1
|
Shen N, Shao Z, Xin H, Che F, Cui Y. Exploring TβRI inhibitors from Arenaria kansuensis based on 3D-QSAR, molecular docking and molecular dynamics simulation methods and its anti-pulmonary fibrosis molecular mechanism validation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118788. [PMID: 39245240 DOI: 10.1016/j.jep.2024.118788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pulmonary fibrosis (PF) is a kind of interstitial lung disease that seriously threatens human life and health. Up to now, there is no specifically therapeutic drug. Arenaria kansuensis, a typical Tibetan medicine, has been previously proved to have anti-PF pharmacological activity by our group. However, the specific target and molecular mechanism of pharmacological active ingredients from it are still unknown. AIM OF THE STUDY This study aimed to explore the molecular mechanism and specific target of pharmacological active ingredients from A. kansuensis for treating PF. MATERIALS AND METHODS Virtual screening including 3D-QSAR, molecular docking and molecular dynamics simulation were used to screen TβRI inhibitor. CETSA experiment was used to verify the interaction between GAK (a β-carboline alkaloid isolated from A. kansuensis) and TβRI. Cell and molecular experiments including observation of cell morphology and Western blot were applied to investigate the molecular mechanism of action of GAK for treating PF. Animal experiments including physiological index, immunohistochemistry and ELISA were used to comprehensively evaluate the anti-PF effect of GAK and explore the corresponding mechanism of action. RESULTS Results of 3D-QSAR experiment indicated that GAK is a much stronger potential TβRI inhibitor, molecular mechanism study showed that 30 μM GAK could significantly keep TβRI more stable which indicated that the direct binding interaction between GAK and TβRI, it targetedly inhibited TβRI through forming hydrogen bonds with LYS232, SER280 and ASP351 and the binding energies is -56.05 kcal/mol. In vitro experiment showed GAK could suppress downstream signal pathways of TβRI including MAPK, PI3K/AKT and NF-κB pathways during EMT process. In vivo experiment showed that GAK could improve the survival rate and body weight of PF mice, alleviate the symptoms of histopathological severity, inflammatory cell infiltration and collagen deposition in lung tissue of PF mice through inhibiting EMT process of PF. CONCLUSIONS This work not only provided evidence to support GAK as a novel TβRI inhibitor for treating PF through multiple pathways, but also reveal the specific target and molecular mechanism of β-carboline alkaloids from A. kansuensis for treating PF.
Collapse
Affiliation(s)
- Na Shen
- School of Medicine, Linyi University, Linyi, 276000, Shandong, China
| | - Ziyao Shao
- School of Medicine, Linyi University, Linyi, 276000, Shandong, China
| | - Huawei Xin
- School of Medicine, Linyi University, Linyi, 276000, Shandong, China
| | - Fengyuan Che
- Linyi People's Hospital, Linyi, 276000, Shandong, China.
| | - Yulei Cui
- School of Medicine, Linyi University, Linyi, 276000, Shandong, China; Linyi People's Hospital, Linyi, 276000, Shandong, China.
| |
Collapse
|
2
|
Zhang Y, Liu E, Gao H, He Q, Chen A, Pang Y, Zhang X, Bai S, Zeng J, Guo J. Natural products for the treatment of hypertrophic scars: Preclinical and clinical studies. Heliyon 2024; 10:e37059. [PMID: 39296083 PMCID: PMC11408005 DOI: 10.1016/j.heliyon.2024.e37059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Hypertrophic scarring (HS) is a complication of wound healing that causes physiological and psychological distress in patients. However, the possible mechanism underlying HS is not fully understood, and there is no gold standard for its treatment. Natural products are more effective, economical, convenient, and safe than existing drugs, and they have a wide application prospect. However, there is a lack of literature on this topic, so we reviewed in vivo, in vitro, and clinical studies and screened natural products showing beneficial effects on HS that can become potential therapeutic agents for HS to fill in the gaps in the field. In addition, we discussed the drug delivery systems related to these natural products and their mechanisms in the treatment of HS. Generally speaking, natural products inhibit inflammation, myofibroblast activation, angiogenesis, and collagen accumulation by targeting interleukins, tumor necrosis factor-α, vascular endothelial growth factors, platelet-derived growth factors, and matrix metalloproteinases, so as to play an anti-HS effects of natural products are attributed to their anti-inflammatory, anti-proliferative, anti-angiogenesis, and pro-apoptotic (enhancing apoptosis and autophagy) roles, thus treating HS. We also screened the potential therapeutic targets of these natural compounds for HS through network pharmacology and constructed a protein-protein interaction (PPI) network, which may provide clues for the pharmacological mechanism of natural products in treating this disease and the development and application of drugs.
