1
|
Mi J, Zhang H, Jiang X, Yi Y, Cao W, Song C, Yuan C. lncRNA MIAT promotes luminal B breast cancer cell proliferation, migration, and invasion in vitro. J Appl Genet 2024; 65:309-319. [PMID: 37987972 DOI: 10.1007/s13353-023-00807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023]
Abstract
Long noncoding RNAs (lncRNAs) play a role in the emergence and progression of several human tumors, including luminal B breast cancer (BC). The biological functions and potential mechanisms of lncRNA myocardial infarction-associated transcripts (MIAT) in luminal B BC, on the contrary, are unknown. In this work, we used UALCAN database analysis to find high expression of lncRNA MIAT in luminal BC tissues and also confirmed high levels of lncRNA MIAT expression in luminal B BC tissues and cells. In vitro knockdown of MIAT inhibited the proliferation, migration, and invasion of BT474 cells. In addition, we found that miR-150-5p levels were significantly reduced in luminal B BC specimens and cells, and miR-150-5p levels were significantly increased when MIAT was knocked down. And TIMER database analysis showed that MIAT was positively associated with PDL1. Through bioinformatic tools and in vitro experiments, lncRNA MIAT could function as a competitive endogenous RNA (CeRNA) to further regulate programmed cell death ligand 1 (PDL1) expression by directly sponging miR-150-5p. In conclusion, our data suggest that MIAT, an oncogene, may sponge miR-150-5p to regulate PDL1 expression and affect proliferation, migration, and invasion in luminal B BC in vitro.
Collapse
Affiliation(s)
- Jintao Mi
- Molecular Immunology, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Hongsheng Zhang
- Molecular Immunology, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Xuemei Jiang
- Department of Breast Surgery, People's Hospital of Deyang City, Deyang, 618000, Sichuan, China
| | - Ying Yi
- Department of Breast Surgery, People's Hospital of Deyang City, Deyang, 618000, Sichuan, China
| | - Weiwei Cao
- Department of Clinical Laboratory, People's Hospital of Deyang City, Deyang, 618000, Sichuan, China
| | - Chunjiao Song
- Department of Clinical Laboratory, People's Hospital of Deyang City, Deyang, 618000, Sichuan, China
| | - Chengliang Yuan
- Department of Clinical Laboratory, People's Hospital of Deyang City, Deyang, 618000, Sichuan, China.
| |
Collapse
|
2
|
Abdul Manap AS, Wisham AA, Wong FW, Ahmad Najmi HR, Ng ZF, Diba RS. Mapping the function of MicroRNAs as a critical regulator of tumor-immune cell communication in breast cancer and potential treatment strategies. Front Cell Dev Biol 2024; 12:1390704. [PMID: 38726321 PMCID: PMC11079208 DOI: 10.3389/fcell.2024.1390704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Among women, breast cancer ranks as the most prevalent form of cancer, and the presence of metastases significantly reduces prognosis and diminishes overall survival rates. Gaining insights into the biological mechanisms governing the conversion of cancer cells, their subsequent spread to other areas of the body, and the immune system's monitoring of tumor growth will contribute to the advancement of more efficient and targeted therapies. MicroRNAs (miRNAs) play a critical role in the interaction between tumor cells and immune cells, facilitating tumor cells' evasion of the immune system and promoting cancer progression. Additionally, miRNAs also influence metastasis formation, including the establishment of metastatic sites and the transformation of tumor cells into migratory phenotypes. Specifically, dysregulated expression of these genes has been associated with abnormal expression of oncogenes and tumor suppressor genes, thereby facilitating tumor development. This study aims to provide a concise overview of the significance and function of miRNAs in breast cancer, focusing on their involvement as tumor suppressors in the antitumor immune response and as oncogenes in metastasis formation. Furthermore, miRNAs hold tremendous potential as targets for gene therapy due to their ability to modulate specific pathways that can either promote or suppress carcinogenesis. This perspective highlights the latest strategies developed for miRNA-based therapies.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- Department of Biomedical Science, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Fei Wen Wong
- Faculty of Biosciences, MAHSA University, Kuala Langat, Selangor, Malaysia
| | | | - Zhi Fei Ng
- Faculty of Biosciences, MAHSA University, Kuala Langat, Selangor, Malaysia
| | | |
Collapse
|
3
|
Mohanan NK, Shaji F, Sudheesh AP, Bangalore Prabhashankar A, Sundaresan NR, Laishram RS. Star-PAP controls oncogene expression through primary miRNA 3'-end formation to regulate cellular proliferation and tumour formation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167080. [PMID: 38364942 DOI: 10.1016/j.bbadis.2024.167080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Star-PAP is a non-canonical poly(A) polymerase that is down regulated in breast cancer. While Star-PAP down regulation impairs target mRNA polyadenylation, paradoxically, we see up regulation of a large number of oncogenes on Star-PAP knockdown. Using two breast cancer cells (MCF7 with high Star-PAP, and MDA-MB-231 with negligible Star-PAP level), we discover that Star-PAP negatively regulates oncogene expression and subsequently cellular proliferation. This regulation is compromised with Star-PAP mutant of 3'-end processing function (serine 6 to alanine, S6A phospho-mutation). Concomitantly, xenograft mice model using MDA-MB-231 cells reveals a reduction in the tumour formation on ectopic Star-PAP expression that is ameliorated by S6A mutation. We find that Star-PAP control of target oncogene expression is independent of Star-PAP-mediated alternative polyadenylation or target mRNA 3'-end formation. We demonstrate that Star-PAP regulates target oncogenes through cellular miRNAs (miR-421, miR-335, miR-424, miR-543, miR-205, miR-34a, and miR-26a) that are down regulated in breast cancer. Analysis of various steps in miRNA biogenesis pathway reveals that Star-PAP regulates 3'-end formation and synthesis of primary miRNA (host) transcripts that is dependent on S6 phosphorylation thus controlling mature miRNA generation. Using mimics and inhibitors of two target miRNAs (miR-421 and miR-424) after Star-PAP depletion in MCF7 or ectopic expression in MDA-MB-231 cells, we demonstrate that Star-PAP controls oncogene expression and cellular proliferation through targeting miRNAs that regulates tumour formation. Our study establishes a novel mechanism of oncogene expression independent of alternative polyadenylation through Star-PAP-mediated miRNA host transcript polyadenylation that regulates breast cancer progression.
