molecular mechanisms underlying the formation of black and white plumage, the following study applied RNA sequencing (RNA-Seq) to catalogue the global gene expression profiles in the duck feather bulbs of black and white colours.2. Black feather bulbs were collected from Putian Black ducks (B-PTB) and black Longsheng Jade-green ducks (B-LS), while white feather bulbs were collected from Putian White ducks (W-PTW), Putian Black ducks (W-PTB) and Longsheng Jade-green ducks (W-LS). Sixteen cDNA libraries were constructed and sequenced for transcriptional analysis. Three comparison groups were employed to analyse differentially expressed genes (DEGs), including W-PTB versus B-PTB, W-PTW versus B-PTB and W-LS versus B-LS.3. The results showed 180 DEGs between W-PTB and B-PTB, 303 DEGs between W-PTW and B-PTB, and 108 DEGs between W-LS and B-LS. Further analysis showed that 18 DEGs were directly involved in the pigmentation process and melanogenesis signalling pathway. Additionally, the distribution of DEGs varied amongst groups whereby ASIP appeared only in the W-LS versus B-LS group, GNAI1 and ZEB2 appeared only in the W-PTW versus B-PTB group, and KITLG, EDN3 and FZD4 appeared only in W-PTB versus B-PTB.4. The findings suggested that the mechanism of feather albinism may differ between duck breeds. This study provided new information for discovering genes that are important for feather pigmentation and helps elucidate molecular mechanisms involved in black and white plumage in ducks.
Collapse
Affiliation(s)
- Ruiyi Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiaquan Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fanglu Zhao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mai Zhou
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junhui Wang
- The Animal Husbandry Station in Fujian Province, Fuzhou, China
| | - Tianfang Xiao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
6
|
Loftus SK, Lundh L, Watkins-Chow DE, Baxter LL, Pairo-Castineira E, Nisc Comparative Sequencing Program, Jackson IJ, Oetting WS, Pavan WJ, Adams DR. A custom capture sequence approach for oculocutaneous albinism identifies structural variant alleles at the OCA2 locus. Hum Mutat 2021; 42:1239-1253. [PMID: 34246199 DOI: 10.1002/humu.24257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/02/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022]
Abstract
Oculocutaneous albinism (OCA) is a heritable disorder of pigment production that manifests as hypopigmentation and altered eye development. Exon sequencing of known OCA genes is unsuccessful in producing a complete molecular diagnosis for a significant number of affected individuals. We sequenced the DNA of individuals with OCA using short-read custom capture sequencing that targeted coding, intronic, and noncoding regulatory regions of known OCA genes, and genome-wide association study-associated pigmentation loci. We identified an OCA2 complex structural variant (CxSV), defined by a 143 kb inverted segment reintroduced in intron 1, upstream of the native location. The corresponding CxSV junctions were observed in 11/390 probands screened. The 143 kb CxSV presents in one family as a copy number variant duplication for the 143 kb region. In the remaining 10/11 families, the 143 kb CxSV acquired an additional 184 kb deletion across the same region, restoring exons 3-19 of OCA2 to a copy-number neutral state. Allele-associated haplotype analysis found rare SNVs rs374519281 and rs139696407 are linked with the 143 kb CxSV in both OCA2 alleles. For individuals in which customary molecular evaluation does not reveal a biallelic OCA diagnosis, we recommend preliminary screening for these haplotype-associated rare variants, followed by junction-specific validation for the OCA2 143 kb CxSV.