Collapse
Affiliation(s)
- Yuxiao Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - E Liu
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | | | - Qingying He
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Anjing Chen
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Yaobing Pang
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Xueer Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Sixian Bai
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Jing Guo
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| |
Collapse
|
3
|
Wang D, Chen J, Pu L, Yu L, Xiong F, Sun L, Yu Q, Cao X, Chen Y, Peng F, Peng C. Galangin: A food-derived flavonoid with therapeutic potential against a wide spectrum of diseases. Phytother Res 2023; 37:5700-5723. [PMID: 37748788 DOI: 10.1002/ptr.8013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/08/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023]
Abstract
Galangin is an important flavonoid with natural activity, that is abundant in galangal and propolis. Currently, various biological activities of galangin have been disclosed, including anti-inflammation, antibacterial effect, anti-oxidative stress and aging, anti-fibrosis, and antihypertensive effect. Based on the above bioactivities, more and more attention has been paid to the role of galangin in neurodegenerative diseases, rheumatoid arthritis, osteoarthritis, osteoporosis, skin diseases, and cancer. In this paper, the natural sources, pharmacokinetics, bioactivities, and therapeutic potential of galangin against various diseases were systematically reviewed by collecting and summarizing relevant literature. In addition, the molecular mechanism and new preparation of galangin in the treatment of related diseases are also discussed, to broaden the application prospect and provide reference for its clinical application. Furthermore, it should be noted that current toxicity and clinical studies of galangin are insufficient, and more evidence is needed to support its possibility as a functional food.
Collapse
Affiliation(s)
- Daibo Wang
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junren Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Pu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Yu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Xiong
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luyao Sun
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Yu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Cao
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Salvianolic Acid B Attenuates Hypertrophic Scar Formation In Vivo and In Vitro. Aesthetic Plast Surg 2023:10.1007/s00266-023-03279-1. [PMID: 36810832 DOI: 10.1007/s00266-023-03279-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/28/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Hypertrophic scars (HTSs) are a fibroproliferative disorder that occur following skin injuries. Salvianolic acid B (Sal-B) is an extractant from Salvia miltiorrhiza that has been reported to ameliorate fibrosis in multiple organs. However, the antifibrotic effect on HTSs remains unclear. This study aimed to determine the antifibrotic effect of Sal-B in vitro and in vivo. METHODS In vitro, hypertrophic scar-derived fibroblasts (HSFs) were isolated from human HTSs and cultured. HSFs were treated with (0, 10, 50, 100 μmol/L) Sal-B. Cell proliferation and migration were evaluated by EdU, wound healing, and transwell assays. The protein and mRNA levels of TGFβI, Smad2, Smad3, α-SMA, COL1, and COL3 were detected by Western blots and real-time PCR. In vivo, tension stretching devices were fixed on incisions for HTS formation. The induced scars were treated with 100 μL of Sal-B/PBS per day according to the concentration of the group and followed up for 7 or 14 days. The scar condition, collagen deposition, and α-SMA expression were analyzed by gross visual examination, H&E, Masson, picrosirius red staining, and immunofluorescence. RESULTS In vitro, Sal-B inhibited HSF proliferation, migration, and downregulated the expression of TGFβI, Smad2, Smad3, α-SMA, COL1, and COL3 in HSFs. In vivo, 50 and 100 μmol/L Sal-B significantly reduced scar size in gross and cross-sectional observations, with decreased α-SMA expression and collagen deposition in the tension-induced HTS model. CONCLUSIONS Our study demonstrated that Sal-B inhibits HSFs proliferation, migration, fibrotic marker expression and attenuates HTS formation in a tension-induced HTS model in vivo. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
