1
|
Liu Y, Li H, Shen X, Liu Y, Zhong X, Zhong J, Cao R. PCMT1 confirmed as a pan-cancer immune biomarker and a contributor to breast cancer metastasis. Am J Cancer Res 2024; 14:3711-3732. [PMID: 39267673 PMCID: PMC11387850 DOI: 10.62347/tyll7952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
Protein L-isoaspartyl (D-aspartyl) methyltransferase (PIMT, gene name PCMT1) is an enzyme that repairs proteins with altered aspartate residues by methylation, restoring their normal structure and function. This study conducted a comprehensive analysis of PCMT1 in pan-cancer. The Cancer Genome Atlas, Human Protein Atlas website, and the Genotype-Tissue Expression were utilized in analysis of PCMT1 expression. We examined the association between PCMT1 expression and various factors, including gene modifications, DNA methylation, immune cell infiltration, immunological checkpoints, drug susceptibility, tumor mutation burden (TMB), and microsatellite instability (MSI). Enrichment analyses determined the potential biological roles and pathways involving PCMT1. Our focus then shifted to the role of PCMT1 in breast invasive carcinoma (BRCA). We found that PCMT1 expression was aberrant in many tumors and significantly influenced the prognosis across several cancer types. Gene alterations in PCMT1 predominantly involved deep deletions and amplifications. A negative correlation was observed between DNA methylation and PCMT1 expression across all studied cancer types except thyroid carcinoma PCMT1 exhibited positive correlations with common lymphoid progenitor and CD4(+) T helper 2 cells, whereas it was inversely correlated with central and effector memory T cells, memory CD8(+) T cells, and CD4(+) T helper 1 cells. In many cancer types, PCMT1 expression closely correlated with immunological checkpoint inhibitors, TMB, and MSI. It was also significantly linked to pathways involved in epithelial-mesenchymal transition (EMT), highlighting its role in cancer metastasis. PCMT1 emerged as a significant predictor of breast cancer progression. In vitro experiments demonstrated that reducing PCMT1 expression decreased BRCA cell migration and invasiveness. Additionally, animal studies confirmed that inhibition of PCMT1 slowed tumor growth.
Collapse
Affiliation(s)
- Yiqi Liu
- The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421001, Hunan, China
| | - Haobing Li
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421200, Hunan, China
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421200, Hunan, China
| | - Xiangyu Shen
- Department of Breast and Thyroid Surgery, Third Xiangya Hospital, Central South University Changsha 410000, Hunan, China
| | - Ying Liu
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421200, Hunan, China
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421200, Hunan, China
| | - Xiaoxiao Zhong
- Department of Breast and Thyroid Surgery, Third Xiangya Hospital, Central South University Changsha 410000, Hunan, China
- Department of General Surgery, Third Xiangya Hospital, Central South University Changsha 410000, Hunan, China
| | - Jing Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421200, Hunan, China
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421200, Hunan, China
| | - Renxian Cao
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421200, Hunan, China
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421200, Hunan, China
| |
Collapse
|
2
|
Zhang C, Guo ZF, Liu W, Kazama K, Hu L, Sun X, Wang L, Lee H, Lu L, Yang XF, Summer R, Sun J. PIMT is a novel and potent suppressor of endothelial activation. eLife 2023; 12:e85754. [PMID: 37070640 PMCID: PMC10112892 DOI: 10.7554/elife.85754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/02/2023] [Indexed: 04/19/2023] Open
Abstract
Proinflammatory agonists provoke the expression of cell surface adhesion molecules on endothelium in order to facilitate leukocyte infiltration into tissues. Rigorous control over this process is important to prevent unwanted inflammation and organ damage. Protein L-isoaspartyl O-methyltransferase (PIMT) converts isoaspartyl residues to conventional methylated forms in cells undergoing stress-induced protein damage. The purpose of this study was to determine the role of PIMT in vascular homeostasis. PIMT is abundantly expressed in mouse lung endothelium and PIMT deficiency in mice exacerbated pulmonary inflammation and vascular leakage to LPS(lipopolysaccharide). Furthermore, we found that PIMT inhibited LPS-induced toll-like receptor signaling through its interaction with TNF receptor-associated factor 6 (TRAF6) and its ability to methylate asparagine residues in the coiled-coil domain. This interaction was found to inhibit TRAF6 oligomerization and autoubiquitination, which prevented NF-κB transactivation and subsequent expression of endothelial adhesion molecules. Separately, PIMT also suppressed ICAM-1 expression by inhibiting its N-glycosylation, causing effects on protein stability that ultimately translated into reduced EC(endothelial cell)-leukocyte interactions. Our study has identified PIMT as a novel and potent suppressor of endothelial activation. Taken together, these findings suggest that therapeutic targeting of PIMT may be effective in limiting organ injury in inflammatory vascular diseases.