Collapse
Affiliation(s)
- Stacie K Loftus
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Linnea Lundh
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Dawn E Watkins-Chow
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Laura L Baxter
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Erola Pairo-Castineira
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, UK.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | | | - Ian J Jackson
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, UK.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - William S Oetting
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - David R Adams
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Ostojić J, Yoon YS, Sonntag T, Nguyen B, Vaughan JM, Shokhirev M, Montminy M. Transcriptional co-activator regulates melanocyte differentiation and oncogenesis by integrating cAMP and MAPK/ERK pathways. Cell Rep 2021; 35:109136. [PMID: 34010639 DOI: 10.1016/j.celrep.2021.109136] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/25/2021] [Accepted: 04/23/2021] [Indexed: 01/07/2023] Open
Abstract
The cyclic AMP pathway promotes melanocyte differentiation by activating CREB and the cAMP-regulated transcription co-activators 1-3 (CRTC1-3). Differentiation is dysregulated in melanomas, although the contributions of CRTC proteins is unclear. We report a selective differentiation impairment in CRTC3 KO melanocytes and melanoma cells, due to downregulation of oculo-cutaneous albinism II (OCA2) and block of melanosome maturation. CRTC3 stimulates OCA2 expression by binding to CREB on a conserved enhancer, a regulatory site for pigmentation and melanoma risk. CRTC3 is uniquely activated by ERK1/2-mediated phosphorylation at Ser391 and by low levels of cAMP. Phosphorylation at Ser391 is constitutively elevated in human melanoma cells with hyperactivated ERK1/2 signaling; knockout of CRTC3 in this setting impairs anchorage-independent growth, migration, and invasiveness, whereas CRTC3 overexpression supports cell survival in response to the mitogen-activated protein kinase (MAPK) inhibitor vemurafenib. As melanomas expressing gain-of-function mutations in CRTC3 are associated with reduced survival, our results suggest that CRTC3 inhibition may provide therapeutic benefit in this setting.
Collapse
Affiliation(s)
- Jelena Ostojić
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Young-Sil Yoon
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Tim Sonntag
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Billy Nguyen
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Joan M Vaughan
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Maxim Shokhirev
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Marc Montminy
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
8
|
Isogawa K, Asano M, Hayazaki M, Koga K, Watanabe M, Suzuki K, Kobayashi T, Kawaguchi K, Ishizuka A, Kato S, Ito H, Hamamoto A, Koyama H, Furuta K, Takemori H. Thioxothiazolidin derivative, 4-OST, inhibits melanogenesis by enhancing the specific recruitment of tyrosinase-containing vesicles to lysosome. J Cell Biochem 2021; 122:667-678. [PMID: 33480093 DOI: 10.1002/jcb.29895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022]
Abstract
Tyrosinase catalyzes the rate-limiting step in melanin synthesis. Melanin is synthesized from l-tyrosin in the melanosomes, where tyrosinase and other melanogenic factors are recruited via the vesicle transport system. Genetic and biochemical approaches have revealed a correlation between impairments in the vesicle transport system and albinism. However, the specificity of the individual transport systems for the corresponding melanogenic factors has not been well elucidated yet. Here, we report that the thioxothiazolidin derivative, 4-OST (4-[(5E)-5-[(4-fluorophenyl)methylidene]-4-oxo-2-sulfanylidene-1,3-thiazolidin-3-yl]-4-azatricyclo [5.2.1.02 ,6]dec-8-ene-3,5-dione: CAS RN. 477766-87-3) strongly inhibited melanogenesis in mouse melanoma B16F10 cells. 4-OST reduces tyrosinase protein levels without affecting its messenger RNA levels or enzymatic activity. Although a reduction in tyrosinase protein level was observed in the presence of a protein synthesis inhibitor, the reduction may be coupled with protein synthesis. Similarly, GIF-2202 (a derivative of 4-OST) lowers tyrosinase protein levels without affecting the levels of another melanogenic enzyme, tyrosinase-related protein 1 (TYRP1) level. The reduction in tyrosinase protein level is associated with an increase in the levels of the lysosomal proteinase cathepsin S. Chloroquine, a lysosome inhibitor, restored the tyrosinase protein level downregulated by GIF-2202, although no effects of other inhibitors (against proteasome, autophagy, or exocytosis) were observed. In addition, GIF-2202 segregated the immunofluorescence signals of tyrosinase from those of TYRP1. Chloroquine treatment resulted in co-localization of tyrosinase and cathepsin S signals near the perinuclear region, suggesting that 4-OST and GIF-2202 may alter the destination of the tyrosinase vesicle from the melanosome to the lysosome. 4-OST and GIF-2202 can be new tools for studying the tyrosinase-specific vesicle transport system.
