1
|
Ávila-Ortega A, Villa-de la Torre FE, Carrera-Figueiras C, Martínez-Rizo AB, Talavera-Pech WA, Torres-Romero JC, Ceballos-Góngora E, García-Martínez V, Pintor-Romero VG, Huchin-Chan C, Vilchis-Nestor AR, Arana-Argáez VE. Toxicological and anti-inflammatory activities of doxorubicin loaded onto pH-sensitive poly(β-amino ester) modified mesoporous silica nanoparticles in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04244-2. [PMID: 40366401 DOI: 10.1007/s00210-025-04244-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025]
Abstract
Chemotherapy drugs used in inflammatory disorders and some cancers, while effective, often cause diverse side toxic effects, prompting research into alternatives to ameliorate damage in healthy tissues. One strategy is to encapsulate doxorubicin (DOX) chemotherapeutic agents into nano-vehicles, such as organic-functionalized mesoporous nanoparticles, to reduce systemic leakage and adverse effects, such as inflammation. This study analyzes the toxicological and anti-inflammatory effects of a drug-delivered system (DDS) based on MCM-41 mesoporous silica nanoparticles modified with a pH-sensitive poly(β-amino ester) named MCM-41-PbAE. The effects of both blank nanoparticles (MCM-41-PbAE) and those with encapsulated DOX (MCM-41-PbAE-DOX) were evaluated in LPS-stimulated mouse macrophages and in an in vivo inflammation model. Characterization of nanoparticles was carried out through TEM, DLS, FTIR Z-potential, and thermogravimetric tests. Macrophages were treated with MCM-41-PbAE and MCM-41-PbAE-DOX particles at several concentrations, and the production of proinflammatory and anti-inflammatory cytokines, nitric oxide (NO), and hydrogen peroxide (H2O2) levels were determined. Toxicological evaluation was performed in BALB/c mice and the in vivo anti-inflammatory effect was evaluated in a carrageenan-induced paw edema model and the measuring serum levels of pro-inflammatory cytokines. Results indicated that MCM-41-PbAE-DOX significantly reduces NO and H2O2 levels and pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) in dose-manner without affecting cell viability or causing toxicity in mice. Conversely, a reduction in carrageenan-induced paw edema and decreased levels of proinflammatory cytokines were noted, indicating the potential advantage of encapsulating DOX within MCM-41-PbAE nanoparticles, which could inhibit inflammation without compromising healthy cell viability.
Collapse
Affiliation(s)
- Alejandro Ávila-Ortega
- Cuerpo Académico de Química Fundamental y Aplicada, Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Fabiola Elizabeth Villa-de la Torre
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Calle 43, No 613 X Calle 90, Col. Inalámbrica, CP. 97069, Mérida, Yucatán, México
| | - Cristian Carrera-Figueiras
- Cuerpo Académico de Química Fundamental y Aplicada, Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Abril Bernardette Martínez-Rizo
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Calle 43, No 613 X Calle 90, Col. Inalámbrica, CP. 97069, Mérida, Yucatán, México
| | - William Alejandro Talavera-Pech
- Centro de Investigación en Corrosión, Universidad Autónoma de Campeche, Av. Héroe de Nacozari No. 480, San Francisco de Campeche, Campeche, 24079, México
| | - Julio César Torres-Romero
- Laboratorio de Bioquímica y Genética Molecular, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Emanuel Ceballos-Góngora
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Calle 43, No 613 X Calle 90, Col. Inalámbrica, CP. 97069, Mérida, Yucatán, México
| | - Valeria García-Martínez
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Calle 43, No 613 X Calle 90, Col. Inalámbrica, CP. 97069, Mérida, Yucatán, México
| | - Valeria Guadalupe Pintor-Romero
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Calle 43, No 613 X Calle 90, Col. Inalámbrica, CP. 97069, Mérida, Yucatán, México
| | - Claribel Huchin-Chan
- Laboratorio de Análisis Clínicos y de Servicio a La Comunidad, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | | | - Víctor Ermilo Arana-Argáez
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Calle 43, No 613 X Calle 90, Col. Inalámbrica, CP. 97069, Mérida, Yucatán, México.
| |
Collapse
|
2
|
Kücük P, Abbey L, Schmitt J, Henninger C, Fritz G. Cardiomyocytes, cardiac endothelial cells and fibroblasts contribute to anthracycline-induced cardiac injury through RAS-homologous small GTPases RAC1 and CDC42. Pharmacol Res 2024; 203:107165. [PMID: 38561112 DOI: 10.1016/j.phrs.2024.107165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/01/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
The clinical use of the DNA damaging anticancer drug doxorubicin (DOX) is limited by irreversible cardiotoxicity, which depends on the cumulative dose. The RAS-homologous (RHO) small GTPase RAC1 contributes to DOX-induced DNA damage formation and cardiotoxicity. However, the pathophysiological relevance of other RHO GTPases than RAC1 and different cardiac cell types (i.e., cardiomyocytes, non-cardiomyocytes) for DOX-triggered cardiac damage is unclear. Employing diverse in vitro and in vivo models, we comparatively investigated the level of DOX-induced DNA damage in cardiomyocytes versus non-cardiomyocytes (endothelial cells and fibroblasts), in the presence or absence of selected RHO GTPase inhibitors. Non-cardiomyocytes exhibited the highest number of DOX-induced DNA double-strand breaks (DSB), which were efficiently repaired in vitro. By contrast, rather low levels of DSB were formed in cardiomyocytes, which however remained largely unrepaired. Moreover, DOX-induced apoptosis was detected only in non-cardiomyocytes but not in cardiomyocytes. Pharmacological inhibitors of RAC1 and CDC42 most efficiently attenuated DOX-induced DNA damage in all cell types examined in vitro. Consistently, immunohistochemical analyses revealed that the RAC1 inhibitor NSC23766 and the pan-RHO GTPase inhibitor lovastatin reduced the level of DOX-induced residual DNA damage in both cardiomyocytes and non-cardiomyocytes in vivo. Overall, we conclude that endothelial cells, fibroblasts and cardiomyocytes contribute to the pathophysiology of DOX-induced cardiotoxicity, with RAC1- and CDC42-regulated signaling pathways being especially relevant for DOX-stimulated DSB formation and DNA damage response (DDR) activation. Hence, we suggest dual targeting of RAC1/CDC42-dependent mechanisms in multiple cardiac cell types to mitigate DNA damage-dependent cardiac injury evoked by DOX-based anticancer therapy.