Collapse
Affiliation(s)
- Neeraja K Mohanan
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India; Manipal Academy of Higher Education, Manipal 576104, India
| | - Feba Shaji
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India; Regional Centre for Biotechnology, Faridabad 121001, India
| | - A P Sudheesh
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India
| | | | - Nagalingam R Sundaresan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Rakesh S Laishram
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India.
| |
Collapse
|
4
|
Wang Y, Gong Y, Li X, Long W, Zhang J, Wu J, Dong Y. Targeting the ZNF-148/miR-335/SOD2 signaling cascade triggers oxidative stress-mediated pyroptosis and suppresses breast cancer progression. Cancer Med 2023; 12:21308-21320. [PMID: 37909239 PMCID: PMC10726847 DOI: 10.1002/cam4.6673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/24/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND The implication of zinc finger protein 148 (ZNF-148) in pathophysiology of most human cancers has been reported; however, the biological functions of ZNF-148 in breast cancer remain unclear. This study sought to elucidate the potential molecular mechanism of ZNF-148 on breast cancer pathology. METHODS ZNF148 expression was tested in breast cancer tissues and cells. Then, cells were transfected with ZNF-148 overexpression or downregulation vector, and the cell proliferation, pyroptosis, apoptosis, and reactive oxygen species (ROS) production were analyzed by MTT, western blot, flow cytometry, and immunofluorescence staining, respectively. Tumor-bearing nude mouse was used to evaluate tumorigenesis of ZNF-148. Mechanisms underpinning ZNF-148 were examined using bioinformatics and luciferase assays. RESULTS We found that ZNF-148 was upregulated in breast cancer tissues and cell lines. Knockdown of ZNF-148 suppressed malignant phenotypes, including cell proliferation, epithelial-mesenchymal transition, and tumorigenesis in vitro and in vivo, while ZNF-148 overexpression had the opposite effects. Further experiments showed that ZNF-148 deficiency promoted ROS production and triggered both apoptotic and pyroptotic cell death, which were restored by cotreating cells with ROS scavengers. A luciferase reporter assay revealed that miR-335 was the downstream target of ZNF-148 and that overexpressed ZNF-148 increased superoxide dismutase 2 (SOD2) expression by sponging miR-335. In parallel, both miR-335 downregulation and SOD2 overexpression abrogated the antitumor effects of ZNF-148 deficiency on proliferation and pyroptosis in breast cancer cells. CONCLUSIONS Our findings indicated that ZNF-148 promotes breast cancer progression by triggering miR-335/SOD2/ROS-mediated pyroptotic cell death and aid the identification of potential therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Yanmei Wang
- Department of Breast SurgeryFirst affiliated hospital of Kunming Medical UniversityKunmingPeople's Republic of China
| | - Yansi Gong
- Department of Breast SurgeryFirst affiliated hospital of Kunming Medical UniversityKunmingPeople's Republic of China
| | - Xuesha Li
- Department of Breast SurgeryFirst affiliated hospital of Kunming Medical UniversityKunmingPeople's Republic of China
| | - Weizhao Long
- Department of Breast SurgeryFirst affiliated hospital of Kunming Medical UniversityKunmingPeople's Republic of China
| | - Jiayu Zhang
- Department of Breast SurgeryFirst affiliated hospital of Kunming Medical UniversityKunmingPeople's Republic of China
| | - Jiefang Wu
- School of MedicineYunnan UniversityKunmingPeople's Republic of China
| | - Yilong Dong
- School of MedicineYunnan UniversityKunmingPeople's Republic of China
| |
Collapse
|
5
|
Chiang CW, Lin YS, Chang FL, Lin TY, Tsai KC, HuangFu WC, Lee YC. Single-chain fragment antibody disrupting the EphA4 function as a therapeutic drug for gastric cancer. Biochem Biophys Res Commun 2023; 680:161-170. [PMID: 37741263 DOI: 10.1016/j.bbrc.2023.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023]
Abstract
Studies have shown that the high expression of EphA4 in gastric cancer tissues may correlate with unfavorable clinical pathological characteristics. Therefore, EphA4 may be an effective target for treating gastric cancer in addition to HER-2/neu. In this study, generated scFv S3 can bind endogenous EphA4 of gastric cancer cells and has significant membrane staining. Additionally, scFv S3 binding to EphA4 inhibits the growth and migration of cancer cells and the growth induction that ephrinA1 generates in gastric cancer cells. We found that EphA4 molecules may degrade through antibody treatment of cells, and the increase in LAMP1 and LAMP2 indicates that lysosome is involved in the degradation. The scFv S3 administration leads to the signals pAKT, pERK, and pSTAT3 decrease in cancer cells. The xenograft model of HER-2/neu low expressing gastric cancer cell SNU-16 exhibits better therapeutic effects by scFv S3 than trastuzumab scFv. The scFv S3 administration in vivo can degrade EphA4 molecules in tumor tissues, decreasing Ki67 and increasing cleaved C3 molecule expression. Furthermore, we identified and validated that scFv S3 generates essential ionic bonding with R162 on EphA4. The antibody may provide effective treatment for patients with gastric cancer and abnormal activation or overexpression of EphA4 signaling.
Collapse
Affiliation(s)
- Chen-Wei Chiang
- Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yun-Shih Lin
- Department of Psychiatry, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Fu-Ling Chang
- Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tsai-Yu Lin
- Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan; Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chun HuangFu
- Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| | - Yu-Ching Lee
- Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
6
|
Alidoost Z, Attari F, Saadatpour F, Arefian E. Inhibitory effect of miR342 on the progression of triple-negative breast cancer cells in vitro and in the mice model. BIOIMPACTS : BI 2023; 14:27758. [PMID: 38327636 PMCID: PMC10844590 DOI: 10.34172/bi.2023.27758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/05/2023] [Accepted: 06/12/2023] [Indexed: 02/09/2024]
Abstract
Introduction Breast cancer is the most common cancer in women worldwide, and the triple-negative subtype is the most invasive, with limited therapeutic options. Since miRNAs are involved in many cellular processes, they harbor great value for cancer treatment. Therefore, in this study, we have investigated the anti-proliferative and anti-invasive roles of miR342 in 4T1 triple-negative cells in vitro and also studied the effect of this miRNA on tumor progression and the expression of its target genes in vivo. Methods 4T1 cells were transduced with conditioned media of miR342-transfected Hek-LentiX cells. MTT and clonogenic assays were used to assess the viability and colony-forming ability of 4T1 cells. Apoptosis and invasion rates were respectively evaluated by annexin/7-AAD and wound healing assays. At last, in vivo tumor progression was evaluated using H&E staining, real-time PCR, and immunohistochemistry. Results The viability of transduced-4T1 cells reduced significantly 48 hours after cell seeding and colony forming ability of these cells reduced to 50% of the control group. Also, miR342 imposed apoptotic and anti-invasive influence on these cells in vitro. A 30-day follow-up of the breast tumor in the mice model certified significant growth suppression along with reduced mitotic index and tumor grade in the treatment group. Moreover, decreased expression of Bcl2l1, Mcl1, and ID4, as miR342 target genes, was observed, accompanied by reduced expression of VEGF and Bcl2/Bax ratio at the protein level. Conclusion To conclude, our data support the idea that miR342 might be a potential therapeutic target for the treatment of triple-negative breast cancer (TNBC).