Collapse
Affiliation(s)
- Chen Zhang
- Center for Translational Medicine, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Zhi-Fu Guo
- Center for Translational Medicine, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Wennan Liu
- Center for Translational Medicine, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Kyosuke Kazama
- Center for Translational Medicine, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Louis Hu
- Center for Translational Medicine, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Xiaobo Sun
- Center for Translational Medicine, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Lu Wang
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Hyoungjoo Lee
- Quantitative Proteomics Resource Center, University of PennsylvaniaPhiladelphiaUnited States
| | - Lin Lu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiao-Feng Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple UniversityPhiladelphiaUnited States
| | - Ross Summer
- Center for Translational Medicine, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Jianxin Sun
- Center for Translational Medicine, Thomas Jefferson UniversityPhiladelphiaUnited States
| |
Collapse
|
3
|
Yamaguchi M, Hashimoto K, Jijiwa M, Murata T. The inflammatory macrophages repress the growth of bone metastatic human prostate cancer cells via TNF-α and IL-6 signaling: Involvement of cell signaling regulator regucalcin. Cell Signal 2023; 107:110663. [PMID: 37001596 DOI: 10.1016/j.cellsig.2023.110663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Macrophages in the cancer microenvironments may play a regulatory role in the progression and metastasis of prostate cancer cells. However, the crosstalk between macrophages and prostate cancer cells is poorly understood. This study elucidates whether inflammatory macrophages regulate the proliferation and death of human prostate cancer cells in vitro. The RAW264.7 mouse macrophages were cocultured with PC-3 or DU-145 wild-type cells by using a Transwell chamber in vitro. RAW264.7 cells were cocultured with PC-3 or DU-145 cells in the presence of lipopolysaccharide (LPS). This coculturing blocked the proliferation and accelerated the death of cancer cells. Interestingly, cancer cell proliferation was repressed and death was promoted by the addition of the conditioned medium obtained from RAW264.7 cells treated with LPS. Culturing with LPS mostly augmented the production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the culture medium of RAW264.7 cells. The effects of the conditioned medium on the proliferation and death of PC-3 or DU-145 cells were blocked by NF-κB or STAT3 signaling inhibitors. Moreover, the effects of the conditioned medium on the proliferation and death of prostate cancer cells were not expressed in regucalcin-overexpressing cancer cells that diminish the levels of NF-κB p65 and STAT3. Culturing with extracellular TNF-α, IL-6, or regucalcin triggered inhibition of the proliferation of PC-3 wild-type cells. The levels of regucalcin in PC-3 cells were elevated by TNF-α or IL-6 stimulation. This study demonstrates that inflammatory macrophages triggered the loss of prostate cancer cells via the signaling process of NF-κB, STAT3, or regucalcin.
Collapse
|
4
|
Yamaguchi M, Murata T, Ramos JW. Overexpression of regucalcin blocks the migration, invasion, and bone metastatic activity of human prostate cancer cells: Crosstalk between cancer cells and bone cells. Prostate 2022; 82:1025-1039. [PMID: 35365850 DOI: 10.1002/pros.24348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/11/2021] [Accepted: 01/03/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Prostate cancer is a bone metastatic cancer and is the second leading cause of cancer-related death in men. Prolonged progression-free survival of prostate cancer patients is associated with high regucalcin expression in the tumor tissues. This study investigates the underlying mechanism by which regucalcin prevents bone metastatic activity of prostate cancer cells. METHODS Human prostate cancer PC-3 or DU-145 wild-type cells or regucalcin-overexpressing PC-3 or DU-145 cells (transfectants) were cultured in Dulbecco's modified Eagle's medium containing 10% fetal bovine serum. RESULTS Overexpressed regucalcin suppressed the migration and invasion of bone metastatic human prostate cancer cells in vitro, and it reduced the levels of key proteins in metastasis including Ras, Akt, MAPK, RSK-2, mTOR, caveolin-1, and integrin β1. Invasion of prostate cancer cells was promoted by coculturing with preosteoblastic MC3T3-E1 or preosteoclastic RAW264.7 cells. Coculturing with cancer cells and bone cells repressed the growth of preosteoblastic cells and enhanced osteoclastogenesis of preosteoclastic cells, and these alterations were caused by a conditioned medium from cancer cell culture. Disordered differentiation of bone cells was prevented by regucalcin overexpression. Production of tumor necrosis factor-α (TNF-α) in cancer cells was blocked by overexpressed regucalcin. Of note, the effects of conditioned medium on bone cells were prevented by NF-κB inhibitor. TNF-α may be important as a mediator in the crosstalk between cancer cells and bone cells. CONCLUSION Overexpression of regucalcin suppressed the migration, invasion, and bone metastatic activity of human prostate cancer cells. This study may provide a new strategy for therapy with the regucalcin gene transfer.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Hawaii, USA