Collapse
Affiliation(s)
- Kenta Isogawa
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| | - Masataka Asano
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| | - Masumi Hayazaki
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| | - Kenichi Koga
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| | - Miyu Watanabe
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| | - Keiichi Suzuki
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| | - Takahiro Kobayashi
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| | - Kyoka Kawaguchi
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| | - Akane Ishizuka
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| | - Shinya Kato
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| | - Hironari Ito
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| | - Akie Hamamoto
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| | - Hiroko Koyama
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| | - Kyoji Furuta
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| | - Hiroshi Takemori
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| |
Collapse
|
9
|
Auffret P, Le Luyer J, Sham Koua M, Quillien V, Ky CL. Tracing key genes associated with the Pinctada margaritifera albino phenotype from juvenile to cultured pearl harvest stages using multiple whole transcriptome sequencing. BMC Genomics 2020; 21:662. [PMID: 32977773 PMCID: PMC7517651 DOI: 10.1186/s12864-020-07015-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Albino mutations are commonly observed in the animal kingdom, including in bivalves. In the black-lipped pearl oyster Pinctada margaritifera, albino specimens are characterized by total or partial absence of colouration resulting in typical white shell phenotype expression. The relationship of shell colour with resulting cultured pearl colour is of great economic interest in P. margaritifera, on which a pearl industry is based. Hence, the albino phenotype provides a useful way to examine the molecular mechanisms underlying pigmentation. RESULTS Whole transcriptome RNA-sequencing analysis comparing albino and black wild-type phenotypes at three stages over the culture cycle of P. margaritifera revealed a total of 1606, 798 and 187 differentially expressed genes in whole juvenile, adult mantle and pearl sac tissue, respectively. These genes were found to be involved in five main molecular pathways, tightly linked to known pigmentation pathways: melanogenesis, calcium signalling pathway, Notch signalling pathway, pigment transport and biomineralization. Additionally, significant phenotype-associated SNPs were selected (N = 159), including two located in the Pif biomineralization gene, which codes for nacre formation. Interestingly, significantly different transcript splicing was detected between juvenile (N = 1366) and adult mantle tissue (N = 313) in, e.g., the tyrosinase Tyr-1 gene, which showed more complex regulation in mantle, and the Notch1 encoding gene, which was upregulated in albino juveniles. CONCLUSION This multiple RNA-seq approach provided new knowledge about genes associated with the P. margaritifera albino phenotype, highlighting: 1) new molecular pathways, such as the Notch signalling pathway in pigmentation, 2) associated SNP markers with biomineraliszation gene of interest like Pif for marker-assisted selection and prevention of inbreeding, and 3) alternative gene splicing for melanin biosynthesis implicating tyrosinase.
Collapse
Affiliation(s)
- Pauline Auffret
- Ifremer, UMR EIO 241, Centre du Pacifique, BP 49, 98719 Taravao, Tahiti, Polynéise française France
| | - Jérémy Le Luyer
- Ifremer, UMR EIO 241, Centre du Pacifique, BP 49, 98719 Taravao, Tahiti, Polynéise française France
| | - Manaarii Sham Koua
- Ifremer, UMR EIO 241, Centre du Pacifique, BP 49, 98719 Taravao, Tahiti, Polynéise française France
| | - Virgile Quillien
- Ifremer, UMR EIO 241, Centre du Pacifique, BP 49, 98719 Taravao, Tahiti, Polynéise française France
- Ifremer, UMR LEMAR UBO CNRS Ifremer IRD 6539, ZI Pointe Diable CS 10070, F-29280 Plouzane, France
| | - Chin-Long Ky
- Ifremer, UMR EIO 241, Centre du Pacifique, BP 49, 98719 Taravao, Tahiti, Polynéise française France
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, F-34090 Montpellier, France
| |
Collapse
|
10
|
Rayner JE, Duffy DL, Smit DJ, Jagirdar K, Lee KJ, De’Ambrosis B, Smithers BM, McMeniman EK, McInerney-Leo AM, Schaider H, Stark MS, Soyer HP, Sturm RA. Germline and somatic albinism variants in amelanotic/hypomelanotic melanoma: Increased carriage of TYR and OCA2 variants. PLoS One 2020; 15:e0238529. [PMID: 32966289 PMCID: PMC7510969 DOI: 10.1371/journal.pone.0238529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/18/2020] [Indexed: 12/30/2022] Open