5
|
Chen D, Li Q, Zhang H, Kou F, Li Q, Lyu C, Wei H. Traditional Chinese medicine for hypertrophic scars—A review of the therapeutic methods and potential effects. Front Pharmacol 2022; 13:1025602. [PMID: 36299876 PMCID: PMC9589297 DOI: 10.3389/fphar.2022.1025602] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Hypertrophic scar (HS) is a typical pathological response during skin injury, which can lead to pain, itching, and contracture in patients and even affect their physical and mental health. The complexity of the wound healing process leads to the formation of HS affected by many factors. Several treatments are available for HS, whereas some have more adverse reactions and can even cause new injuries with exacerbated scarring. Traditional Chinese Medicine (TCM) has a rich source, and most botanical drugs have few side effects, providing new ideas and methods for treating HS. This paper reviews the formation process of HS, the therapeutic strategy for HS, the research progress of TCM with its relevant mechanisms in the treatment of HS, and the related new drug delivery system of TCM, aiming to provide ideas for further research of botanical compounds in the treatment of HS, to promote the discovery of more efficient botanical candidates for the clinical treatment of HS, to accelerate the development of the new drug delivery system and the final clinical application, and at the same time, to promote the research on the anti-HS mechanism of multiherbal preparations (Fufang), to continuously improve the quality control and safety and effectiveness of anti-HS botanical drugs in clinical application.
Collapse
Affiliation(s)
- Daqin Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiannan Li
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huimin Zhang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fang Kou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiang Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunming Lyu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Qinghai Province Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Chunming Lyu, ; Hai Wei,
| | - Hai Wei
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Chunming Lyu, ; Hai Wei,
| |
Collapse
|
6
|
Maslankova J, Vecurkovska I, Rabajdova M, Katuchova J, Kicka M, Gayova M, Katuch V. Regulation of transforming growth factor-β signaling as a therapeutic approach to treating colorectal cancer. World J Gastroenterol 2022; 28:4744-4761. [PMID: 36156927 PMCID: PMC9476856 DOI: 10.3748/wjg.v28.i33.4744] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/06/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023] Open
Abstract
According to data from 2020, Slovakia has long been among the top five countries with the highest incidence rate of colorectal cancer (CRC) worldwide, and the rate is continuing to rise every year. In approximately 80% of CRC cases, allelic loss (loss of heterozygosity, LOH) occurs in the long arm of chromosome 18q. The most important genes that can be silenced by 18q LOH or mutations are small mothers against decapentaplegic homolog (SMAD) 2 and SMAD4, which are intracellular mediators of transforming growth factor (TGF)-β superfamily signals. TGF-β plays an important role in the pro-oncogenic processes, including such properties as invasion, epithelial-mesenchymal transition (commonly known as EMT), promotion of angiogenesis, and immunomodulatory effects. Several recent studies have reported that activation of TGF-β signaling is related to drug resistance in CRC. Because the mechanisms of drug resistance are different between patients in different stages of CRC, personalized treatment is more effective. Therefore, knowledge of the activation and inhibition of factors that affect the TGF-β signaling pathway is very important.