Collapse
Affiliation(s)
- Zahra Alidoost
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Farnoosh Attari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Saadatpour
- Molecular Virology Lab, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ehsan Arefian
- Molecular Virology Lab, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
7
|
Collins KE, Wang X, Klymenko Y, Davis NB, Martinez MC, Zhang C, So K, Buechlein A, Rusch DB, Creighton CJ, Hawkins SM. Transcriptomic analyses of ovarian clear-cell carcinoma with concurrent endometriosis. Front Endocrinol (Lausanne) 2023; 14:1162786. [PMID: 37621654 PMCID: PMC10445169 DOI: 10.3389/fendo.2023.1162786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/17/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction Endometriosis, a benign inflammatory disease whereby endometrial-like tissue grows outside the uterus, is a risk factor for endometriosis-associated ovarian cancers. In particular, ovarian endometriomas, cystic lesions of deeply invasive endometriosis, are considered the precursor lesion for ovarian clear-cell carcinoma (OCCC). Methods To explore this transcriptomic landscape, OCCC from women with pathology-proven concurrent endometriosis (n = 4) were compared to benign endometriomas (n = 4) by bulk RNA and small-RNA sequencing. Results Analysis of protein-coding genes identified 2449 upregulated and 3131 downregulated protein-coding genes (DESeq2, P< 0.05, log2 fold-change > |1|) in OCCC with concurrent endometriosis compared to endometriomas. Gene set enrichment analysis showed upregulation of pathways involved in cell cycle regulation and DNA replication and downregulation of pathways involved in cytokine receptor signaling and matrisome. Comparison of pathway activation scores between the clinical samples and publicly-available datasets for OCCC cell lines revealed significant molecular similarities between OCCC with concurrent endometriosis and OVTOKO, OVISE, RMG1, OVMANA, TOV21G, IGROV1, and JHOC5 cell lines. Analysis of miRNAs revealed 64 upregulated and 61 downregulated mature miRNA molecules (DESeq2, P< 0.05, log2 fold-change > |1|). MiR-10a-5p represented over 21% of the miRNA molecules in OCCC with endometriosis and was significantly upregulated (NGS: log2fold change = 4.37, P = 2.43e-18; QPCR: 8.1-fold change, P< 0.05). Correlation between miR-10a expression level in OCCC cell lines and IC50 (50% inhibitory concentration) of carboplatin in vitro revealed a positive correlation (R2 = 0.93). MiR-10a overexpression in vitro resulted in a significant decrease in proliferation (n = 6; P< 0.05) compared to transfection with a non-targeting control miRNA. Similarly, the cell-cycle analysis revealed a significant shift in cells from S and G2 to G1 (n = 6; P< 0.0001). Bioinformatic analysis predicted that miR-10a-5p target genes that were downregulated in OCCC with endometriosis were involved in receptor signaling pathways, proliferation, and cell cycle progression. MiR-10a overexpression in vitro was correlated with decreased expression of predicted miR-10a target genes critical for proliferation, cell-cycle regulation, and cell survival including [SERPINE1 (3-fold downregulated; P< 0.05), CDK6 (2.4-fold downregulated; P< 0.05), and RAP2A (2-3-fold downregulated; P< 0.05)]. Discussion These studies in OCCC suggest that miR-10a-5p is an impactful, potentially oncogenic molecule, which warrants further studies.
Collapse
Affiliation(s)
- Kaitlyn E. Collins
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiyin Wang
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Yuliya Klymenko
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Noah B. Davis
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Maria C. Martinez
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kaman So
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Aaron Buechlein
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, United States
| | - Douglas B. Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, United States
| | - Chad J. Creighton
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Shannon M. Hawkins
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
8
|
Foruzandeh Z, Alivand MR, Ghiami-Rad M, Zaefizadeh M, Ghorbian S. Identification and validation of miR-583 and mir-877-5p as biomarkers in patients with breast cancer: an integrated experimental and bioinformatics research. BMC Res Notes 2023; 16:72. [PMID: 37158948 PMCID: PMC10169388 DOI: 10.1186/s13104-023-06343-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 04/28/2023] [Indexed: 05/10/2023] Open
Abstract
OBJECTIVES Breast cancer (BC) is one of the most common cancers with a high mortality rate in women worldwide. The advantages of early cancer diagnosis are apparent, and it is a critical factor in increasing the patient's life and survival. According to mounting evidence, microRNAs (miRNAs) may be crucial regulators of critical biological processes. miRNA dysregulation has been linked to the beginning and progression of various human malignancies, including BC, and can operate as tumor suppressors or oncomiRs. This study aimed to identify novel miRNA biomarkers in BC tissues and non-tumor adjacent tissues of patients with BC. Microarray datasets GSE15852 and GSE42568 for differentially expressed genes (DEGs) and GSE45666, GSE57897, and GSE40525 for differentially expressed miRNAs (DEMs) retrieved from the Gene Expression Omnibus (GEO) database were analyzed using "R" software. A protein-protein interaction (PPI) network was created to identify the hub genes. MirNet, miRTarBase, and MirPathDB databases were used to predict DEMs targeted genes. Functional enrichment analysis was used to demonstrate the topmost classifications of molecular pathways. The prognostic capability of selected DEMs was evaluated through a Kaplan-Meier plot. Moreover, the specificity and sensitivity of detected miRNAs to discriminate BC from adjacent controls were assessed by area under the curve (AUC) using the ROC curve analysis. In the last phase of this study, gene expression on 100 BC tissues and 100 healthy adjacent tissues were analyzed and calculated by using the Real-Time PCR method. RESULTS This study declared that miR-583 and miR-877-5p were downregulated in tumor samples in comparison to adjacent non-tumor samples (|logFC|< 0 and P ≤ 0.05). Accordingly, ROC curve analysis demonstrated the biomarker potential of miR-877-5p (AUC = 0.63) and miR-583 (AUC = 0.69). Our results showed that has-miR-583 and has-miR-877-5p could be potential biomarkers in BC.
Collapse
Affiliation(s)
- Zahra Foruzandeh
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Mohammad Reza Alivand
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Mehdi Ghiami-Rad
- Department of Microbiology, Faculty of Basic Sciences, Ahar Branch, Islamic Azad University, Ahar, Iran
| | | | - Saeid Ghorbian
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran
| |
Collapse
|
9
|
Kim WR, Park EG, Lee YJ, Bae WH, Lee DH, Kim HS. Integration of TE Induces Cancer Specific Alternative Splicing Events. Int J Mol Sci 2022; 23:10918. [PMID: 36142830 PMCID: PMC9502224 DOI: 10.3390/ijms231810918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Alternative splicing of messenger RNA (mRNA) precursors contributes to genetic diversity by generating structurally and functionally distinct transcripts. In a disease state, alternative splicing promotes incidence and development of several cancer types through regulation of cancer-related biological processes. Transposable elements (TEs), having the genetic ability to jump to other regions of the genome, can bring about alternative splicing events in cancer. TEs can integrate into the genome, mostly in the intronic regions, and induce cancer-specific alternative splicing by adjusting various mechanisms, such as exonization, providing splicing donor/acceptor sites, alternative regulatory sequences or stop codons, and driving exon disruption or epigenetic regulation. Moreover, TEs can produce microRNAs (miRNAs) that control the proportion of transcripts by repressing translation or stimulating the degradation of transcripts at the post-transcriptional level. Notably, TE insertion creates a cancer-friendly environment by controlling the overall process of gene expression before and after transcription in cancer cells. This review emphasizes the correlative interaction between alternative splicing by TE integration and cancer-associated biological processes, suggesting a macroscopic mechanism controlling alternative splicing by TE insertion in cancer.