Abstract
Amelanotic/hypomelanotic melanoma is a clinicopathologic subtype with absent or minimal melanin. This study assessed previously reported coding variants in albinism genes (TYR, OCA2, TYRP1, SLC45A2, SLC24A5, LRMDA) and common intronic, regulatory variants of OCA2 in individuals with amelanotic/hypomelanotic melanoma, pigmented melanoma cases and controls. Exome sequencing was available for 28 individuals with amelanotic/hypomelanotic melanoma and 303 individuals with pigmented melanoma, which were compared to whole exome data from 1144 Australian controls. Microarray genotyping was available for a further 17 amelanotic/hypomelanotic melanoma, 86 pigmented melanoma, 147 melanoma cases (pigmentation unknown) and 652 unaffected controls. Rare deleterious variants in TYR/OCA1 were more common in amelanotic/hypomelanotic melanoma cases than pigmented melanoma cases (set mixed model association tests P = 0.0088). The OCA2 hypomorphic allele p.V443I was more common in melanoma cases (1.8%) than controls (1.0%, X2 P = 0.02), and more so in amelanotic/hypomelanotic melanoma (4.4%, X2 P = 0.007). No amelanotic/hypomelanotic melanoma cases carried an eye and skin darkening haplotype of OCA2 (including rs7174027), present in 7.1% of pigmented melanoma cases (P = 0.0005) and 9.4% controls. Variants in TYR and OCA2 may play a role in amelanotic/hypomelanotic melanoma susceptibility. We suggest that somatic loss of function at these loci could contribute to the loss of tumor pigmentation, consistent with this we found a higher rate of somatic mutation in TYR/OCA2 in amelanotic/hypomelanotic melanoma vs pigmented melanoma samples (28.6% vs 3.0%; P = 0.021) from The Cancer Genome Atlas Skin Cutaneous Melanoma collection.
Collapse
Affiliation(s)
- Jenna E. Rayner
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
| | - David L. Duffy
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, Australia
| | - Darren J. Smit
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Kasturee Jagirdar
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Katie J. Lee
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Brian De’Ambrosis
- Dermatology Department, Princess Alexandra Hospital, Brisbane, Qld, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Qld, Australia
- South East Dermatology, Annerley, Brisbane, Qld, Australia
| | - B. Mark Smithers
- Queensland Melanoma Project, School of Medicine, The University of Queensland, Brisbane, Qld, Australia
| | - Erin K. McMeniman
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
- Dermatology Department, Princess Alexandra Hospital, Brisbane, Qld, Australia
| | - Aideen M. McInerney-Leo
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Helmut Schaider
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Mitchell S. Stark
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
| | - H. Peter Soyer
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
- Dermatology Department, Princess Alexandra Hospital, Brisbane, Qld, Australia
| | - Richard A. Sturm
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
- * E-mail:
| |
Collapse
|
11
|
Wiriyasermkul P, Moriyama S, Nagamori S. Membrane transport proteins in melanosomes: Regulation of ions for pigmentation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183318. [PMID: 32333855 PMCID: PMC7175901 DOI: 10.1016/j.bbamem.2020.183318] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/12/2022]
Abstract
Melanosomes are unique organelles in melanocytes that produce melanin, the pigment for skin, hair, and eye color. Tyrosinase is the essential and rate-limiting enzyme for melanin production, that strictly requires neutral pH for activity. pH maintenance is a result of the combinational function of multiple ion transport proteins. Thus, ion homeostasis in melanosomes is crucial for melanin synthesis. Defect of the ion transport system causes various pigmentation phenotypes, from mild effect to severe disorders such as albinism. In this review, we summarize the up-to-date knowledge of the ion transport system, such as transport function, structure, and the physiological roles and mechanisms of the ion transport proteins in melanosomes. In addition, we propose a model of melanosomal ion transport system-how the functional coupling of multiple transport proteins modulates and maintains ion homeostasis. We discuss melanin synthesis in terms of the ion transport system.