Collapse
Affiliation(s)
- Pelin Kücük
- Institute of Toxicology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstrasse 5, Düsseldorf 40225, Germany.
| | - Lena Abbey
- Institute of Toxicology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstrasse 5, Düsseldorf 40225, Germany
| | - Joachim Schmitt
- Institute of Pharmacology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstrasse 5, Düsseldorf 40225, Germany
| | - Christian Henninger
- Institute of Toxicology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstrasse 5, Düsseldorf 40225, Germany
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstrasse 5, Düsseldorf 40225, Germany.
| |
Collapse
|
3
|
Yu X, Yang Y, Chen T, Wang Y, Guo T, Liu Y, Li H, Yang L. Cell death regulation in myocardial toxicity induced by antineoplastic drugs. Front Cell Dev Biol 2023; 11:1075917. [PMID: 36824370 PMCID: PMC9941345 DOI: 10.3389/fcell.2023.1075917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Homeostatic regulation of cardiomyocytes plays a critical role in maintaining normal physiological activity of cardiac tissue. Severe cardiotoxicity can lead to heart disease, including but not limited to arrhythmias, myocardial infarction and cardiac hypertrophy. In recent years, significant progress has been made in developing new therapies for cancer that have dramatically changed the treatment of several malignancies and continue to improve patient survival, but can also lead to serious cardiac adverse effects. Mitochondria are key organelles that maintain homeostasis in myocardial tissue and have been extensively involved in various cardiovascular disease episodes, including ischemic cardiomyopathy, heart failure and stroke. Several studies support that mitochondrial targeting is a major determinant of the cardiotoxic effects triggered by chemotherapeutic agents increasingly used in solid and hematologic tumors. This antineoplastic therapy-induced mitochondrial toxicity is due to different mechanisms, usually altering the mitochondrial respiratory chain, energy production and mitochondrial kinetics, or inducing mitochondrial oxidative/nitrosative stress, ultimately leading to cell death. This review focuses on recent advances in forms of cardiac cell death and related mechanisms of antineoplastic drug-induced cardiotoxicity, including autophagy, ferroptosis, apoptosis, pyroptosis, and necroptosis, explores and evaluates key proteins involved in cardiac cell death signaling, and presents recent advances in cardioprotective strategies for this disease. It aims to provide theoretical basis and targets for the prevention and treatment of pharmacological cardiotoxicity in clinical settings.
Collapse
Affiliation(s)
- Xue Yu
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yan Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Tianzuo Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yuqin Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Tianwei Guo
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yujun Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Hong Li
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China,*Correspondence: Liming Yang, ; Hong Li,
| | - Liming Yang
- Department of Pathophysiology, Harbin Medical University-Daqing, Daqing, China,*Correspondence: Liming Yang, ; Hong Li,
| |
Collapse
|
4
|
Wawi MJ, Mahler C, Inguimbert N, Marder TB, Ribou AC. A new mitochondrial probe combining pyrene and a triphenylphosphonium salt for cellular oxygen and free radical detection via fluorescence lifetime measurements. Free Radic Res 2022; 56:258-272. [PMID: 35772434 DOI: 10.1080/10715762.2022.2077202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
To improve and diversify the quantification of reactive oxygen species (ROS) in mitochondria of single cells, we connected pyrene derivatives (PB) to a triphenylphosphonium salt (TPP+) as a mitochondrial vector forming PB-TPP+ probes. Two pyrene isomers with the n-butyltriphenylphosphonium moieties attached at their 1- or 2- positions were synthesized and characterized. Using the long fluorescence lifetime of pyrene, it was possible to monitor the variation of cellular free radicals and oxygen and to follow the reversibility of both quenchers in real-time. We compared the behavior of these new probes to the previously published pyrene-probes, functionalized by a mitochondrial-penetrating peptide, allowing their transfer to the mitochondria (Mito-PB) or to the cytosolic membrane for pyrene butyric acid (PBA). The high cellular uptake of the new probes allows cells to be loaded with an initial concentration 40 times lower than that for Mito-PB probes, without inducing perturbations in cell growth. The variation in free radicals and oxygen levels was monitored within cells under different stress conditions through the fluorescence lifetime of the new TPP+-based probes giving comparable results to those obtained for MPP-based probes. However, at a loading concentration as low as 25 nM, our technique allows the detection of increased production of free radicals in the mitochondria in the presence of the TPP+ vector, a warning to the user of this well-known vector.
Collapse
Affiliation(s)
- Mohamad Jamal Wawi
- Espace-Dev, Univ Montpellier, IRD, Univ Guyane, Univ la Réunion, Univ Antilles, Montpellier, France.,Laboratoire IMAGES-ESPACE-DEV, Univ. Perpignan Via Domitia, Perpignan, France
| | - Christoph Mahler
- Institut für Anorganische Chemie, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Nicolas Inguimbert
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan Via Domitia, Perpignan, France
| | - Todd B Marder
- Institut für Anorganische Chemie, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Anne-Cécile Ribou
- Espace-Dev, Univ Montpellier, IRD, Univ Guyane, Univ la Réunion, Univ Antilles, Montpellier, France.,Laboratoire IMAGES-ESPACE-DEV, Univ. Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
5
|
Huang MF, Pang LK, Chen YH, Zhao R, Lee DF. Cardiotoxicity of Antineoplastic Therapies and Applications of Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Cells 2021; 10:2823. [PMID: 34831045 PMCID: PMC8616116 DOI: 10.3390/cells10112823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/05/2021] [Accepted: 10/15/2021] [Indexed: 01/04/2023] Open
Abstract
The therapeutic landscape for the treatment of cancer has evolved significantly in recent decades, aided by the development of effective oncology drugs. However, many cancer drugs are often poorly tolerated by the body and in particular the cardiovascular system, causing adverse and sometimes fatal side effects that negate the chemotherapeutic benefits. The prevalence and severity of chemotherapy-induced cardiotoxicity warrants a deeper investigation of the mechanisms and implicating factors in this phenomenon, and a consolidation of scientific efforts to develop mitigating strategies. Aiding these efforts is the emergence of induced pluripotent stem cells (iPSCs) in recent years, which has allowed for the generation of iPSC-derived cardiomyocytes (iPSC-CMs): a human-based, patient-derived, and genetically variable platform that can be applied to the study of chemotherapy-induced cardiotoxicity and beyond. After surveying chemotherapy-induced cardiotoxicity and the associated chemotherapeutic agents, we discuss the use of iPSC-CMs in cardiotoxicity modeling, drug screening, and other potential applications. Improvements to the iPSC-CM platform, such as the development of more adult-like cardiomyocytes and ongoing advances in biotechnology, will only enhance the utility of iPSC-CMs in both basic science and clinical applications.
Collapse
Affiliation(s)
- Mo-Fan Huang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.-F.H.); (L.K.P.)
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Lon Kai Pang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.-F.H.); (L.K.P.)
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi-Hung Chen
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.-F.H.); (L.K.P.)