Collapse
Affiliation(s)
- Jana Maslankova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Ivana Vecurkovska
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Miroslava Rabajdova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Jana Katuchova
- First Department of Surgery, Medical Faculty of Safarik University, Kosice 04011, Kosicky kraj, Slovakia
| | - Milos Kicka
- First Department of Surgery, Medical Faculty of Safarik University, Kosice 04011, Kosicky kraj, Slovakia
| | - Michala Gayova
- Department of Burns and Reconstructive Surgery, Medical Faculty at Safarik University and University Hospital, Kosice 04011, Slovakia
| | - Vladimir Katuch
- Department of Neurosurgery, Medical Faculty at Safarik University and University Hospital, Kosice 04011, Slovakia
| |
Collapse
|
7
|
Galunisertib Exerts Antifibrotic Effects on TGF-β-Induced Fibroproliferative Dermal Fibroblasts. Int J Mol Sci 2022; 23:ijms23126689. [PMID: 35743131 PMCID: PMC9223605 DOI: 10.3390/ijms23126689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 02/06/2023] Open
Abstract
Dermal fibroblasts in pathological scars secrete constitutively elevated levels of TGF-β, signaling the transcription of fibrotic genes via activin-like kinase 5 (ALK5). In the present study, we examine the antifibrotic effects of galunisertib, a small-molecule inhibitor of ALK5, on fibroproliferative dermal fibroblasts in an in vitro model of wound healing. We induced fibrosis in human dermal fibroblasts with exogenous TGF-β and performed cellular proliferation assays after treatment with varying concentrations of galunisertib. Dermal fibroblast proliferation was diminished to homeostatic levels without cytotoxicity at concentrations as high as 10 μM. An in vitro scratch assay revealed that galunisertib significantly enhanced cellular migration and in vitro wound closure beginning 24 h post-injury. A gene expression analysis demonstrated a significant attenuation of fibrotic gene expression, including collagen-1a, alpha-smooth muscle actin, fibronectin, and connective tissue growth factor, with increased expression of the antifibrotic genes MMP1 and decorin. Protein synthesis assays confirmed drug activity and corroborated the transcription findings. In summary, galunisertib simultaneously exerts antifibrotic effects on dermal fibroblasts while enhancing rates of in vitro wound closure. Galunisertib has already completed phase II clinical trials for cancer therapy with minimal adverse effects and is a promising candidate for the treatment and prevention of pathological cutaneous scars.
Collapse
|
8
|
Zhang Z, Qiao Y, Yang L, Chen Z, Li T, Gu M, Li C, Liu M, Li R. Kaempferol 3-O-gentiobioside, an ALK5 inhibitor, affects the proliferation, migration, and invasion of tumor cells via blockade of the TGF-β/ALK5/Smad signaling pathway. Phytother Res 2021; 35:6310-6323. [PMID: 34514657 DOI: 10.1002/ptr.7278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/08/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022]
Abstract
Overactivation of TGF-β/ALK5/Smad signaling pathway has been observed in the advanced stage of various human malignancies. As a key component of TGF-β/ALK5/Smad signaling pathway transduction, TGF-β type I receptor (also known as ALK5) has emerged as a promising therapeutic target for cancer treatment. In this study, to discover a novel ALK5 inhibitor, a commercial natural products library was screened using docking-based virtual screening, followed by luciferase reporter assay. A flavonoid glycoside kaempferol 3-O-gentiobioside (KPF 3-O-G) was identified as a potent ALK5 inhibitor through directly bound to the ATP-site of ALK5, resulting in the inhibitory effects on phosphorylation and translocation of Smad2 and expression of Smad4. Additionally, we found that KPF 3-O-G reduced cell proliferation and inhibited TGF-β-induced cell migration and invasion. Moreover, western blotting and immunofluorescent analysis showed that KPF 3-O-G significantly reversed the TGF-β-induced EMT biomarkers, including upregulation of E-cadherin and downregulation of N-cadherin, vimentin, and snail. In vivo study showed that KPF 3-O-G administration reduced tumor growth in human ovarian cancer xenograft mouse model, without obvious toxic effect. This study provided novel insight into the anticancer effects of KPF-3-O-G and indicated that KPF-3-O-G might be developed as potential therapeutics for cancer treatment after further validation.
Collapse
Affiliation(s)
- Zihao Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yu Qiao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Li Yang
- Department of Gynecologic Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Zuwang Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Tao Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - MingZhen Gu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Chong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Mingming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Rong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
9
|
Oh M, Kim SY, Park S, Kim KN, Kim SH. Phytochemicals in Chinese Chive ( Allium tuberosum) Induce the Skeletal Muscle Cell Proliferation via PI3K/Akt/mTOR and Smad Pathways in C2C12 Cells. Int J Mol Sci 2021; 22:2296. [PMID: 33669060 PMCID: PMC7956299 DOI: 10.3390/ijms22052296] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 01/10/2023] Open
Abstract
Chinese chive (Allium tuberosum) is a medicinal food that is cultivated and consumed mainly in Asian countries. Its various phytochemicals and physiological effects have been reported, but only a few phytochemicals are available for skeletal muscle cell proliferation. Herein, we isolated a new compound, kaempferol-3-O-(6″-feruloyl)-sophoroside (1), along with one known flavonoid glycoside (2) and six amino acid (3-8) compounds from the water-soluble fraction of the shoot of the Chinese chive. The isolated compounds were identified using extensive spectroscopic methods, including 1D and 2D NMR, and evaluated for their proliferation activity on skeletal muscle cells. Among the tested compounds, newly isolated flavonoid (1) and 5-aminouridine (7) up-regulated PI3K/Akt/mTOR pathways, which implies a positive effect on skeletal muscle growth and differentiation. In particular, compound 1 down-regulated the Smad pathways, which are negative regulators of skeletal muscle growth. Collectively, we suggest that major constituents of Chinese chive, flavonoids and amino acids, might be used in dietary supplements that aid skeletal muscle growth.