Collapse
Affiliation(s)
- Pattama Wiriyasermkul
- Department of Collaborative Research for Bio-Molecular Dynamics, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan
| | - Satomi Moriyama
- Department of Collaborative Research for Bio-Molecular Dynamics, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan
| | - Shushi Nagamori
- Department of Collaborative Research for Bio-Molecular Dynamics, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan.
| |
Collapse
|
12
|
Markiewicz E, Idowu OC. Melanogenic Difference Consideration in Ethnic Skin Type: A Balance Approach Between Skin Brightening Applications and Beneficial Sun Exposure. Clin Cosmet Investig Dermatol 2020; 13:215-232. [PMID: 32210602 PMCID: PMC7069578 DOI: 10.2147/ccid.s245043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/13/2020] [Indexed: 12/20/2022]
Abstract
Human skin demonstrates a striking variation in tone and color that is evident among multiple demographic populations. Such characteristics are determined predominantly by the expression of the genes controlling the quantity and quality of melanin, which can alter significantly due to the presence of small nucleotide polymorphism affecting various steps of the melanogenesis process and generally linked to the lighter skin phenotypes. Genetically determined, constitutive skin color is additionally complemented by the facultative melanogenesis and tanning responses; with high levels of melanin and melanogenic factors broadly recognized to have a protective effect against the UVR-induced molecular damage in darker skin. Long-term sun exposure, together with a genetic makeup responsible for the ability to tan or the activity of constitutive melanogenic factors, triggers defects in pigmentation across all ethnic skin types. However, sun exposure also has well documented beneficial effects that manifest at both skin homeostasis and the systemic level, such as synthesis of vitamin D, which is thought to be less efficient in the presence of high levels of melanin or potentially linked to the polymorphism in the genes responsible for skin darkening triggered by UVR. In this review, we discuss melanogenesis in a context of constitutive pigmentation, defined by gene polymorphism in ethnic skin types, and facultative pigmentation that is not only associated with the capacity to protect the skin against photo-damage but could also have an impact on vitamin D synthesis through gene polymorphism. Modulating the activities of melanogenic genes, with the focus on the markers specifically altered by polymorphism combined with differential requirements of sun exposure in ethnic skin types, could enhance the applications of already existing skin brightening factors and provide a novel approach toward improved skin tone and health in personalized skincare.
Collapse
Affiliation(s)
- Ewa Markiewicz
- Hexis Lab Limited, The Core, Newcastle Helix, Newcastle Upon Tyne NE4 5TF, UK
| | | |
Collapse
|
13
|
Nathan V, Johansson PA, Palmer JM, Howlie M, Hamilton HR, Wadt K, Jönsson G, Brooks KM, Pritchard AL, Hayward NK. Germline variants in oculocutaneous albinism genes and predisposition to familial cutaneous melanoma. Pigment Cell Melanoma Res 2019; 32:854-863. [PMID: 31233279 DOI: 10.1111/pcmr.12804] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/28/2019] [Accepted: 06/15/2019] [Indexed: 11/30/2022]
Abstract
Approximately 1%-2% of cutaneous melanoma (CM) is classified as strongly familial. We sought to investigate unexplained CM predisposition in families negative for the known susceptibility genes using next-generation sequencing of affected individuals. Segregation of germline variants of interest within families was assessed by Sanger sequencing. Several heterozygous variants in oculocutaneous albinism (OCA) genes: TYR, OCA2, TYRP1 and SLC45A2, were present in our CM cohort. OCA is a group of autosomal recessive genetic disorders, resulting in pigmentation defects of the eyes, hair and skin. Missense variants classified as pathogenic for OCA were present in multiple families and some fully segregated with CM. The functionally compromised TYR p.T373K variant was present in three unrelated families. In OCA2, known pathogenic variants: p.V443I and p.N489D, were present in three families and one family, respectively. We identified a likely pathogenic SLC45A2 frameshift variant that fully segregated with CM in a family of four cases. Another four-case family harboured cosegregating variants (p.A24T and p.R153C) of uncertain functional significance in TYRP1. We conclude that rare, heterozygous variants in OCA genes confer moderate risk for CM.