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.-F.H.); (L.K.P.)
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
6
|
Sharifiaghdam Z, Dalouchi F, Sharifiaghdam M, Shaabani E, Ramezani F, Nikbakht F, Azizi Y. Curcumin-coated gold nanoparticles attenuate doxorubicin-induced cardiotoxicity via regulating apoptosis in a mouse model. Clin Exp Pharmacol Physiol 2021; 49:70-83. [PMID: 34449914 DOI: 10.1111/1440-1681.13579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022]
Abstract
Doxorubicin (DOX) is one of the most widely used chemotherapy agents; however, its nonselective effect causes cardiotoxicity. Curcumin (Cur), a well known dietary polyphenol, could exert a significant cardioprotective effect, but the biological application of this substance is limited by its chemical insolubility. To overcome this limitation, in this study, we synthesised gold nanoparticles based on Cur (Cur-AuNPs). Ultraviolet-visible (UV-Vis) absorbance spectroscopy and transmission electron microscopy (TEM) were performed for the characterisation of synthesised NPs, and Fourier transform infrared (FTIR) spectroscopy were applied to detect Cur on the surface of AuNPs. Its cytotoxicity effect on H9c2 cells was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The biological efficacy of Cur-AuNPs was assessed after acute cardiotoxicity induction in BALB/c mice with DOX injection. The serum biomarkers, myocardial histological changes, and cardiomyocyte apoptosis were then measured. The results revealed that the heart protection by Cur-AuNPs is more effective than Cur alone. Heart protective effect of Cur-AuNPs was evident both in the short-term (24 hours) and long-term (14 days) study. The results of Cur-AuNPs400 after 24 hours of toxicity induction displayed the reduction of the cardiac injury serum biomarkers (LDH, CK-MB, cTnI, ADT, and ALT) and apoptotic proteins (Bax and Caspase-3), as well as increase of Bcl-2 anti-apoptotic proteins without any sign of interfibrillar haemorrhage and intercellular spaces in the heart tissue microscopic images. Our long-term study signifies that Cur-AuNPs400 in DOX-intoxicated mice could successfully inhibit body and heart weight loss in comparison to DOX group.
Collapse
Affiliation(s)
- Zeynab Sharifiaghdam
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Dalouchi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Sharifiaghdam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences (TUMS, Tehran, Iran.,Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Elnaz Shaabani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences (TUMS, Tehran, Iran.,Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Farnaz Nikbakht
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yaser Azizi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Zhang L, Xiao S, Kang X, Sun T, Zhou C, Xu Z, Du M, Zhang Y, Wang G, Liu Y, Zhang D, Gong M. Metabolic Conversion and Removal of Manganese Ferrite Nanoparticles in RAW264.7 Cells and Induced Alteration of Metal Transporter Gene Expression. Int J Nanomedicine 2021; 16:1709-1724. [PMID: 33688187 PMCID: PMC7936572 DOI: 10.2147/ijn.s289707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/10/2021] [Indexed: 12/26/2022] Open
Abstract
Background Manganese Ferrite Nanoparticles (Mn-IONPs) are widely used in biomedical field and their cytotoxicity has been initially explored, but the mechanism remains obscure. The nano-bio interactions are believed to be crucial for cytotoxicity mechanism, while little data have been acquired. Methods Mn-IONPs were synthesized by thermal decomposition of acetylacetonate precursor. After physicochemical characterization, we analyzed the metabolic conversion and removal of Mn-IONPs in RAW264.7 cells by Prussian blue staining, TEM, HRTEM and elemental quantitative analysis, followed by gene expression evaluation using quantitative RT-PCR. Results Mn-IONPs were successfully synthesized. Both the uptake and cytotoxicity of Mn-IONPs on RAW264.7 cells were time- and dose-dependent. After internalized, Mn-IONPs were passed to daughter cells with passages on. Meanwhile, Mn-IONPs were exocytosed and digested to metal ions and further excreted out, resulted in the labeling rate and ions contents decreased gradually. As ion influx related genes, the expressions of ZIP14, IRP2, FtH and DMT1 were suppressed within 24 hours but overexpressed to a plateau at the 48th hour in a dose-dependent manner. At the 72nd hour, ZIP14 and DMT1 mRNA levels decreased toward normal, while IRP2 and FtH kept up-regulated. As efflux related genes, FPN, SLC30A10 and Hamp2 genes were up-regulated within 24–72 hours; SPCA1 was suppressed at the 24th and 72nd hour, while overexpressed at the 48th hour. All the efflux related genes’ mRNA had a dose-dependent increasing manner at the corresponding time points. Conclusion Mn-IONPs showed time- and dose-dependent cytotoxicity and cell labeling rate in RAW264.7 cells. Accompanying with the intracellular catabolic breakdown and exocytosis of Mn-IONPs, RAW264.7 cells also secreted and re-uptook manganese and iron ions to maintain intracellular homeostasis in the succeeding passages. And the metabolic conversion of Mn-IONPs in RAW264.7 cells can affect the expression of ZIP14, DMT1, FPN, SLC30A10, IRP2, FtH, Hamp2 and SPCA1 genes.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Shilin Xiao
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Xun Kang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Tao Sun
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Chunyu Zhou
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Zhongsheng Xu
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Mengmeng Du
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Ya Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Guangxian Wang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Yun Liu
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Dong Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Mingfu Gong
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
8
|
Wawi MJ, Bijoux A, Inguimbert N, Mahler C, Wagner S, Marder TB, Ribou AC. Peptide Vectors Carry Pyrene to Cell Organelles Allowing Real-Time Quantification of Free Radicals in Mitochondria by Time-Resolved Fluorescence Microscopy. Chembiochem 2021; 22:1676-1685. [PMID: 33368947 DOI: 10.1002/cbic.202000845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/22/2020] [Indexed: 11/09/2022]
Abstract
Real-time quantification of reactive nitrogen and oxygen species (ROS) in cells is of paramount importance as they are essential for cellular functions. Their excessive formation contributes to the dysfunction of cells and organisms, ultimately leading to cell death. As ROS are mostly produced in the mitochondria, we have synthesized a fluorescent probe able to reach this organelle to detect and quantify, in real time, the variation of ROS by time-resolved microfluorimetry. The new probes are based on the long fluorescence lifetime of pyrene butyric acid (PBA). Two PBA isomers, attached at their 1- or 2-positions to a peptide vector to target mitochondria, were compared and were shown to allow the measurement of free radical species and oxygen, but not non-radical species such as H2 O2 .