| | - Tomiyasu Murata
- Laboratory of Molecular Biology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Joe W Ramos
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Hawaii, USA
| |
Collapse
|
5
|
Yamaguchi M, Yosiike K, Watanabe H, Watanabe M. The marine factor 3,5-dihydroxy-4-methoxybenzyl alcohol suppresses growth, migration and invasion and stimulates death of metastatic human prostate cancer cells: targeting diverse signaling processes. Anticancer Drugs 2022; 33:424-436. [PMID: 35324521 DOI: 10.1097/cad.0000000000001306] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Prostate cancer is metastatic cancer and is the second leading cause of cancer-related death in men. It is needed to develop more effective treatment for metastatic prostate cancer. The present study investigates whether the novel factor 3,5-dihydroxy-4-methoxybenzyl alcohol (DHMBA), which was isolated from marine oyster, suppresses the activity of metastatic human prostate cancer PC-3 or DU-145 cells. Culture of DHMBA (1 or 10 µM) suppressed colony formation and growth of PC-3 or DU-145 cells in vitro. Suppressive effects of DHMBA on cell proliferation were not occurred by culturing with intracellular signaling inhibitors. Mechanistically, DHMBA (10 µM) reduced the levels of key proteins linked to promotion of cell growth, including Ras, PI3K, Akt, MAPK, and mTOR in PC-3 cells. Interestingly, DHMBA increased the levels of cancer suppressor p53, p21, Rb, and regucalcin. Moreover, culture of DHMBA simulated the death of PC-3 and DU-145 cells. This effect was implicated to caspase-3 activation in cells. Interestingly, the effects of DHMBA on cell proliferation and death were blocked by culturing with an inhibitor of aryl hydrocarbon receptor linked to transcriptional regulation. Furthermore, culture of DHMBA inhibited production of reactive oxygen species in PC-3 or DU-145 cells. Of note, DHMBA blocked migration and invasion by diminishing their related protein levels, including NF-κB 65, caveolin-1 and integrin β1. The novel marine factor DHMBA was demonstrated to suppress metastatic prostate cancer cells via targeting diverse signaling pathways. This study may provide a new strategy for prostate cancer therapy with DHMBA.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Hawaii, USA
| | - Kenji Yosiike
- Department of Research and development, Watanabe Oyster Laboratory Co. Ltd., Hachioji, Tokyo, Japan
| | - Hideaki Watanabe
- Department of Research and development, Watanabe Oyster Laboratory Co. Ltd., Hachioji, Tokyo, Japan
| | - Mitsugu Watanabe
- Department of Research and development, Watanabe Oyster Laboratory Co. Ltd., Hachioji, Tokyo, Japan
- Graduate School of Science and Engineering, Soka University, Hachioji, Tokyo, Japan
| |
Collapse
|
6
|
The Protein L-Isoaspartyl (D-Aspartyl) Methyltransferase Regulates Glial-to-Mesenchymal Transition and Migration Induced by TGF-β1 in Human U-87 MG Glioma Cells. Int J Mol Sci 2022; 23:ijms23105698. [PMID: 35628507 PMCID: PMC9146343 DOI: 10.3390/ijms23105698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022] Open
Abstract
The enzyme PIMT methylates abnormal aspartyl residues in proteins. U-87 MG cells are commonly used to study the most frequent brain tumor, glioblastoma. Previously, we reported that PIMT isoform I possessed oncogenic features when overexpressed in U-87 MG and U-251 MG glioma cells. Higher levels of wild-type PIMT stimulated migration and invasion in both glioma cell lines. Conversely, PIMT silencing reduced these migratory abilities of both cell lines. These results indicate that PIMT could play a critical role in glioblastoma growth. Here, we investigated for the first time, molecular mechanisms involving PIMT in the regulation of epithelial to mesenchymal transition (EMT) upon TGF-β1 treatments. Gene array analyses indicated that EMT genes but not PIMT gene were regulated in U-87 MG cells treated with TGF-β1. Importantly, PIMT silencing by siRNA inhibited in vitro migration in U-87 MG cells induced by TGF-β1. In contrast, overexpressed wild-type PIMT and TGF-β1 had additive effects on cell migration. When PIMT was inhibited by siRNA, this prevented Slug induction by TGF-β1, while Snail stimulation by TGF-β1 was increased. Indeed, overexpression of wild-type PIMT led to the opposite effects on Slug and Snail expression dependent on TGF-β1. These data highlighted the importance of PIMT in the EMT response dependent on TGF-β1 in U-87 MG glioma cells by an antagonist regulation in the expression of transcription factors Slug and Snail, which are critical players in EMT.