Collapse
Affiliation(s)
- Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Woo Hyeon Bae
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| |
Collapse
|
10
|
Ali Ahmed E, Abd El-Basit SA, Mohamed MA, Swellam M. Clinical role of MiRNA 29a and MiRNA 335 on breast cancer management: their relevance to MMP2 protein level. Arch Physiol Biochem 2022; 128:1058-1065. [PMID: 32267166 DOI: 10.1080/13813455.2020.1749085] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Circulating miRNAs are novel biomarkers, authors aimed to investigate the expression level of miR-29a and miR-335 and their relevance to CEA, CA15.3, and matrix metalloproteinase-2 (MMP2). MATERIALS AND METHODS Breast cancer (BC) patients (n = 44), benign breast lesion patients (n = 25), and healthy individuals (n = 19) were enrolled for detection of miRNA expression levels, MMP2 and biochemical markers using quantitative polymerase chain reaction (PCR) and ELISA, respectively. RESULTS Expression of miR-29a and miR-335 were significantly decreased in breast patients as compared to healthy individuals, while biochemical markers were high in BC patients as compared to the other two groups. The diagnostic efficacy for miR-29a, miR-335, and MMP2 were superior to both CEA and CA 15.3 for early detection of BC patients. CONCLUSIONS Detection of the miR-29a and miR335 expression levels in serum samples are significant promising biomarkers for BC diagnosis.
Collapse
Affiliation(s)
- Elham Ali Ahmed
- Zoology Department, Faculty of Science (Girls), Al-Azhar University, Cairo, Egypt
| | - Sohir A Abd El-Basit
- Zoology Department, Faculty of Science (Girls), Al-Azhar University, Cairo, Egypt
| | - Mona A Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science (Girls), Al-Azhar University, Cairo, Egypt
| | - Menha Swellam
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division, Giza, Egypt
- High Throughput Molecular and Genetic Laboratory, Center for Excellences for Advanced Sciences, National Research Centre, Giza, Egypt
| |
Collapse
|
11
|
Wolff DW, Deng Z, Bianchi-Smiraglia A, Foley CE, Han Z, Wang X, Shen S, Rosenberg MM, Moparthy S, Yun DH, Chen J, Baker BK, Roll MV, Magiera AJ, Li J, Hurley E, Feltri ML, Cox AO, Lee J, Furdui CM, Liu L, Bshara W, LaConte LE, Kandel ES, Pasquale EB, Qu J, Hedstrom L, Nikiforov MA. Phosphorylation of guanosine monophosphate reductase triggers a GTP-dependent switch from pro- to anti-oncogenic function of EPHA4. Cell Chem Biol 2022; 29:970-984.e6. [PMID: 35148834 PMCID: PMC9620470 DOI: 10.1016/j.chembiol.2022.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/19/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
Signal transduction pathways post-translationally regulating nucleotide metabolism remain largely unknown. Guanosine monophosphate reductase (GMPR) is a nucleotide metabolism enzyme that decreases GTP pools by converting GMP to IMP. We observed that phosphorylation of GMPR at Tyr267 is critical for its activity and found that this phosphorylation by ephrin receptor tyrosine kinase EPHA4 decreases GTP pools in cell protrusions and levels of GTP-bound RAC1. EPHs possess oncogenic and tumor-suppressor activities, although the mechanisms underlying switches between these two modes are poorly understood. We demonstrated that GMPR plays a key role in EPHA4-mediated RAC1 suppression. This supersedes GMPR-independent activation of RAC1 by EPHA4, resulting in a negative overall effect on melanoma cell invasion and tumorigenicity. Accordingly, EPHA4 levels increase during melanoma progression and inversely correlate with GMPR levels in individual melanoma tumors. Therefore, phosphorylation of GMPR at Tyr267 is a metabolic signal transduction switch controlling GTP biosynthesis and transformed phenotypes.
Collapse
Affiliation(s)
- David W. Wolff
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA,Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Zhiyong Deng
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Anna Bianchi-Smiraglia
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Colleen E. Foley
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Zhannan Han
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA,Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Xingyou Wang
- Department of Chemistry, Brandeis University, Waltham, MA 02453, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | | | - Sudha Moparthy
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Dong Hyun Yun
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Jialin Chen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA,Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Brian K. Baker
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Matthew V. Roll
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA,Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Andrew J. Magiera
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Jun Li
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Edward Hurley
- Department of Biochemistry and Neurology, Hunter James Kelly Research Institute, University at Buffalo, Buffalo NY, USA
| | - Maria Laura Feltri
- Department of Biochemistry and Neurology, Hunter James Kelly Research Institute, University at Buffalo, Buffalo NY, USA
| | - Anderson O. Cox
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem NC, USA
| | - Jingyun Lee
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem NC, USA
| | - Cristina M. Furdui
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem NC, USA
| | - Liang Liu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Wiam Bshara
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo NY 14203, USA
| | - Leslie E.W. LaConte
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Eugene S. Kandel
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Elena B. Pasquale
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jun Qu
- Department of Chemistry, Brandeis University, Waltham, MA 02453, USA
| | - Lizbeth Hedstrom
- Department of Chemistry, Brandeis University, Waltham, MA 02453, USA,Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Mikhail A. Nikiforov
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA,Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA,Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA,Corresponding author and lead contact: Mikhail A. Nikiforov,
| |
Collapse
|
12
|
miRNAs in Cancer (Review of Literature). Int J Mol Sci 2022; 23:ijms23052805. [PMID: 35269947 PMCID: PMC8910953 DOI: 10.3390/ijms23052805] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are short, noncoding, single-stranded RNA molecules that regulate gene expression at the post-transcriptional level by binding to mRNAs. miRNAs affect the course of processes of fundamental importance for the proper functioning of the organism. These processes include cell division, proliferation, differentiation, cell apoptosis and the formation of blood vessels. Altered expression of individual miRNAs has been shown in numerous cancers, which may indicate the oncogenic or suppressor potential of the molecules in question. This paper discusses the current knowledge about the possibility of using miRNA as a diagnostic marker and a potential target in modern anticancer therapies.