Collapse
Affiliation(s)
- Mohamad Jamal Wawi
- Institute of Modeling and Analysis in Geo-environmental and Health (IMAGES_ESPACE-DEV), Université de Perpignan Via Domitia, Bât. B, 52 avenue P. Alduy, 66860, Perpignan, France.,ESPACE-DEV, UMR 228, Univ. Montpellier, IRD, Univ. Antilles, Univ. Guyane, Univ. Réunion, Maison de la télédétection, 500 rue Jean-François Breton, 34093, Montpellier, Cedex 5, France
| | - Amandine Bijoux
- Institute of Modeling and Analysis in Geo-environmental and Health (IMAGES_ESPACE-DEV), Université de Perpignan Via Domitia, Bât. B, 52 avenue P. Alduy, 66860, Perpignan, France
| | - Nicolas Inguimbert
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan Via Domitia, 58 avenue Paul Alduy, 66860, Perpignan, France
| | - Christoph Mahler
- Institut für Anorganische Chemie and, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Stephan Wagner
- Institut für Anorganische Chemie and, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Todd B Marder
- Institut für Anorganische Chemie and, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Anne-Cécile Ribou
- Institute of Modeling and Analysis in Geo-environmental and Health (IMAGES_ESPACE-DEV), Université de Perpignan Via Domitia, Bât. B, 52 avenue P. Alduy, 66860, Perpignan, France.,ESPACE-DEV, UMR 228, Univ. Montpellier, IRD, Univ. Antilles, Univ. Guyane, Univ. Réunion, Maison de la télédétection, 500 rue Jean-François Breton, 34093, Montpellier, Cedex 5, France
| |
Collapse
|
9
|
Sangweni NF, Moremane M, Riedel S, van Vuuren D, Huisamen B, Mabasa L, Barry R, Johnson R. The Prophylactic Effect of Pinocembrin Against Doxorubicin-Induced Cardiotoxicity in an In Vitro H9c2 Cell Model. Front Pharmacol 2020; 11:1172. [PMID: 32903793 PMCID: PMC7438920 DOI: 10.3389/fphar.2020.01172] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/17/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The clinical use of Doxorubicin (Dox) is significantly limited by its dose-dependent cardiotoxic side effect. Accumulative evidence suggests that the use of flavonoids, such as the antioxidative Pinocembrin (Pin), could be effective in the prevention of Dox-induced cardiotoxicity. Accordingly, we investigated the ability of pinocembrin (Pin) to attenuate Dox-induced cardiotoxicity in an in vitro H9c2 cardiomyoblast model. METHODOLOGY The cardioprotective potential of Pin was established in H9c2 cells. Here, cells were treated with Dox (2μM), Dox (2μM) + Pin (1μM), and Dox (2μM) + Dexrazoxane (20μM) for 6 days. Thereafter, the safe co-administration of Pin with Dox, in a cancer environment, was investigated in MCF-7 breast cancer cells subjected to the same experimental conditions. Untreated cells served as the control. Subsequently, Pin's ability to attenuate Dox-mediated oxidative stress, impaired mitochondrial bioenergetics and potential, as well as aggravated apoptosis was quantified using biochemical assays. RESULTS The results demonstrated that co-treatment with Pin mitigates Dox-induced oxidative stress by alleviating the antioxidant enzyme activity of the H9c2 cells. Pin further reduced the rate of apoptosis and necrosis inferred by Dox by improving mitochondrial bioenergetics. Interestingly, Pin did not decrease the efficacy of Dox but, rather increased the rate of apoptosis and necrosis in Dox-treated MCF-7 cells. CONCLUSION The findings presented in this study showed, for the first time, that Pin attenuates Dox-induced cardiotoxicity without reducing its chemotherapeutic effect. We propose that additional studies, using in vivo models, should be conducted to further investigate Pin as a suitable candidate in the prevention of the cardiovascular dysfunction inferred by Dox administration.
Collapse
Affiliation(s)
- Nonhlakanipho F. Sangweni
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Malebogo Moremane
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Sylvia Riedel
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Derick van Vuuren
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Barbara Huisamen
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Lawrence Mabasa
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, South Africa
| | - Reenen Barry
- Research and Development Department, Biopharm, Hamilton, New Zealand
| | - Rabia Johnson
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
10
|
Ma W, Wei S, Zhang B, Li W. Molecular Mechanisms of Cardiomyocyte Death in Drug-Induced Cardiotoxicity. Front Cell Dev Biol 2020; 8:434. [PMID: 32582710 PMCID: PMC7283551 DOI: 10.3389/fcell.2020.00434] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/08/2020] [Indexed: 01/08/2023] Open
Abstract
Homeostatic regulation of cardiomyocytes plays a crucial role in maintaining the normal physiological activity of cardiac tissue. Severe cardiotoxicity results in cardiac diseases including but not limited to arrhythmia, myocardial infarction and myocardial hypertrophy. Drug-induced cardiotoxicity limits or forbids further use of the implicated drugs. Such drugs that are currently available in the clinic include anti-tumor drugs (doxorubicin, cisplatin, trastuzumab, etc.), antidiabetic drugs (rosiglitazone and pioglitazone), and an antiviral drug (zidovudine). This review focused on cardiomyocyte death forms and related mechanisms underlying clinical drug-induced cardiotoxicity, including apoptosis, autophagy, necrosis, necroptosis, pryoptosis, and ferroptosis. The key proteins involved in cardiomyocyte death signaling were discussed and evaluated, aiming to provide a theoretical basis and target for the prevention and treatment of drug-induced cardiotoxicity in the clinical practice.
Collapse
Affiliation(s)
- Wanjun Ma
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
11
|
Roychoudhury S, Kumar A, Bhatkar D, Sharma NK. Molecular avenues in targeted doxorubicin cancer therapy. Future Oncol 2020; 16:687-700. [PMID: 32253930 DOI: 10.2217/fon-2019-0458] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
In recent, intra- and inter-tumor heterogeneity is seen as one of key factors behind success and failure of chemotherapy. Incessant use of doxorubicin (DOX) drug is associated with numerous post-treatment debacles including cardiomyopathy, health disorders, reversal of tumor and formation of secondary tumors. The module of cancer treatment has undergone evolutionary changes by achieving crucial understanding on molecular, genetic, epigenetic and environmental adaptations by cancer cells. Therefore, there is a paradigm shift in cancer therapeutic by employing amalgam of peptide mimetic, small RNA mimetic, DNA repair protein inhibitors, signaling inhibitors and epigenetic modulators to achieve targeted and personalized DOX therapy. This review summarizes on recent therapeutic avenues that can potentiate DOX effects by removing discernible pitfalls among cancer patients.