Collapse
Affiliation(s)
- Mira Oh
- College of pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea;
| | - Seo-Young Kim
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Korea; (S.-Y.K.); (S.P.)
| | - SeonJu Park
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Korea; (S.-Y.K.); (S.P.)
| | - Kil-Nam Kim
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Korea; (S.-Y.K.); (S.P.)
| | - Seung Hyun Kim
- College of pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea;
| |
Collapse
|
10
|
Qu J, Huang P, Zhang L, Qiu Y, Qi H, Leng A, Shang D. Hepatoprotective effect of plant polysaccharides from natural resources: A review of the mechanisms and structure-activity relationship. Int J Biol Macromol 2020; 161:24-34. [PMID: 32485257 DOI: 10.1016/j.ijbiomac.2020.05.196] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
|
11
|
Wang H, Guo B, Lin S, Chang P, Tao K. Apigenin inhibits growth and migration of fibroblasts by suppressing FAK signaling. Aging (Albany NY) 2020; 11:3668-3678. [PMID: 31170089 PMCID: PMC6594802 DOI: 10.18632/aging.102006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
The naturally occurring compound apigenin has many biological effects, including anti-inflammatory, antioxidative and anticancer effects. Although hypertrophic scar formation is a common surgical complication, there is still no good treatment for it. In the present study, we examined the effect of apigenin on hypertrophic scar. After isolating fibroblasts from human hypertrophic scars, we assess the effects of apigenin on fibroblast cell survival, apoptosis and migration. The results showed that apigenin dose-dependently inhibited the growth and migration of hypertrophic scar fibroblasts. By inhibiting FAK kinase activity and FAK phosphorylation, apigenin also inhibited activation of the FAK signaling pathway. Apigenin thus appears to inhibit the growth and migration of hypertrophic scar fibroblasts by inhibiting FAK signaling. This suggests apigenin could potentially provide a new option for the treatment of hypertrophic scars.
Collapse
Affiliation(s)
- Hongyi Wang
- Reconstructive and Plastic Surgery, General Hospital of North Theater, PLA, Shenyang, P.R.China
| | - Bingyu Guo
- Reconstructive and Plastic Surgery, General Hospital of North Theater, PLA, Shenyang, P.R.China
| | - Shixiu Lin
- Reconstructive and Plastic Surgery, General Hospital of North Theater, PLA, Shenyang, P.R.China
| | - Peng Chang
- Reconstructive and Plastic Surgery, General Hospital of North Theater, PLA, Shenyang, P.R.China
| | - Kai Tao
- Reconstructive and Plastic Surgery, General Hospital of North Theater, PLA, Shenyang, P.R.China
| |
Collapse
|
12
|
Zeng J, Jiang B, Xiao X, Zhang R. Inhibition of sphingosine kinase 2 attenuates hypertrophic scar formation via upregulation of Smad7 in human hypertrophic scar fibroblasts. Mol Med Rep 2020; 22:2573-2582. [PMID: 32705254 PMCID: PMC7411334 DOI: 10.3892/mmr.2020.11313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 05/20/2020] [Indexed: 12/18/2022] Open
Abstract
The aims of the present study were to investigate the role of sphingosine kinase 2 (Sphk2) in hypertrophic scar (HS) formation and its underlying mechanisms. The expression levels of Sphk2 and Smad7 in HS tissues and healthy skin tissues of patients undergoing plastic surgery were determined using immunohistochemical staining. Subsequently, the expression levels of Sphk2 and collagen I in human embryonic skin fibroblasts (control) and human HS fibroblasts (HSF) were detected using western blot analysis and immunofluorescence assay, respectively. Following Sphk2 silencing, Smad7 overexpression or both Sphk2 and Smad7 silencing, HSF proliferative ability was assessed using Cell Counting Kit‑8 assay and proliferation‑associated proteins were evaluated using western blot analysis. In addition, the level of apoptosis in HSF was assessed using flow cytometry and expression levels of apoptotic‑associated proteins were determined using western blotting. Furthermore, the expression levels of collagen I and proteins in the TGF‑β1/Smad signaling pathway were detected using western blot analysis. The results indicated that the expression of Sphk2 was significantly increased, while Smad7 expression was decreased in HS tissue. Moreover, the upregulation of Sphk2 and collagen I