Collapse
|
13
|
Cecchini A, Cornelison DDW. Eph/Ephrin-Based Protein Complexes: The Importance of cis Interactions in Guiding Cellular Processes. Front Mol Biosci 2022; 8:809364. [PMID: 35096972 PMCID: PMC8793696 DOI: 10.3389/fmolb.2021.809364] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Although intracellular signal transduction is generally represented as a linear process that transmits stimuli from the exterior of a cell to the interior via a transmembrane receptor, interactions with additional membrane-associated proteins are often critical to its success. These molecules play a pivotal role in mediating signaling via the formation of complexes in cis (within the same membrane) with primary effectors, particularly in the context of tumorigenesis. Such secondary effectors may act to promote successful signaling by mediating receptor-ligand binding, recruitment of molecular partners for the formation of multiprotein complexes, or differential signaling outcomes. One signaling family whose contact-mediated activity is frequently modulated by lateral interactions at the cell surface is Eph/ephrin (EphA and EphB receptor tyrosine kinases and their ligands ephrin-As and ephrin-Bs). Through heterotypic interactions in cis, these molecules can promote a diverse range of cellular activities, including some that are mutually exclusive (cell proliferation and cell differentiation, or adhesion and migration). Due to their broad expression in most tissues and their promiscuous binding within and across classes, the cellular response to Eph:ephrin interaction is highly variable between cell types and is dependent on the cellular context in which binding occurs. In this review, we will discuss interactions between molecules in cis at the cell membrane, with emphasis on their role in modulating Eph/ephrin signaling.
Collapse
Affiliation(s)
- Alessandra Cecchini
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - D. D. W. Cornelison
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- *Correspondence: D. D. W. Cornelison,
| |
Collapse
|
14
|
MacCuaig WM, Thomas A, Carlos-Sorto JC, Gomez-Gutierrez JG, Alexander AC, Wellberg EA, Grizzle WE, McNally LR. Differential expression of microRNA between triple negative breast cancer patients of African American and European American descent. Biotech Histochem 2022; 97:1-10. [PMID: 34979848 PMCID: PMC9047185 DOI: 10.1080/10520295.2021.2005147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
There are racial disparities in the outcome of triple negative breast cancer (TNBC) patients between women of African ancestry and women of European ancestry, even after accounting for lifestyle, socioeconomic and clinical factors. MicroRNA (miRNA) are non-coding molecules whose level of expression is associated with cancer suppression, proliferation and drug resistance; therefore, these have potential for biomarker applications in cancers including TNBC. Historically, miRNAs up-regulated in African American (AA) patients have received less attention than for patients of European ancestry. Using laser capture microdissection (LCM) to acquire ultrapure tumor cell samples, miRNA expression was evaluated in 15 AA and 15 European American (EA) TNBC patients. Tumor sections were evaluated using RNA extraction followed by miRNA analysis and profiling. Results were compared based on ethnicity and method of tissue fixation. miRNAs that showed high differential expression in AA TNBC patients compared to EA included: miR-19a, miR-192, miR-302a, miR-302b, miR-302c, miR-335, miR-520b, miR-520f and miR-645. LCM is a useful technique for isolation of tumor cells. We found a greater abundance of RNA in frozen samples compared to formalin fixed, paraffin embedded samples. miRNA appears to be a useful biomarker for TNBC to improve diagnosis and treatment.
Collapse
Affiliation(s)
- William M. MacCuaig
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, Oklahoma,Department of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma
| | - Alexandra Thomas
- Department of Hematology Oncology, Wake Forest Baptist Health, Winston-Salem, North Carolina
| | - Juan C. Carlos-Sorto
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, Oklahoma,Department of Surgery, University of Oklahoma, Oklahoma City, Oklahoma
| | | | - Adam C. Alexander
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, Oklahoma,Department of Family and Preventive Medicine, University of Oklahoma, Oklahoma City, Oklahoma
| | - Elizabeth A. Wellberg
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, Oklahoma,Department of Pathology, University of Oklahoma, Oklahoma City, Oklahoma
| | - William E. Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lacey R. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, Oklahoma,Department of Surgery, University of Oklahoma, Oklahoma City, Oklahoma
| |
Collapse
|
15
|
Mahmoudian M, Razmara E, Mahmud Hussen B, Simiyari M, Lotfizadeh N, Motaghed H, Khazraei Monfared A, Montazeri M, Babashah S. Identification of a six-microRNA signature as a potential diagnostic biomarker in breast cancer tissues. J Clin Lab Anal 2021; 35:e24010. [PMID: 34528314 PMCID: PMC8605139 DOI: 10.1002/jcla.24010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is by far the most common malignancy among women. Epigenetic modulators, microRNAs in particular, may set stages for BC development and its progression. Herein, we aimed to assess the diagnostic potentiality of a signature of six miRNAs (i.e., hsa-miR-25-3p, -29a-5p, -105-3p, -181b1-5p, -335-5p, and -339-5p) in BC and adjacent non-tumor tissues. METHODS A pair of 50 tumor and adjacent non-tumor samples were taken from BC patients. The expression of each candidate miRNA was measured using quantitative reverse transcription PCR. To investigate the possible roles of each miRNA and their impressions on BC prognosis, in silico tools were used. Receiver operating characteristic (ROC) curves were performed to determine the diagnostic accuracy of each miRNA and the possible association of their expression with clinicopathological characteristics was analyzed. RESULTS Our findings showed the upregulation of hsa-miR-25-3p, -29a-5p, -105-3p, and -181b1-5p, and the downregulation of hsa-miR-335-5p and -339-5p in BC tumor compared to corresponding adjacent tissues. Except for hsa-miR-339-5p, the up-/down-regulation of the candidate miRNAs was associated with TNM stages. Except for hsa-miR-105-3p, each candidate miRNA was correlated with HER-2 status. ROC curve analysis showed that the signature of six-miRNA is a potential biomarker distinguishing between tumor and non-tumor breast tissue samples. CONCLUSION We showed that the dysregulation of a novel signature of six-miRNA can be used as a potential biomarker for BC diagnosis.