Collapse
Affiliation(s)
- Sayantani Roychoudhury
- Cancer & Translational Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| | - Ajay Kumar
- Cancer & Translational Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| | - Devyani Bhatkar
- Cancer & Translational Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| | - Nilesh Kumar Sharma
- Cancer & Translational Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India
| |
Collapse
|
12
|
Zhen J, Yu H, Ji H, Cai L, Leng J, Keller BB. Neonatal murine engineered cardiac tissue toxicology model: Impact of dexrazoxane on doxorubicin induced injury. Life Sci 2019; 239:117070. [PMID: 31751580 DOI: 10.1016/j.lfs.2019.117070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/28/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023]
Abstract
Doxorubicin (DOX) induced cardiotoxicity is a life-threatening side effect of chemotherapy and decreased cardiac function can present years after treatment. Despite the investigation of a broad range of pharmacologic interventions, to date the only drug shown to reduce DOX-related cardiotoxicity in preclinical studies and limited clinical trials is the iron chelating agent, dexrazoxane (DRZ), although the mechanisms responsible for DRZ mediated protection from DOX related cardiotoxicity remain unclear. Engineered cardiac tissues (ECTs) can be used for tissue repair strategies and as in vitro surrogate models to test cardiac toxicities and preventative countermeasures. Neonatal murine ECTs display cardiotoxicity in response to the environmental toxin, cadmium, and reduced cadmium toxicity with Zinc co-treatment, in part via the induction of the anti-oxidant Metallothionein (MT). We adapted our in vitro ECT model to determine the feasibility of using the ECT approach to investigate DOX-related cardiac injury and DRZ prevention. We found: (1) DOX induced dose and time dependent cell death in ECTs; (2) Zinc did not show protection from DOX cardiotoxicity; (3) MT overexpression induced by Zinc, low dose Cd pretreatment, or MT-overexpression (MT-TG) did not reduce ECT DOX cardiotoxicity; (4) DRZ reduced ECT DOX induced cell death; and (5) The mechanism of DRZ ECT protection from DOX cardiotoxicity was topoisomerase 2B (TOP2B) inhibition rather than reduced reactive oxygen species. Our data support the feasibility of ECTs as an in vitro platform technology for the investigation of drug induced cardiotoxicities including the role of TOP2B in DOX toxicity and DRZ mediated DOX toxicity prevention.
Collapse
Affiliation(s)
- Juan Zhen
- The First Hospital of Jilin University, Changchun 130021, China; The Pediatric Research Institute, Department of Pediatrics, the University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Haitao Yu
- The First Hospital of Jilin University, Changchun 130021, China; The Pediatric Research Institute, Department of Pediatrics, the University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Honglei Ji
- The First Hospital of Jilin University, Changchun 130021, China
| | - Lu Cai
- The Pediatric Research Institute, Department of Pediatrics, the University of Louisville School of Medicine, Louisville, KY 40292, USA; Department of Radiation Oncology, the University of Louisville School of Medicine, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Jiyan Leng
- The First Hospital of Jilin University, Changchun 130021, China.
| | - Bradley B Keller
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
13
|
Takaguri A, Akihiro O, Sasano J, Satoh K. Involvement of Yes-associated protein 1 (YAP1) in doxorubicin-induced cytotoxicity in H9c2 cardiac cells. Cell Biol Int 2019; 44:873-881. [PMID: 31833156 DOI: 10.1002/cbin.11285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/10/2019] [Indexed: 11/06/2022]
Abstract
Cardiac cell death is one of the major events implicated in doxorubicin-induced cardiotoxicity, which leads to heart failure. We recently reported that Yes-associated protein 1 (YAP1) regulates cell survival and apoptosis. However, it is unclear whether YAP1 regulates doxorubicin-induced cell death in cardiomyocytes. We investigated whether YAP1 is involved in doxorubicin-induced cell death using H9c2 cardiac cells and mouse heart. In an in vivo study, YAP1 protein expression was significantly decreased in hearts of doxorubicin-treated mice with increased caspase-3 activation. Doxorubicin also caused cell death by increasing caspase-3 activation in H9c2 cells. Doxorubicin reduced YAP1 protein expression and messenger RNA expression accompanied by increased phosphorylation of YAP1 at Ser127. Doxorubicin further increased cell death with increased caspase-3/7 activation in the absence of YAP1 when compared with doxorubicin or siYAP1 treatment alone. Overexpression of constitutively active YAP1 (YAP1-5SA) using an adenovirus gene transfer technique significantly reversed doxorubicin-induced cell death by decreasing caspase-3/7 activation in H9c2 cells. Akt, a potential prosurvival factor, decreased in doxorubicin- and YAP1 short interfering RNA (siRNA)-treated cells. Doxorubicin further significantly decreased Akt protein expression when YAP1 was silenced. Overexpression of YAP1 canceled decreased Akt protein expression induced by doxorubicin treatment in H9c2 cells. In conclusion, these results suggest that doxorubicin-induced cardiac cell death is mediated in part by down-regulation of YAP1 and YAP1-targeted gene, Akt. Modulating YAP1 and its related Hippo pathway on local cardiomyocytes may be a promising therapeutic approach for doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Akira Takaguri
- Department of Pharmacology, Hokkaido University of Science, 7-15-4-1 Maeda, Teine-ku, Sapporo, 006-8590, Japan
| | - Ohmiya Akihiro
- Department of Pharmacology, Hokkaido University of Science, 7-15-4-1 Maeda, Teine-ku, Sapporo, 006-8590, Japan
| | - Jun Sasano
- Department of Pharmacology, Hokkaido University of Science, 7-15-4-1 Maeda, Teine-ku, Sapporo, 006-8590, Japan
| | - Kumi Satoh
- Department of Pharmacology, Hokkaido University of Science, 7-15-4-1 Maeda, Teine-ku, Sapporo, 006-8590, Japan
| |
Collapse
|
14
|
Tavakoli Dargani Z, Singla DK. Embryonic stem cell-derived exosomes inhibit doxorubicin-induced TLR4-NLRP3-mediated cell death-pyroptosis. Am J Physiol Heart Circ Physiol 2019; 317:H460-H471. [PMID: 31172809 PMCID: PMC6732475 DOI: 10.1152/ajpheart.00056.2019] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023]
Abstract