Collapse
Affiliation(s)
- Vaishnavi Nathan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- University of Queensland, Brisbane, Queensland, Australia
| | - Peter A Johansson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jane M Palmer
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Madeleine Howlie
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Hayley R Hamilton
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Karin Wadt
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Göran Jönsson
- Department of Oncology, Clinical Sciences, Lund University, Lund, Sweden
| | - Kelly M Brooks
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Antonia L Pritchard
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- University of Highlands and Islands, Inverness, Scotland
| | - Nicholas K Hayward
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Zhong Z, Gu L, Zheng X, Ma N, Wu Z, Duan J, Zhang J, Chen J. Comprehensive analysis of spectral distribution of a large cohort of Chinese patients with non-syndromic oculocutaneous albinism facilitates genetic diagnosis. Pigment Cell Melanoma Res 2019; 32:672-686. [PMID: 31077556 PMCID: PMC6852118 DOI: 10.1111/pcmr.12790] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 03/31/2019] [Accepted: 05/05/2019] [Indexed: 12/25/2022]
Abstract
Non-syndromic oculocutaneous albinism (nsOCA) is a group of genetically heterogeneous autosomal recessive disorders with complete lack or decrease pigmentation in skin, hair, and eyes. TYR, OCA2, TYRP1, SLC45A2, SLC24A5, and LRMDA were reported to cause OCA1-4 and OCA6-7, respectively. By sequencing all the known nsOCA genes in 114 unrelated Chinese nsOCA patients combined with In silico analyses, splicing assay, and classification of variants according to the standards and guidelines of American College of Medical Genetics and Genomics, we detected seventy-one different OCA-causing variants separately in TYR, OCA2, SLC45A2, and SLC24A5, including thirty-one novel variants (13 in TYR, 11 in OCA2, and 7 in SLC45A2). This study shows that OCA1 is the most common (75/114) and OCA2 ranks the second most common (16/114) in Chinese. 99 patients of our cohort were caused by variants of all the known nsOCA genes. Cutaneous phenotypes of OCA1, OCA2, and OCA4 patients were shown in this study. The second OCA6 case in China was identified here. These data expand the spectrum of OCA variants as well phenotype and facilitate clinical implement of Chinese OCA patients.
Collapse
Affiliation(s)
- Zilin Zhong
- Department of Pediatrics of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medical Genetics, Tongji University School of Medicine, Shanghai, China.,Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Li Gu
- Department of Pediatrics of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiujie Zheng
- Department of Pediatrics of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| | - Nengjun Ma
- Department of Pediatrics of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| | - Zehua Wu
- Department of Pediatrics of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| | - Juan Duan
- Department of Auxiliary Reproductive, Jiujiang Maternal and Child Health Hospital, Jiujiang, China
| | - Jun Zhang
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Jianjun Chen
- Department of Pediatrics of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medical Genetics, Tongji University School of Medicine, Shanghai, China.,Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Abstract
Human skin and hair color are visible traits that can vary dramatically within and across ethnic populations. The genetic makeup of these traits-including polymorphisms in the enzymes and signaling proteins involved in melanogenesis, and the vital role of ion transport mechanisms operating during the maturation and distribution of the melanosome-has provided new insights into the regulation of pigmentation. A large number of novel loci involved in the process have been recently discovered through four large-scale genome-wide association studies in Europeans, two large genetic studies of skin color in Africans, one study in Latin Americans, and functional testing in animal models. The responsible polymorphisms within these pigmentation genes appear at different population frequencies, can be used as ancestry-informative markers, and provide insight into the evolutionary selective forces that have acted to create this human diversity.