Collapse
Affiliation(s)
- Mojdeh Mahmoudian
- Department of GeneticsFaculty of SciencesScience and Research BranchIslamic Azad UniversityTehranIran
| | - Ehsan Razmara
- Department of Medical GeneticsFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Bashdar Mahmud Hussen
- Department of PharmacognosyCollege of PharmacyHawler Medical UniversityKurdistan RegionIraq
| | - Mandana Simiyari
- Department of Veterinary MedicineFaculty of Veterinary MedicineTabriz BranchIslamic Azad UniversityTabrizIran
| | - Nazanin Lotfizadeh
- Department of BiologyFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Hoda Motaghed
- Department of BiologyFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Arefeh Khazraei Monfared
- Department of BiologyFaculty of Biological SciencesIslamic Azad University‐Tehran North BranchTehranIran
| | - Maryam Montazeri
- Department of Medical BiotechnologyFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Sadegh Babashah
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
16
|
Light TP, Gomez-Soler M, Wang Z, Karl K, Zapata-Mercado E, Gehring MP, Lechtenberg BC, Pogorelov TV, Hristova K, Pasquale EB. A cancer mutation promotes EphA4 oligomerization and signaling by altering the conformation of the SAM domain. J Biol Chem 2021; 297:100876. [PMID: 34139238 PMCID: PMC8260879 DOI: 10.1016/j.jbc.2021.100876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/20/2021] [Accepted: 06/13/2021] [Indexed: 12/24/2022] Open
Abstract
The Eph receptor tyrosine kinases and their ephrin ligands regulate many physiological and pathological processes. EphA4 plays important roles in nervous system development and adult homeostasis, while aberrant EphA4 signaling has been implicated in neurodegeneration. EphA4 may also affect cancer malignancy, but the regulation and effects of EphA4 signaling in cancer are poorly understood. A correlation between decreased patient survival and high EphA4 mRNA expression in melanoma tumors that also highly express ephrinA ligands suggests that enhanced EphA4 signaling may contribute to melanoma progression. A search for EphA4 gain-of-function mutations in melanoma uncovered a mutation of the highly conserved leucine 920 in the EphA4 sterile alpha motif (SAM) domain. We found that mutation of L920 to phenylalanine (L920F) potentiates EphA4 autophosphorylation and signaling, making it the first documented EphA4 cancer mutation that increases kinase activity. Quantitative Föster resonance energy transfer and fluorescence intensity fluctuation (FIF) analyses revealed that the L920F mutation induces a switch in EphA4 oligomer size, from a dimer to a trimer. We propose this switch in oligomer size as a novel mechanism underlying EphA4-linked tumorigenesis. Molecular dynamics simulations suggest that the L920F mutation alters EphA4 SAM domain conformation, leading to the formation of EphA4 trimers that assemble through two aberrant SAM domain interfaces. Accordingly, EphA4 wild-type and the L920F mutant are affected differently by the SAM domain and are differentially regulated by ephrin ligand stimulation. The increased EphA4 activation induced by the L920F mutation, through the novel mechanism we uncovered, supports a functional role for EphA4 in promoting pathogenesis.
Collapse
Affiliation(s)
- Taylor P Light
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Maricel Gomez-Soler
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Zichen Wang
- Department of Chemistry, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science and Technology, and National Center for Supercomputing Applications, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kelly Karl
- Program in Molecular Biophysics, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Elmer Zapata-Mercado
- Program in Molecular Biophysics, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Marina P Gehring
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Bernhard C Lechtenberg
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Taras V Pogorelov
- Department of Chemistry, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science and Technology, and National Center for Supercomputing Applications, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA; Program in Molecular Biophysics, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA.
| | - Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| |
Collapse
|
17
|
Luo N, Liu S, Li X, Hu Y, Zhang K. Circular RNA circHIPK3 promotes breast cancer progression via sponging MiR-326. Cell Cycle 2021; 20:1320-1333. [PMID: 34152928 PMCID: PMC8331001 DOI: 10.1080/15384101.2021.1939476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/13/2021] [Accepted: 06/02/2021] [Indexed: 01/22/2023] Open
Abstract
Background: This study investigated the potential molecular mechanism of circular RNA HIPK3 (circHIPK3) in breast cancer (BCa). Methods: BCa cells were transfected with miR-326 mimic, miR-326 inhibitor, circHIPK3, sicircHIPK3. The expressions of circHIPK3 and miR-326 in BCa tissues and BCa cell lines were determined by RT-qPCR. Cell viability, colony formation, migration, invasion, and apoptosis of the cells were detected by CCK-8 and colony formation, wound-healing, transwell and flow cytometric assays, respectively. The relationship between circHIPK3 and miR-326 was analyzed and confirmed by circInteractome, dual-luciferase reporter, RT-qPCR, Pearson's correlation assays. Western blot and RT-qPCR were performed to determine the expressions of apoptosis-related molecules (Bcl-2, Bax, and cleaved Caspase-3) and EMT-related molecules (E-cadherin, N-cadherin, and Vimentin) in the BCa cells and tumor tissues. The tumor growth in mice was examined in a xenograft tumor model in which Ki-67 expression was determined by immunohistochemistry (IHC). Results: In BCa, the expression of circHIPK3 was up-regulated and that of miR-326 was down-regulated. CircHIPK3 knockdown inhibited the cell proliferation, invasion, and migration. MiR-326 was the direct target of circHIPK3, and was inversely correlated with circHIPK3 expression. CircHIPK3 overexpression promoted proliferation, migration, invasion, apoptosis resistance, and tumor growth and up-regulated Ki-67 expression, at the same time, the expressions of Bcl-2, N-cadherin, Vimentin were up-regulated, and those of Bax, cleaved Caspase-3 and E-cadherin were inhibited. These above expressions were partially reversed by miR-326 overexpression. Conclusion: CircHIPK3 sponges miR-326 to promote BCa growth and metastasis. The current findings provide a novel therapeutic target for treating BCa.
Collapse
Affiliation(s)
- Na Luo
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Breast Cancer Control and Prevention in Hunan Province, Changsha, Hunan, China
| | - Shiqin Liu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Breast Cancer Control and Prevention in Hunan Province, Changsha, Hunan, China
| | - Xin Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Breast Cancer Control and Prevention in Hunan Province, Changsha, Hunan, China
| | - Yu Hu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Breast Cancer Control and Prevention in Hunan Province, Changsha, Hunan, China
| | - Kejing Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Breast Cancer Control and Prevention in Hunan Province, Changsha, Hunan, China
| |
Collapse
|
18
|
Mao X, Yang X, Chen X, Yu S, Yu S, Zhang B, Ji Y, Chen Y, Ouyang Y, Luo W. Single-cell transcriptome analysis revealed the heterogeneity and microenvironment of gastrointestinal stromal tumors. Cancer Sci 2021; 112:1262-1274. [PMID: 33393143 PMCID: PMC7935798 DOI: 10.1111/cas.14795] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/15/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor of the human gastrointestinal tract. In this study, we performed single-cell RNA sequencing (RNA-seq) on intra- and peri-tumor tissues from GIST patients with the aim of discovering the heterogeneity of tumor cells in GIST and their interactions with other cells. We found four predominating cell types in GIST tumor tissue, including T cells, macrophages, tumor cells, and NK cells. Tumor cells could be clustered into two groups: one was highly proliferating and associated with high risk of metastasis, the other seemed "resting" and associated with low risk. Their clinical relevance and prognostic values were confirmed by RNA-seq of 65 GIST samples. T cells were the largest cell type in our single-cell data. Two groups of CD8+ effector memory (EM) cells were in the highest clonal expansion and performed the highest cytotoxicity but were also the most exhausted among all T cells. A group of macrophages were found polarized to possess both M1 and M2 signatures, and increased along with tumor progression. Cell-to-cell interaction analysis revealed that adipose endothelial cells had high interactions with tumor cells to facilitate their progression. Macrophages were at the center of the tumor microenvironment, recruiting immune cells to the tumor site and having most interactions with both tumor and nontumor cells. In conclusion, we obtained an overview of the GIST microenvironment and revealed the heterogeneity of each cell type and their relevance to risk classifications, which provided a novel theoretical basis for learning and curing GISTs.