Doxorubicin (Dox)-induced cardiac side effects are regulated through increased oxidative stress and apoptosis. However, it remains unknown whether Dox induces the specific inflammatory-mediated form of cell death called pyroptosis. The current study is undertaken to determine whether Dox induces pyroptosis in an in vitro model and to test the potential of exosomes derived from embryonic stem cells (ES-Exos) in inhibiting pyroptosis. H9c2 cells were exposed to Dox to generate pyroptosis and then subsequently treated with exosomes to investigate the protective effects of ES-Exos. Mouse embryonic fibroblast-exosomes (MEF-Exos) were used as a cell line control. We confirmed pyroptosis by analyzing the presence of Toll-like receptor 4 (TLR4)-pyrin domain containing-3 (NLRP3) inflammasome that initiates pyroptosis, which was further confirmed with pyroptotic markers caspase-1, IL-1β, caspase-11, and gasdermin-D. The presence of inflammation was confirmed for proinflammatory cytokines, TNF-α, and IL-6. Our data show that Dox exposure significantly (P < 0.05) increases expression of TLR4, NLRP3, pyroptotic markers (caspase-1, IL-1β, caspase-11, and gasdermin-D), and proinflammatory cytokines (TNF-α and IL-6) in H9c2 cells. The increased expression of inflammasome, pyroptosis, and inflammation was significantly (P < 0.05) inhibited by ES-Exos. Interestingly, our cell line control, MEF-Exos, did not show any protective effects. Furthermore, our cytokine array data suggest increased anti-inflammatory (IL-4, IL-9, and IL-13) and decreased proinflammatory cytokines (Fas ligand, IL-12, and TNF-α) in ES-Exos, suggesting that anti-inflammatory cytokines might be mediating the protective effects of ES-Exos. In conclusion, our data show that Dox induces pyroptotic cell death in the H9c2 cell culture model and is attenuated via treatment with ES-Exos.NEW & NOTEWORTHY Doxorubicin (Dox)-induced cardiotoxicity is mediated through increased oxidative stress, apoptosis, and necrosis. We report for the first time as per the best of our knowledge that Dox initiates Toll-like receptor 4 and pyrin domain containing-3 inflammasome formation and induces caspase-1-mediated inflammatory pyroptotic cell death in H9c2 cells. Moreover, we establish that inflammation and pyroptosis is inhibited by embryonic stem cell-derived exosomes that could be used as a future therapeutic option to treat Dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Zahra Tavakoli Dargani
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida
| |
Collapse
|
15
|
Sayed N, Ameen M, Wu JC. Personalized medicine in cardio-oncology: the role of induced pluripotent stem cell. Cardiovasc Res 2019; 115:949-959. [PMID: 30768178 PMCID: PMC6933506 DOI: 10.1093/cvr/cvz024] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/14/2019] [Accepted: 02/06/2019] [Indexed: 12/19/2022] Open
Abstract
Treatment of cancer has evolved in the last decade with the introduction of new therapies. Despite these successes, the lingering cardiotoxic side-effects from chemotherapy remain a major cause of morbidity and mortality in cancer survivors. These effects can develop acutely during treatment, or even years later. Although many risk factors can be identified prior to beginning therapy, unexpected toxicity still occurs, often with lasting consequences. Specifically, cardiotoxicity results in cardiac cell death, eventually leading to cardiomyopathy and heart failure. Certain risk factors may predispose an individual to experiencing adverse cardiovascular effects, and when unexpected cardiotoxicity occurs, it is generally managed with supportive care. Animal models of chemotherapy-induced cardiotoxicity have provided some mechanistic insights, but the precise mechanisms by which these drugs affect the heart remains unknown. Moreover, the genetic rationale as to why some patients are more susceptible to developing cardiotoxicity has yet to be determined. Many genome-wide association studies have identified genomic variants that could be associated with chemotherapy-induced cardiotoxicity, but the lack of validation has made these studies more speculative rather than definitive. With the advent of human induced pluripotent stem cell (iPSC) technology, researchers not only have the opportunity to model human diseases, but also to screen drugs for their efficacy and toxicity using human cell models. Furthermore, it allows us to conduct validation studies to confirm the role of genomic variants in human diseases. In this review, we discuss the role of iPSCs in modelling chemotherapy-induced cardiotoxicity.
Collapse
Affiliation(s)
- Nazish Sayed
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mohamed Ameen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
16
|
Rharass T, Lucas S. High Glucose Level Impairs Human Mature Bone Marrow Adipocyte Function Through Increased ROS Production. Front Endocrinol (Lausanne) 2019; 10:607. [PMID: 31551934 PMCID: PMC6746912 DOI: 10.3389/fendo.2019.00607] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022] Open
Abstract
Bone marrow adipocytes (BMAds) accumulate in aging, menopause, and metabolic diseases such as Type 2 diabetes. These osteoporotic conditions are associated with oxidative stress and hyperglycemia which are both considered as critical factors underlying bone fragility. Glucose excess and reactive oxygen species (ROS) are known to favor adipogenesis over osteoblastogenesis. In this study, we investigated whether high glucose exposure could determine dysfunction of mature BMAds, specifically through ROS production. The effects of low (LG, 5 mM) or high glucose (HG, 25 mM) concentrations were examined using human bone mesenchymal stromal cells (hBMSCs) in the time course of differentiation, and, up to 21 days once adipocytes were mature. HG did not alter the adipocyte differentiation process of hBMSCs. Yet, after 21 days under HG exposure, PPARG, CEBPA, and adiponectin mRNA expressions were decreased. These alterations were also observed following adipogenic inducer withdrawal as well as in adipocytes fully differentiated in LG then cultured in HG for the last 11 days. Without inducers, HG condition also led to decreased leptin mRNA level. Importantly, intracellular and extracellular ROS concentrations measured using Amplex Red were significantly raised by 50% under HG exposure. This rise was observed once adipocytes ended differentiation and was reproduced within the different cell culture settings without any cytotoxicity. Among genes involved in ROS metabolism, the mRNA level of the H2O2 generating enzyme NOX4 was found upregulated in the presence of HG. Following cell separation, mature BMAds were shown to overproduce ROS and to display the gene alterations in contrast to non-lipid-laden cells. Finally, a non-lethal treatment with a pro-oxidant agent under LG condition reduces the mRNA levels of PPARG, adiponectin, and leptin as the HG condition does in the absence of inducers, and amplifies the effect of glucose excess on gene expression. HG concentration drives mature BMAds toward altered expression of the main adipokines and transcriptional factors. These perturbations are associated with a rise in ROS generation likely mediated through enhanced expression of NOX4. Mature BMAds are thus responsive to changes in glucose and ROS concentrations, which is relevant regarding with their phenotype and function in age- or metabolic disease-related osteoporosis.