expression levels was identified in HSF. The present results also indicated that Sphk2 silencing or Smad7 overexpression inhibited proliferation, but promoted apoptosis of HSF, coupled with changes in the expression levels of proliferation‑associated proteins, with an increase in p21 and a decrease in cyclin D1 expression levels, and apoptosis‑associated proteins, with an increase in Bax and cleaved caspase‑3, and a decrease in Bcl‑2, which were reversed following transfection with both Sphk2 and Smad7 using small interfering RNA in HSF. In addition, the expression levels of transforming growth factor‑β1, phosphorylated (p)‑Smad2, p‑Smad3 and collagen I were reduced following Sphk2 silencing or Smad7 overexpression, which were abolished by silencing both Sphk2 and Smad7. Collectively, the present results indicated that inhibition of Sphk2 attenuated HS formation via upregulation of Smad7 expression, thus Sphk2 may serve as a potential therapeutic target for the treatment of HS.
Collapse
Affiliation(s)
- Jian Zeng
- Department of Medical Cosmetology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Bin Jiang
- Department of Medical Cosmetology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xia Xiao
- Department of Medical Cosmetology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Rou Zhang
- Department of Medical Cosmetology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
13
|
Current potential therapeutic strategies targeting the TGF-β/Smad signaling pathway to attenuate keloid and hypertrophic scar formation. Biomed Pharmacother 2020; 129:110287. [PMID: 32540643 DOI: 10.1016/j.biopha.2020.110287] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/08/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
Aberrant scar formation, which includes keloid and hypertrophic scars, is associated with a pathological disorganized wound healing process with chronic inflammation. The TGF-β/Smad signaling pathway is the most canonical pathway through which the formation of collagen in the fibroblasts and myofibroblasts is regulated. Sustained activation of the TGF-β/Smad signaling pathway results in the long-term overactivation of fibroblasts and myofibroblasts, which is necessary for the excessive collagen formation in aberrant scars. There are two categories of therapeutic strategies that aim to target the TGF-β/Smad signaling pathway in fibroblasts and myofibroblasts to interfere with their cellular functions and reduce cell proliferation. The first therapeutic strategy includes medications, and the second strategy is composed of genetic and cellular therapeutics. Therefore, the focus of this review is to critically evaluate these two main therapeutic strategies that target the TGF-β/Smad pathway to attenuate abnormal skin scar formation.
Collapse
|
14
|
Li Z, Song J, Zhang J, Hao K, Liu L, Wu B, Zheng X, Xiao B, Tong X, Dai F. Topical application of silk fibroin-based hydrogel in preventing hypertrophic scars. Colloids Surf B Biointerfaces 2019; 186:110735. [PMID: 31865120 DOI: 10.1016/j.colsurfb.2019.110735] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/02/2019] [Accepted: 12/15/2019] [Indexed: 01/10/2023]
Abstract
Current medications for the treatment of hypertrophic scars suffer from bottlenecks of limited therapeutic efficacy and a slow recovery rate. Silk fibroin (SF) has gained attention for its ability to promote wound healing in burns and cutaneous wounds, but its therapeutic effects against hypertrophic scar have not been thoroughly investigated. We prepared SF-based hydrogels (SFHs) with various SF concentrations (1.5 %, 3 %, and 6 %) and characterized their physicochemical properties. Cell experiments showed that these SFHs had favorable biocompatibility in vitro. Further animal experiments in rabbits revealed that the SFH (3 %)-treated group achieved scars on their ears that were thinner and significantly lighter in color compared with the negative control group. Moreover, treatment with SFHs reduced the density and led to the orderly arrangement of collagen fibers. It was found that the therapeutic effects of SFHs were attributed to the reduced expression levels of α-smooth muscle actin. These results are the first to demonstrate that SFH can be exploited as an effective therapeutic agent for the treatment of hypertrophic scars.