Collapse
Affiliation(s)
- Xiaofan Mao
- Clinical Research Institute, The First People's Hospital of Foshan & Sun Yat-Sen University Foshan Hospital, Foshan, China.,Medical Engineering Technology Research and Development Center of Immune Repertoire in Foshan, The First People's Hospital of Foshan & Sun Yat-Sen University Foshan Hospital, Foshan, China
| | - Xuezhu Yang
- Gastroenterology, The First People's Hospital of Foshan & Sun Yat-Sen University Foshan Hospital, Foshan, China
| | - Xiangping Chen
- Clinical Research Institute, The First People's Hospital of Foshan & Sun Yat-Sen University Foshan Hospital, Foshan, China.,Medical Engineering Technology Research and Development Center of Immune Repertoire in Foshan, The First People's Hospital of Foshan & Sun Yat-Sen University Foshan Hospital, Foshan, China
| | - Sifei Yu
- Clinical Research Institute, The First People's Hospital of Foshan & Sun Yat-Sen University Foshan Hospital, Foshan, China.,Medical Engineering Technology Research and Development Center of Immune Repertoire in Foshan, The First People's Hospital of Foshan & Sun Yat-Sen University Foshan Hospital, Foshan, China
| | - Si Yu
- Gastroenterology, The First People's Hospital of Foshan & Sun Yat-Sen University Foshan Hospital, Foshan, China
| | - Beiying Zhang
- Clinical Research Institute, The First People's Hospital of Foshan & Sun Yat-Sen University Foshan Hospital, Foshan, China.,Medical Engineering Technology Research and Development Center of Immune Repertoire in Foshan, The First People's Hospital of Foshan & Sun Yat-Sen University Foshan Hospital, Foshan, China
| | - Yong Ji
- Gastroenterology, The First People's Hospital of Foshan & Sun Yat-Sen University Foshan Hospital, Foshan, China
| | - Yihao Chen
- Clinical Research Institute, The First People's Hospital of Foshan & Sun Yat-Sen University Foshan Hospital, Foshan, China.,Medical Engineering Technology Research and Development Center of Immune Repertoire in Foshan, The First People's Hospital of Foshan & Sun Yat-Sen University Foshan Hospital, Foshan, China
| | - Ying Ouyang
- Clinical Research Institute, The First People's Hospital of Foshan & Sun Yat-Sen University Foshan Hospital, Foshan, China.,Medical Engineering Technology Research and Development Center of Immune Repertoire in Foshan, The First People's Hospital of Foshan & Sun Yat-Sen University Foshan Hospital, Foshan, China
| | - Wei Luo
- Clinical Research Institute, The First People's Hospital of Foshan & Sun Yat-Sen University Foshan Hospital, Foshan, China.,Medical Engineering Technology Research and Development Center of Immune Repertoire in Foshan, The First People's Hospital of Foshan & Sun Yat-Sen University Foshan Hospital, Foshan, China
| |
Collapse
|
19
|
Anderton M, van der Meulen E, Blumenthal MJ, Schäfer G. The Role of the Eph Receptor Family in Tumorigenesis. Cancers (Basel) 2021; 13:cancers13020206. [PMID: 33430066 PMCID: PMC7826860 DOI: 10.3390/cancers13020206] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 01/20/2023] Open
Abstract
Simple Summary The Eph receptor family is implicated in both tumour promotion and suppression, depending on the tissue-specific context of available receptor interactions with ligands, adaptor proteins and triggered downstream signalling pathways. This complex interplay has not only consequences for tumorigenesis but also offers a basis from which new cancer-targeting strategies can be developed. This review comprehensively summarises the current knowledge of Eph receptor implications in oncogenesis in a tissue- and receptor-specific manner, with the aim to develop a better understanding of Eph signalling pathways for potential targeting in novel cancer therapies. Abstract The Eph receptor tyrosine kinase family, activated by binding to their cognate ephrin ligands, are important components of signalling pathways involved in animal development. More recently, they have received significant interest due to their involvement in oncogenesis. In most cases, their expression is altered, affecting the likes of cell proliferation and migration. Depending on the context, Eph receptors have the potential to act as both tumour promoters and suppressors in a number of cancers, such as breast cancer, colorectal cancer, lung cancer, prostate cancer, brain cancer and Kaposi’s sarcoma (KS), the latter being intrinsically linked to EphA2 as this is the receptor used for endothelial cell entry by the Kaposi’s sarcoma-associated herpesvirus (KSHV). In addition, EphA2 deregulation is associated with KS, indicating that it has a dual role in this case. Associations between EphA2 sequence variation and KSHV infection/KS progression have been detected, but further work is required to formally establish the links between EphA2 signalling and KS oncogenesis. This review consolidates the available literature of the role of the Eph receptor family, and particularly EphA2, in tumorigenesis, with the aim to develop a better understanding of Eph signalling pathways for potential targeting in novel cancer therapies.
Collapse
Affiliation(s)
- Meg Anderton
- International Centre for Genetic Engineering and Biotechnology (ICGEB) Cape Town, Observatory, Cape Town 7925, South Africa; (M.A.); (E.v.d.M.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Emma van der Meulen
- International Centre for Genetic Engineering and Biotechnology (ICGEB) Cape Town, Observatory, Cape Town 7925, South Africa; (M.A.); (E.v.d.M.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Melissa J. Blumenthal
- International Centre for Genetic Engineering and Biotechnology (ICGEB) Cape Town, Observatory, Cape Town 7925, South Africa; (M.A.); (E.v.d.M.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
- Correspondence: (M.J.B.); (G.S.); Tel.: +27-21-4047630 (M.J.B.)
| | - Georgia Schäfer
- International Centre for Genetic Engineering and Biotechnology (ICGEB) Cape Town, Observatory, Cape Town 7925, South Africa; (M.A.); (E.v.d.M.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
- Correspondence: (M.J.B.); (G.S.); Tel.: +27-21-4047630 (M.J.B.)
| |
Collapse
|
20
|
GPER1 and microRNA: Two Players in Breast Cancer Progression. Int J Mol Sci 2020; 22:ijms22010098. [PMID: 33374170 PMCID: PMC7795792 DOI: 10.3390/ijms22010098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the main cause of morbidity and mortality in women worldwide. However, the molecular pathogenesis of breast cancer remains poorly defined due to its heterogeneity. Several studies have reported that G Protein-Coupled Estrogen Receptor 1 (GPER1) plays a crucial role in breast cancer progression, by binding to estrogens or synthetic agonists, like G-1, thus modulating genes involved in diverse biological events, such as cell proliferation, migration, apoptosis, and metastasis. In addition, it has been established that the dysregulation of short sequences of non-coding RNA, named microRNAs (miRNAs), is involved in various pathophysiological conditions, including breast cancer. Recent evidence has indicated that estrogens may regulate miRNA expression and therefore modulate the levels of their target genes, not only through the classical estrogen receptors (ERs), but also activating GPER1 signalling, hence suggesting an alternative molecular pathway involved in breast tumor progression. Here, the current knowledge about GPER1 and miRNA action in breast cancer is recapitulated, reporting recent evidence on the liaison of these two players in triggering breast tumorogenic effects. Elucidating the role of GPER1 and miRNAs in breast cancer might provide new tools for innovative approaches in anti-cancer therapy.