Collapse
|
17
|
Damiani RM, Moura DJ, Viau CM, Brito V, Morás AM, Henriques JAP, Saffi J. Influence of PARP-1 inhibition in the cardiotoxicity of the topoisomerase 2 inhibitors doxorubicin and mitoxantrone. Toxicol In Vitro 2018; 52:203-213. [PMID: 29913208 DOI: 10.1016/j.tiv.2018.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/17/2018] [Accepted: 06/12/2018] [Indexed: 02/07/2023]
Abstract
Doxorubicin (DOX) and Mitoxantrone (MTX) are very effective drugs for a range of tumors despite being highly cardiotoxic. DNA topoisomerase 2 beta (Top2ß) was revealed as key mediator of DOX-induced cardiotoxicity, although ROS generation is also an important mechanism. Oxidative stress is also an important issue in MTX-induced cardiotoxicity that is manifested by mitochondrial dysfunction. Studies have demonstrated the relationship between PARP-1 overactivation and cell viability in DOX-treated cardiomyocytes. In reference of MTX, data regarding PARP-1 overactivation as the mechanism responsible for cardiotoxicity is difficult to find. The aim of this study was to evaluate the influence of PARP-1 inhibitor DPQ on DOX- and MTX-mediated cardiotoxicity. Cells were exposed for 24 h to DOX or MTX in the presence or absence of DPQ. Viability, apoptosis, and genotoxicity assays were carried out. Immunofluorescence of phosphorylated histone H2AX was analyzed in H9c2 cells and cardiomyocytes from neonatal rats. Results demonstrated that DPQ co-treatment increases DOX-induced apoptosis in H9c2 cells. DPQ also prevents DOX and MTX-ROS generation in part by increasing SOD and CAT activities. Furthermore, DPQ co-treatment increased the generation of DNA strand breaks by DOX and MTX whilst also inducing phosphorylation of H2AX, MRE11, and ATM in H9c2 cells. Our results demonstrated that as well as increasing DNA damage and inducing apoptotic cell death, DPQ enhances DOX- and MTX-mediated cytotoxicity in H9c2.
Collapse
Affiliation(s)
- Roberto Marques Damiani
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite st., 245, Porto Alegre, RS, Brazil; Graduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves av., 9500, Porto Alegre, RS, Brazil; Centro Universitário Ritter dos Reis (UniRitter), Orfanotrófio st, 555, Porto Alegre, RS, Brazil.
| | - Dinara Jaqueline Moura
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite st., 245, Porto Alegre, RS, Brazil
| | - Cassiana Macagnan Viau
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite st., 245, Porto Alegre, RS, Brazil
| | - Verônica Brito
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite st., 245, Porto Alegre, RS, Brazil
| | - Ana Moira Morás
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite st., 245, Porto Alegre, RS, Brazil
| | - João Antonio Pêgas Henriques
- Graduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves av., 9500, Porto Alegre, RS, Brazil; Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves av., 9500, Porto Alegre, RS, Brazil
| | - Jenifer Saffi
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite st., 245, Porto Alegre, RS, Brazil; Graduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves av., 9500, Porto Alegre, RS, Brazil
| |
Collapse
|
18
|
Zhu JY, Fu Y, Richman A, Zhao Z, Ray PE, Han Z. A Personalized Model of COQ2 Nephropathy Rescued by the Wild-Type COQ2 Allele or Dietary Coenzyme Q 10 Supplementation. J Am Soc Nephrol 2017; 28:2607-2617. [PMID: 28428331 DOI: 10.1681/asn.2016060626] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 03/09/2017] [Indexed: 12/26/2022] Open
Abstract
Clinical studies have identified patients with nephrotic syndrome caused by mutations in genes involved in the biosynthesis of coenzyme Q10 (CoQ10), a lipid component of the mitochondrial electron transport chain and an important antioxidant. However, the cellular mechanisms through which these mutations induce podocyte injury remain obscure. Here, we exploited the striking similarities between Drosophila nephrocytes and human podocytes to develop a Drosophila model of these renal diseases, and performed a systematic in vivo analysis assessing the role of CoQ10 pathway genes in renal function. Nephrocyte-specific silencing of Coq2, Coq6, and Coq8, which are genes involved in the CoQ10 pathway that have been associated with genetic nephrotic syndrome in humans, induced dramatic adverse changes in these cells. In particular, silencing of Coq2 led to an abnormal localization of slit diaphragms, collapse of lacunar channels, and more dysmorphic mitochondria. In addition, Coq2-deficient nephrocytes showed elevated levels of autophagy and mitophagy, increased levels of reactive oxygen species, and increased sensitivity to oxidative stress. Dietary supplementation with CoQ10 at least partially rescued these defects. Furthermore, expressing the wild-type human COQ2 gene specifically in nephrocytes rescued the defective protein uptake, but expressing the mutant allele derived from a patient with COQ2 nephropathy did not. We conclude that transgenic Drosophila lines carrying mutations in the CoQ10 pathway genes are clinically relevant models with which to explore the pathogenesis of podocyte injury and could serve as a new platform to test novel therapeutic approaches.
Collapse
Affiliation(s)
- Jun-Yi Zhu
- Centers for Cancer and Immunology Research and
| | - Yulong Fu
- Centers for Cancer and Immunology Research and
| | | | - Zhanzheng Zhao
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; and
| | - Patricio E Ray
- Genetic Medicine Research, Children's National Health System, Washington, DC.,Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Zhe Han
- Centers for Cancer and Immunology Research and .,Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC
| |
Collapse
|
19
|
Zhao L, Zhang B. Doxorubicin induces cardiotoxicity through upregulation of death receptors mediated apoptosis in cardiomyocytes. Sci Rep 2017; 7:44735. [PMID: 28300219 PMCID: PMC5353581 DOI: 10.1038/srep44735] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/13/2017] [Indexed: 12/30/2022] Open
Abstract
Doxorubicin is a highly effective anticancer agent but causes cardiotoxicity in many patients. The mechanisms of doxorubicin-induced cardiotoxicity remain incompletely understood. Here we investigated doxorubicin-induced cytotoxicity in human induced pluripotent stem cells-derived cardiomyocytes (iPS-CMs). We found that doxorubicin and related anthracycline agents (e.g., daunorubicin, idarubicin, and epirubicin) significantly upregulated the expression of death receptors (DRs) (TNFR1, Fas, DR4 and DR5) in iPS-derived cardiomyocytes at both protein and mRNA levels. The resulting iPS-CMs cells underwent spontaneous apoptosis which was further enhanced by physiologically relevant death ligands including TNF-related apoptosis inducing ligand (TRAIL). Furthermore, TRAIL potentiated doxorubicin-induced decrease in beating rate and amplitude of iPS-derived cardiomyocytes. These data demonstrate that the induction of death receptors in cardiomyocytes is likely a critical mechanism by which doxorubicin causes cardiotoxicity.