Collapse
|
7
|
Yamaguchi M, Murata T, Ramos JW. Extracellular Regucalcin Suppresses the Growth, Migration, Invasion and Adhesion of Metastatic Human Prostate Cancer Cells. Oncology 2022; 100:399-412. [PMID: 35340010 DOI: 10.1159/000524303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/11/2022] [Indexed: 11/19/2022]
Abstract
Regucalcin plays a multifunctional role in the regulation of cellular function including metabolism, signaling process and transcriptional activity in maintaining cell homeostasis. Downregulated expression or activity of regucalcin contributes to the development of malignancies in various types of human cancer. Survival of cancer patients, including metastatic prostate cancer, is prolonged with high expression of regucalcin in the tumor tissues. Furthermore, we elucidate whether extracellular regucalcin conquers the growth, migration, invasion and adhesion of metastatic human prostate cancer PC-3 and DU-145 cells. Extracellular regucalcin (0.1, 1, and 10 nM) of physiologic levels inhibited colony formation and growth of PC-3 and DU-145 cells, while it did not have an effect on cell death. Repressive effects of extracellular regucalcin on the proliferation were not exhibited by the presence of inhibitors of cell cycle, intracellular signaling process and transcriptional activity, suggesting that the signals of extracellular regucalcin are transmitted to block cell growth. Furthermore, extracellular regucalcin (0.1, 1, or 10 nM) inhibited migration, invasion and adhesion of PC-3 and DU-145 cells. Mechanistically, extracellular regucalcin (10 nM) decreased the levels of various signaling proteins including Ras, hosphatidylinositol-3 kinase, mitogen-activated protein kinase, mTOR, RSK-2, caveolin-1 and integrin β1 in PC-3 cells. Thus, extracellular regucalcin may play a suppressive role in growth, migration, invasion and adhesion, which are involved in metastatic activity of human prostate cancer cells, via affecting diverse signaling processes. This study may provide a new strategy in preventing metastatic prostate cancer with exogenous regucalcin.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Tomiyasu Murata
- Laboratory of Molecular Biology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Joe W Ramos
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| |
Collapse
|
8
|
Belkourchia F, Desrosiers RR. The enzyme L-isoaspartyl (D-aspartyl) methyltransferase promotes migration and invasion in human U-87 MG and U-251 MG glioblastoma cell lines. Biomed Pharmacother 2021; 140:111766. [PMID: 34082401 DOI: 10.1016/j.biopha.2021.111766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/27/2022] Open
Abstract
The protein L-isoaspartyl (D-aspartyl) methyltransferase (PIMT) recognizes abnormal L-isoaspartyl and D-aspartyl residues in proteins. Among examined tissues, PIMT shows the highest level in the brain. The U-87 MG cell line is a commonly used cellular model to study the most frequent brain tumor, glioblastoma. Previously, we reported that PIMT amount increased when U-87 MG cells were detached from the extracellular matrix. Recently, we also showed that PIMT possessed pro-angiogenic properties. Together, these PIMT features led us to postulate that PIMT could play a critical role in glioblastoma growth. Here, we investigate PIMT role in U-87 MG cell viability, adhesion, migration, invasion, and colony formation and in the reorganization of the actin and tubulin cytoskeleton. PIMT inhibition by siRNA significantly reduced in vitro cell migration and invasion in various assays, including wound-healing assay, Boyden chambers coated with gelatin and Matrigel invasion assay. Conversely, in stably transfected U-87 MG cells overexpressing wild-type PIMT, cell migration, invasive capacity and colony formation significantly increased. However, in stably transfected cells with the gene encoding for mutated PIMT(D83V), despite of its overexpression, migration and invasion remained similar to those observed in control cells. In all these conditions, cell viability was unaffected. Importantly, overexpressed wild-type PIMT and mutated PIMT(D83V) have opposite effects on the organization of microtubules and actin cytoskeleton and thus on morphology of U-87 cells. These data highlighted the importance of PIMT level and its catalytic activity in migration and invasion of U-87 glioma cells and its possible contribution in cancer invasion during glioma growth.