Collapse
Affiliation(s)
- Zheng Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Jiangbo Song
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Jianfei Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Kaige Hao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Lian Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Baiqing Wu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Xinyue Zheng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China.
| |
Collapse
|
15
|
Ye X, Pang Z, Zhu N. Dihydromyricetin attenuates hypertrophic scar formation by targeting activin receptor-like kinase 5. Eur J Pharmacol 2019; 852:58-67. [PMID: 30807748 DOI: 10.1016/j.ejphar.2019.02.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 12/16/2022]
Abstract
Hypertrophic scar (HPS) is a manifestation of abnormal tissue repair, representing excessive extracellular matrix production and abnormal function of fibroblasts, for which no satisfactory treatment is available at present. Here we identified a natural product of flavonoid, dihydromyricetin, could effectively attenuate HPS formation. We showed that local intradermal injection of dihydromyricetin (50 μM) reduced the gross scar area, cross-sectional size of the scar and the scar elevation index in a mechanical load-induced mouse model. In addition, dihydromyricetin treatment also markedly decreased collagen density of the scar tissue. Furthermore, both in vitro and in vivo study both demonstrated that dihydromyricetin inhibited the proliferation, activation, contractile and migration abilities of hypertrophic scar-derived fibroblasts (HSFs) but did not affect HSFs apoptosis. Western blot analysis revealed that dihydromyricetin could down-regulate the phosphorylation of Smad2 and Smad3 of TGF-β signaling. Such bioactivity of dihydromyricetin may result from its selective binding to the catalytic region of activin receptor-like kinase 5 (ALK5), as suggested by the molecular docking study and kinase binding assay (12.26 μM). Above all, dihydromyricetin may prove to be a promising agent for the treatment of HPS and other fibroproliferative disorders.
Collapse
Affiliation(s)
- Xiaolu Ye
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Zhiying Pang
- Shanghai Medical College, Fudan University, Shanghai, China.
| | - Ningwen Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Zhang Y, Wang J, Zhou S, Xie Z, Wang C, Gao Y, Zhou J, Zhang X, Li Q. Flavones hydroxylated at 5, 7, 3' and 4' ameliorate skin fibrosis via inhibiting activin receptor-like kinase 5 kinase activity. Cell Death Dis 2019; 10:124. [PMID: 30741930 PMCID: PMC6370799 DOI: 10.1038/s41419-019-1333-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/10/2018] [Accepted: 12/21/2018] [Indexed: 01/10/2023]
Abstract
Skin fibrosis is mainly characterized by excessive collagen deposition. Studies have recently identified a number of flavonoids with variable structures that have the potency of inhibiting collagen synthesis and thus attenuating organ fibrosis. In this study, we found that flavones with 5, 7, 3', 4' hydroxy substitution reduced collagen expression most efficiently. Among those flavones, luteolin, quercetin, and myricetin were selected for follow-up. In vivo, the three compounds ameliorated skin fibrosis and reduced collagen deposition. Further analysis showed the compounds had significant inhibition on the proliferation, activation and contractile ability of dermal fibroblasts in vitro and in vivo. More importantly, we revealed that luteolin, quercetin, and myricetin selectively downregulated the phosphorylation of Smad2/3 in TGF-β/Smads signaling via binding to activin receptor-like kinase 5 (ALK5) and impairing its catalytic activity. We also found flavones with 5, 7, 3', 4' hydroxy substitution showed stronger affinity with ALK5 compared with other flavonoids. Herein, we identified at least in part the underlying molecular basis as well as the critical structures that contribute to the antifibrotic bioactivity of flavones, which might benefit drug design and modification.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Sizheng Zhou
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhibo Xie
- Department of Pancreatic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chuandong Wang
- Stem Cell and Regenerative Medicine Lab Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Gao
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Zhou
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoling Zhang
- Stem Cell and Regenerative Medicine Lab Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qingfeng Li