Collapse
Affiliation(s)
- Liqun Zhao
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Baolin Zhang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
20
|
Statins in anthracycline-induced cardiotoxicity: Rac and Rho, and the heartbreakers. Cell Death Dis 2017; 8:e2564. [PMID: 28102848 PMCID: PMC5386353 DOI: 10.1038/cddis.2016.418] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/02/2016] [Indexed: 01/06/2023]
Abstract
Cancer patients receiving anthracycline-based chemotherapy are at risk to develop life-threatening chronic cardiotoxicity with the pathophysiological mechanism of action not fully understood. Besides the most common hypothesis that anthracycline-induced congestive heart failure (CHF) is mainly caused by generation of reactive oxygen species, recent data point to a critical role of topoisomerase II beta (TOP2B), which is a primary target of anthracycline poisoning, in the pathophysiology of CHF. As the use of the only clinically approved cardioprotectant dexrazoxane has been limited by the FDA in 2011, there is an urgent need for alternative cardioprotective measures. Statins are anti-inflammatory and anti-oxidative drugs that are clinically well established for the prevention of cardiovascular diseases. They exhibit pleiotropic beneficial properties beyond cholesterol-lowering effects that most likely rest on the indirect inhibition of small Ras homologous (Rho) GTPases. The Rho GTPase Rac1 has been shown to be a major factor in the regulation of the pro-oxidative NADPH oxidase as well as in the regulation of type II topoisomerase. Both are discussed to play an important role in the pathophysiology of anthracycline-induced CHF. Therefore, off-label use of statins or novel Rac1 inhibitors might represent a promising pharmacological approach to gain control over chronic cardiotoxicity by interfering with key mechanisms of anthracycline-induced cardiomyocyte cell death.
Collapse
|
21
|
Ribou AC. Synthetic Sensors for Reactive Oxygen Species Detection and Quantification: A Critical Review of Current Methods. Antioxid Redox Signal 2016; 25:520-33. [PMID: 27225539 DOI: 10.1089/ars.2016.6741] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
SIGNIFICANCE Redox reactions play important roles in both physiological and pathological processes, highlighting the importance of quantifying and localizing intracellular redox-active components. Most research has focused on direct investigation of reactive oxygen species (ROS). Intensity-based fluorescent methods are very sensitive and easy to use, but they lack specificity and can produce artifacts. In this article, we focus on synthetic sensors, describing experimental pitfalls associated with their use. We also present alternative methods for the detection of free radicals. RECENT ADVANCES New approaches have been developed to overcome the main artifact of intensity-based methods: spurious changes in fluorescence intensity caused by oxidation. These new approaches are based on analytical measurements of the oxidized sensors or techniques that are not susceptible to oxidation, such as electron spin resonance and fluorescence lifetime-based methods. Regardless of the approach, the need for detection of ROS on the subcellular level, especially in the mitochondria, has motivated the development of new probes. CRITICAL ISSUES Flow cytometry systems and confocal microscopes are now available to the majority of biologists, and commercially available probes are, therefore, more widely used. The fact that these new applications are cited in thousands of publications makes these sensors even more attractive. FUTURE DIRECTIONS The field of ROS detection by synthetic sensors continues to expand, bringing needed additional research to the development of robust techniques that are applicable both in vitro and in vivo. Antioxid. Redox Signal. 25, 520-533.
Collapse
Affiliation(s)
- Anne-Cécile Ribou
- Institute of Modeling and Analysis in Geo-Environmental and Health (IMAGES_ESPACE-DEV), University of Perpignan Via Domitia , Perpignan, France
| |
Collapse
|
22
|
Chegaev K, Rolando B, Cortese D, Gazzano E, Buondonno I, Lazzarato L, Fanelli M, Hattinger CM, Serra M, Riganti C, Fruttero R, Ghigo D, Gasco A. H2S-Donating Doxorubicins May Overcome Cardiotoxicity and Multidrug Resistance. J Med Chem 2016; 59:4881-9. [PMID: 27120394 DOI: 10.1021/acs.jmedchem.6b00184] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Doxorubicin (DOXO) is one of the most effective antineoplastic agents in clinical practice. Its use is limited by acute and chronic side effects, in particular by its cardiotoxicity and by the rapid development of resistance to it. As part of a program aimed at developing new DOXO derivatives endowed with reduced cardiotoxicity, and active against DOXO-resistant tumor cells, a series of H2S-releasing DOXOs (H2S-DOXOs) were obtained by combining DOXO with appropriate H2S donor substructures. The resulting compounds were studied on H9c2 cardiomyocytes and in DOXO-sensitive U-2OS osteosarcoma cells, as well as in related cell variants with increasing degrees of DOXO-resistance. Differently from DOXO, most of the products were not toxic at 5 μM concentration on H9c2 cells. A few of them triggered high activity on the cancer cells. H2S-DOXOs 10 and 11 emerged as the most interesting members of the series. The capacity of 10 to impair Pgp transporter is also discussed.
Collapse
Affiliation(s)
- Konstantin Chegaev
- Department of Science and Drug Technology, University of Torino , via Pietro Giuria 9, 10125 Torino, Italy
| | - Barbara Rolando
- Department of Science and Drug Technology, University of Torino , via Pietro Giuria 9, 10125 Torino, Italy
| | - Daniela Cortese
- Department of Science and Drug Technology, University of Torino , via Pietro Giuria 9, 10125 Torino, Italy
| | - Elena Gazzano
- Department of Oncology and Center for Experimental Research and Medical Studies (CeRMS), University of Torino , via Santena, 5/bis, 10126 Torino, Italy
| | - Ilaria Buondonno
- Department of Oncology and Center for Experimental Research and Medical Studies (CeRMS), University of Torino , via Santena, 5/bis, 10126 Torino, Italy
| | - Loretta Lazzarato
- Department of Science and Drug Technology, University of Torino , via Pietro Giuria 9, 10125 Torino, Italy
| | - Marilù Fanelli
- Orthopaedic Rizzoli Institute, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit , via G. C. Pupilli 1, 40136 Bologna, Italy
| | - Claudia M Hattinger
- Orthopaedic Rizzoli Institute, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit , via G. C. Pupilli 1, 40136 Bologna, Italy
| | - Massimo Serra
- Orthopaedic Rizzoli Institute, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit , via G. C. Pupilli 1, 40136 Bologna, Italy
| | - Chiara Riganti
- Department of Oncology and Center for Experimental Research and Medical Studies (CeRMS), University of Torino , via Santena, 5/bis, 10126 Torino, Italy
| | - Roberta Fruttero
- Department of Science and Drug Technology, University of Torino , via Pietro Giuria 9, 10125 Torino, Italy
| | - Dario Ghigo
- Department of Oncology and Center for Experimental Research and Medical Studies (CeRMS), University of Torino , via Santena, 5/bis, 10126 Torino, Italy
| | - Alberto Gasco
- Department of Science and Drug Technology, University of Torino , via Pietro Giuria 9, 10125 Torino, Italy
| |
Collapse
|