Collapse
Affiliation(s)
- William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Richard A Sturm
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4102, Australia;
| |
Collapse
|
16
|
Singh BK, Kim EK. P-Protein: A Novel Target for Skin-whitening Agent. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0241-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Corre S, Tardif N, Mouchet N, Leclair HM, Boussemart L, Gautron A, Bachelot L, Perrot A, Soshilov A, Rogiers A, Rambow F, Dumontet E, Tarte K, Bessede A, Guillemin GJ, Marine JC, Denison MS, Gilot D, Galibert MD. Sustained activation of the Aryl hydrocarbon Receptor transcription factor promotes resistance to BRAF-inhibitors in melanoma. Nat Commun 2018; 9:4775. [PMID: 30429474 PMCID: PMC6235830 DOI: 10.1038/s41467-018-06951-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 09/12/2018] [Indexed: 12/20/2022] Open
Abstract
BRAF inhibitors target the BRAF-V600E/K mutated kinase, the driver mutation found in 50% of cutaneous melanoma. They give unprecedented anti-tumor responses but acquisition of resistance ultimately limits their clinical benefit. The master regulators driving the expression of resistance-genes remain poorly understood. Here, we demonstrate that the Aryl hydrocarbon Receptor (AhR) transcription factor is constitutively activated in a subset of melanoma cells, promoting the dedifferentiation of melanoma cells and the expression of BRAFi-resistance genes. Typically, under BRAFi pressure, death of BRAFi-sensitive cells leads to an enrichment of a small subpopulation of AhR-activated and BRAFi-persister cells, responsible for relapse. Also, differentiated and BRAFi-sensitive cells can be redirected towards an AhR-dependent resistant program using AhR agonists. We thus identify Resveratrol, a clinically compatible AhR-antagonist that abrogates deleterious AhR sustained-activation. Combined with BRAFi, Resveratrol reduces the number of BRAFi-resistant cells and delays tumor growth. We thus propose AhR-impairment as a strategy to overcome melanoma resistance.
Collapse
Affiliation(s)
- Sébastien Corre
- IGDR (Institut de Génétique et Développement de Rennes)-UMR6290, CNRS, Univ Rennes, F-35000, Rennes, France.
| | - Nina Tardif
- IGDR (Institut de Génétique et Développement de Rennes)-UMR6290, CNRS, Univ Rennes, F-35000, Rennes, France
| | - Nicolas Mouchet
- IGDR (Institut de Génétique et Développement de Rennes)-UMR6290, CNRS, Univ Rennes, F-35000, Rennes, France
| | - Héloïse M Leclair
- IGDR (Institut de Génétique et Développement de Rennes)-UMR6290, CNRS, Univ Rennes, F-35000, Rennes, France
| | - Lise Boussemart
- IGDR (Institut de Génétique et Développement de Rennes)-UMR6290, CNRS, Univ Rennes, F-35000, Rennes, France.,Department of Dermatology, Hospital University of Rennes (CHU Rennes), F-35000, Rennes, France
| | - Arthur Gautron
- IGDR (Institut de Génétique et Développement de Rennes)-UMR6290, CNRS, Univ Rennes, F-35000, Rennes, France
| | - Laura Bachelot
- IGDR (Institut de Génétique et Développement de Rennes)-UMR6290, CNRS, Univ Rennes, F-35000, Rennes, France
| | - Anthony Perrot
- IGDR (Institut de Génétique et Développement de Rennes)-UMR6290, CNRS, Univ Rennes, F-35000, Rennes, France
| | - Anatoly Soshilov
- Department of Environmental Toxicology, University of California, Meyer Hall, Davis, CA, 95616, USA
| | - Aljosja Rogiers
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, VIB, Leuven, 3000, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, 3000, Belgium
| | - Florian Rambow
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, VIB, Leuven, 3000, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, 3000, Belgium
| | - Erwan Dumontet
- MICMAC (MIcroenvironment, Cell differentiation, iMmunology And Cancer)-UMR_S 1236, Inserm, Univ Rennes, F-35000, Rennes, France
| | - Karin Tarte
- MICMAC (MIcroenvironment, Cell differentiation, iMmunology And Cancer)-UMR_S 1236, Inserm, Univ Rennes, F-35000, Rennes, France
| | | | - Gilles J Guillemin
- Neuroinflammation Group, MND and Neurodegenerative Diseases Research Center, Macquarie University, Sydney, NSW, 2109, Australia
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, VIB, Leuven, 3000, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, 3000, Belgium
| | - Michael S Denison
- Department of Environmental Toxicology, University of California, Meyer Hall, Davis, CA, 95616, USA
| | - David Gilot
- IGDR (Institut de Génétique et Développement de Rennes)-UMR6290, CNRS, Univ Rennes, F-35000, Rennes, France.
| | - Marie-Dominique Galibert
- IGDR (Institut de Génétique et Développement de Rennes)-UMR6290, CNRS, Univ Rennes, F-35000, Rennes, France. .,Department of Molecular Genetics and Genomics, Hospital University of Rennes (CHU Rennes), F-35000, Rennes, France.