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
17
|
Wen SY, Chen JY, Weng YS, Aneja R, Chen CJ, Huang CY, Kuo WW. Galangin suppresses H 2 O 2 -induced aging in human dermal fibroblasts. ENVIRONMENTAL TOXICOLOGY 2017; 32:2419-2427. [PMID: 28834114 DOI: 10.1002/tox.22455] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/17/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
Human skin aging is a progressive process that includes intrinsic aging and extrinsic photodamage, both of which can cause an accumulation of reactive oxygen species (ROS), resulting in dermal fibrosis dysfunction and wrinkle formation. Galangin is a flavonoid that exhibits anti-inflammatory and antioxidative potential. Previous studies have reported that galangin has antioxidative activity against ROS-mediated stress. The aim of the present study is to determine the antiaging effects of galangin on dermal fibroblasts exposed to H2 O2 . In this study, we established a hydrogen peroxide-induced inflammation and aging model using human HS68 dermal fibroblasts. Stimulation of fibroblasts with H2 O2 is associated with skin aging and increased expression of inflammation-related proteins, along with downregulation of collagen I/III formation and expression of antioxidative proteins. Galangin effectively reduced NF-κB activation, the expression of inflammation-related proteins and cell aging. Galangin also reversed H2 O2 -activated cell senescence in HS68 cells. Our results reveal that galangin protects human dermal fibroblasts by inhibiting NF-κB activation, decreases the expression of inflammatory factors and upregulates IGF1R/Akt-related proteins, indicating that galangin may be a potential candidate for developing natural antiaging products that protect skin from damage caused by ROS.
Collapse
Affiliation(s)
- Su-Ying Wen
- Department of Dermatology, Taipei City Hospital, Renai Branch, Taipei, Taiwan
- Center for General Education, Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Jia-Yi Chen
- Department of Biological Science and Technology, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan, ROC
| | - Yueh-Shan Weng
- Department of Biological Science and Technology, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan, ROC
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Chih-Jung Chen
- Division of Breast Surgery, Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan, ROC
| |
Collapse
|
18
|
Zhao D, Wang Y, Du C, Shan S, Zhang Y, Du Z, Han D. Honokiol Alleviates Hypertrophic Scar by Targeting Transforming Growth Factor-β/Smad2/3 Signaling Pathway. Front Pharmacol 2017; 8:206. [PMID: 28469575 PMCID: PMC5395562 DOI: 10.3389/fphar.2017.00206] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 04/03/2017] [Indexed: 12/22/2022] Open
Abstract
Hypertrophic scar (HPS) presents as excessive extracellular matrix deposition and abnormal function of fibroblasts. However, there is no single satisfactory method to prevent HPS formation so far. Here, we found that honokiol (HKL), a natural compound isolated from Magnolia tree, had an inhibitory effect on HPS both in vitro and in vivo. Firstly, HKL could dose-dependently down-regulate the mRNA and protein levels of type I collagen, type III collagen, and α-smooth muscle actin (α-SMA) in hypertrophic scar-derived fibroblasts (HSFs). Secondly, HKL suppressed the proliferation, migration abilities of HSFs and inhibited HSFs activation to myofibroblasts, but had no effect on cell apoptosis. Besides, the in vivo rabbit ear scar model further affirmed the inhibitory effects of HKL on collagen deposition, proliferating cell nuclear antigen and α-SMA. Finally, Western blot results showed that HKL reduced the phosphorylation status of Smad2/3, as well as affected the protein levels of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinase1. Taken together, this study demonstrated that HKL alleviated HPS by suppressing fibrosis-related molecules and inhibiting HSFs proliferation, migration as well as activation to myofibroblasts via Smad-dependent pathway. Therefore, HKL could be used as a potential agent for treating HPS and other fibrotic diseases.
Collapse
Affiliation(s)
- Danyang Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Yu Wang
- Department of Geriatrics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Chao Du
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Zijing Du
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Dong Han
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| |
Collapse
|