Collapse
Affiliation(s)
- Fatima Belkourchia
- Université du Québec à Montréal, Département de chimie, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Richard R Desrosiers
- Université du Québec à Montréal, Département de chimie, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada.
| |
Collapse
|
9
|
Simko V, Belvoncikova P, Csaderova L, Labudova M, Grossmannova K, Zatovicova M, Kajanova I, Skultety L, Barathova M, Pastorek J. PIMT Binding to C-Terminal Ala459 of CAIX Is Involved in Inside-Out Signaling Necessary for Its Catalytic Activity. Int J Mol Sci 2020; 21:ijms21228545. [PMID: 33198416 PMCID: PMC7696048 DOI: 10.3390/ijms21228545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 01/10/2023] Open
Abstract
Human carbonic anhydrase IX (CAIX), a unique member of the α carbonic anhydrase family, is a transmembrane glycoprotein with high enzymatic activity by which CAIX contributes to tumorigenesis through pH regulation. Due to its aberrant expression, CAIX is considered to be a marker of tumor hypoxia and a poor prognostic factor of several human cancers. Hypoxia-activated catalytic function of CAIX is dependent on posttranslational modification of its short intracellular domain. In this work, we have identified that C-terminal Ala459 residue, which is common across CAIX of various species as well as additional transmembrane isoforms, plays an important role in CAIX activation and in pH regulation. Moreover, structure prediction I-TASSER analysis revealed involvement of Ala459 in potential ligand binding. Using tandem mass spectrometry, Protein-L-isoaspartyl methyltransferase (PIMT) was identified as a novel interacting partner, further confirmed by an in vitro pulldown assay and an in situ proximity ligation assay. Indeed, suppression of PIMT led to increased alkalinization of culture media of C33a cells constitutively expressing CAIX in hypoxia. We suggest that binding of PIMT represents a novel intracellular signal required for enzymatic activity of CAIX with a potential unidentified downstream function.
Collapse
Affiliation(s)
- Veronika Simko
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
| | - Petra Belvoncikova
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
| | - Lucia Csaderova
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
| | - Martina Labudova
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
| | - Katarina Grossmannova
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
| | - Miriam Zatovicova
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
| | - Ivana Kajanova
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
| | - Ludovit Skultety
- Department of Rickettsiology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia;
| | - Monika Barathova
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
- Correspondence: ; Tel.: +421-2-5930-2461
| | - Jaromir Pastorek
- Department of Tumor Biology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (V.S.); (P.B.); (L.C.); (M.L.); (K.G.); (M.Z.); (I.K.); (J.P.)
- Faculty of Medicine, Slovak Medical University, Limbová 12, 833 03 Bratislava, Slovakia
| |
Collapse
|
10
|
Mishra PKK, Mahawar M. PIMT-Mediated Protein Repair: Mechanism and Implications. BIOCHEMISTRY (MOSCOW) 2019; 84:453-463. [PMID: 31234761 DOI: 10.1134/s0006297919050018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Amino acids undergo many covalent modifications, but only few amino acid repair enzymes have been identified. Protein-L-isoaspartate (D-aspartate) O-methyltransferase (PIMT), also known as L-isoaspartyl/D-aspartyl protein carboxyl methyltransferase (PCMT), methylates covalently modified isoaspartate (isoAsp) residues accumulated in proteins via Asn deamidation and Asp hydrolysis. This cytoplasmic reaction occurs through the formation of succinimide cyclical intermediate and generates either isoAsp or Asp from succinimide. Succinimide conversion into Asp is spontaneous, while isoAsp is restored by PIMT using S-adenosylmethionine as a methyl donor. PIMT transforms isoAsp into succinimide, thereby creating an opportunity for the later to be converted into Asp. Apart from normal cell physiology, formation of isoAsp in proteins is promoted by various stress conditions. The resulting isoAsp can form a kink or bend in the protein backbone thus making the protein conformationally and functionally distorted. Many PIMT-interacting proteins (proteins with isoAsp residues) have been reported in eukaryotes, but only few of them have been found in prokaryotes. Extensive studies in mice have shown the importance of PIMT in neurodegeneration. Detail elucidation of PIMT function can create a platform for addressing various disorders such as Alzheimer's disease and cancer.
Collapse
Affiliation(s)
- P K K Mishra
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| | - M Mahawar
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| |
Collapse
|