| |
Collapse
|
18
|
Singh BK, Morya VK, Lee HB, Kim JS, Kim EK. Anti-melanogenic effect of Prunus davidiana extract in melan-a melanocyte through regulation of OCA-2, TRP-1 and tyrosinase. KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-017-0241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Singh BK, Park SH, Lee HB, Goo YA, Kim HS, Cho SH, Lee JH, Ahn GW, Kim JP, Kang SM, Kim EK. Kojic Acid Peptide: A New Compound with Anti-Tyrosinase Potential. Ann Dermatol 2016; 28:555-561. [PMID: 27746633 PMCID: PMC5064183 DOI: 10.5021/ad.2016.28.5.555] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/09/2015] [Accepted: 12/21/2015] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Kojic acid was used for decades in the cosmetic industry as an antimelanogenic agent. However, there are two major drawbacks of Kojic acid, one is cytotoxicity and second are instability on storage. These limitations led the scientist to synthesize the active Kojic acid peptides. OBJECTIVE In the present study, we synthesize and investigate the effect of five Kojic acid peptides to overcome the limitation of Kojic acid. METHODS The peptide was analyzed and purified by high-performance liquid chromatography and matrix-assisted laser desorption ionization time of flight mass spectroscopy. Further, the tyrosinase activities of the Kojic acid and Kojic acid peptides were compared. The toxicity was measured and the melanin content is recorded in B16F10 mouse melanoma cells. RESULTS Maximum tyrosinase activity was measured by Kojic acid peptides. Therefore, Kojic acid peptides were subjected to melanin assay and cytotoxicity assay and finally the stability of the Kojic acid peptide was measured. CONCLUSION It was observed that this newly synthesized Kojic acid peptide is stable and potent to inhibit the tyrosinase activity and melanin content of B16F10 mouse melanoma cells without exhibiting cell toxicity. Together, these preliminary results suggest that a further exploration is being needed to establish Kojic acid peptide as antimelanogenic agent.
Collapse
Affiliation(s)
| | - Seok Hoon Park
- Department of Environmental Engineering, Anyang University, Anyang, Korea
| | - Hyang-Bok Lee
- Department of Biological Engineering, Inha University, Incheon, Korea
| | - Young-Aae Goo
- Department of Biological Engineering, Inha University, Incheon, Korea
| | - Hyoung Shik Kim
- Anti-Ageing Research Institute of BIO-FD&C Co., Ltd., Incheon, Korea
| | - Seung Hee Cho
- Anti-Ageing Research Institute of BIO-FD&C Co., Ltd., Incheon, Korea
| | - Jeong Hun Lee
- Anti-Ageing Research Institute of BIO-FD&C Co., Ltd., Incheon, Korea
| | | | | | | | - Eun-Ki Kim
- Department of Biological Engineering, Inha University, Incheon, Korea
| |
Collapse
|
20
|
Genetic markers of pigmentation are novel risk loci for uveal melanoma. Sci Rep 2016; 6:31191. [PMID: 27499155 PMCID: PMC4976361 DOI: 10.1038/srep31191] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/13/2016] [Indexed: 11/22/2022] Open
Abstract
While the role of genetic risk factors in the etiology of uveal melanoma (UM) has been strongly suggested, the genetic susceptibility to UM is currently vastly unexplored. Due to shared epidemiological risk factors between cutaneous melanoma (CM) and UM, in this study we have selected 28 SNPs identified as risk variants in previous genome-wide association studies on CM or CM-related host phenotypes (such as pigmentation and eye color) and tested them for association with UM risk. By logistic regression analysis of 272 UM cases and 1782 controls using an additive model, we identified five variants significantly associated with UM risk, all passing adjustment for multiple testing. The three most significantly associated variants rs12913832 (OR = 0.529, 95% CI 0.415–0.673; p = 8.47E-08), rs1129038 (OR = 0.533, 95% CI 0.419–0.678; p = 1.19E-07) and rs916977 (OR = 0.465, 95% CI 0.339–0.637; p = 3.04E-07) are correlated (r2 > 0.5) and map at 15q12 in the region of HERC2/OCA2, which determines eye-color in the human population. Our data provides first evidence that the genetic factors associated with pigmentation traits are risk loci of UM susceptibility.
Collapse
|