Collapse
|
21
|
Saikia M, Paul S, Chakraborty S. Role of microRNA in forming breast carcinoma. Life Sci 2020; 259:118256. [DOI: 10.1016/j.lfs.2020.118256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/19/2022]
|
22
|
Huo W, Zhang M, Li C, Wang X, Zhang X, Yang X, Fei H. Correlation of microRNA-335 expression level with clinical significance and prognosis in non-small cell lung cancer. Medicine (Baltimore) 2020; 99:e21369. [PMID: 32846757 PMCID: PMC7447412 DOI: 10.1097/md.0000000000021369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although treatments have improved significantly in recent years, the prognosis of patients with non-small cell lung cancer (NSCLC) remains poor. miR-335 has been demonstrated to play the antitumor role in several cancer types. Its expression was reduced in NSCLC tissues relative to noncancerous adjacent tissues. Furthermore, downregulation of miR-335 in A459 lung cancer cells promoted cell proliferation. In the present study, we aimed to investigate the clinical significance and prognostic value of miR-335 in NSCLC.The lung cancer tissues and adjacent nontumor lung tissues were obtained from 131 patients who underwent the primary surgical resection at Lianyungang First People's Hospital. Student t test was used to distinguish differences between groups. χ test was involved for analysis of clinicopathological data. The overall survival was analyzed by the Kaplan-Meier method and the log rank test. Multiple Cox proportional hazards regression analysis was carried out to identify the independent factors that had a significant impact on patient survival.miR-335 was significantly lower in NSCLC samples compared to non-cancerous samples (P < .001). The expression level of miR-335 was significantly correlated with tumor histology (P = .028), lymph node metastasis (P = .002), differentiation degree (P < .001), and pathological TNM stage (P < .001). The log-rank test indicated that patients with decreased miR-335 expression experienced poor overall survival in NSCLC (P = .029).The results of the present study indicated that miR-335 was down-expressed in NSCLC, and is associated with tumor progression and poor prognosis, suggesting that the expression of miR-335 might be an independent prognostic factor of overall survival in patients with NSCLC.
Collapse
Affiliation(s)
- Wen Huo
- Department of Respiratory and Critical Care Medicine
| | - Man Zhang
- Department of Respiratory and Critical Care Medicine
| | - Chunhua Li
- Department of Respiratory and Critical Care Medicine
| | - Xinying Wang
- Department of Respiratory and Critical Care Medicine
| | | | - Xiaona Yang
- Pain Department, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Jiangsu, P. R. China
| | - Haitao Fei
- Department of Respiratory and Critical Care Medicine
| |
Collapse
|
23
|
A computational approach to the study of interactions between proteins and miR10-b, miR-335, and miR-21 involved in breast cancer. Contemp Oncol (Pozn) 2020; 23:220-225. [PMID: 31992954 PMCID: PMC6978763 DOI: 10.5114/wo.2019.91544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 08/12/2019] [Indexed: 12/21/2022] Open
Abstract
MiR-10b, miR-335, and miR-21 are classes of microRNAs (miRNAs) that are overexpressed in breast cancer. Thus, in our study we aimed to test the hypothesis that miRNAs may have direct interactions with proteins and the possibility to inhibit/activate the functional site of proteins and enzymes. For this purpose, we choose three miRNAs involved in breast cancer to study interactions between some proteins and genes, including BRCA1 and PTEN, by processing the docking and matching tools using the Hex8 and HADDOCK server. Mathematically, the hidden Markov models were created by using MATLAB script according to the algorithm in order to study and validate the interactions and bonds between proteins and miRNAs. The main results demonstrate the ability of miR-10b, miR-335, and miR-21 to create direct interactions with 3D protein structures. Furthermore, these results may lead to another pathway of research, i.e. the direct interaction between proteins and their sub-units, to highlight the data obtained previously and demonstrate that proteins may directly interact with ncRNA instead of mRNA. Moreover, our study suggests developing research on different pathways of association proteins-miRNAs as a part of epigenetic extra-nuclear regulation. Taken together, our study provides the first evidence of direct interactions between miRNAs and proteins.
Collapse
|
24
|
Dastmalchi N, Safaralizadeh R, Baradaran B, Hosseinpourfeizi M, Baghbanzadeh A. An update review of deregulated tumor suppressive microRNAs and their contribution in various molecular subtypes of breast cancer. Gene 2019; 729:144301. [PMID: 31884105 DOI: 10.1016/j.gene.2019.144301] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Breast cancer (BC) is histologically classified into hormone-receptor+ (ER+, PR + ), human epidermal growth factor receptor-2+ (Her2 + ), and triple-negative breast cancer (TNBC) types. The important contribution of tumor-suppressive (TS) microRNAs (miRs) in BC development and treatment have been well-acknowledged in the literature. OBJECTIVE The present review focused on the contribution of recently examined TS miRs in the progression and treatment of various histological subtypes of BC. RESULTS In summary, various miRs have tumor-suppressive roles in BC, so that their aberrant expression leads to the abnormality in the cellular processes such as enhanced cell growth, decreased apoptosis, cell migration and metastasis, and decreased sensitivity to chemotherapy through deregulated expression of oncogene targets of TS miRs. CONCLUSION TS miRs could be regarded as a proper molecular target for target therapy of BC. However, further in vitro and in vivo investigations are required to confirm the exact molecular functions of TS miRs in BC cells to offer more efficient targeted therapies.
Collapse
Affiliation(s)
- Narges Dastmalchi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Du W, Tang H, Lei Z, Zhu J, Zeng Y, Liu Z, Huang JA. miR-335-5p inhibits TGF-β1-induced epithelial-mesenchymal transition in non-small cell lung cancer via ROCK1. Respir Res 2019; 20:225. [PMID: 31638991 PMCID: PMC6805547 DOI: 10.1186/s12931-019-1184-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Significant evidence has shown that the miRNA pathway is an important component in the downstream signaling cascades of TGF-β1 pathway. Our previous study has indicated that miR-335-5p expression was significantly down-regulated and acted as a vital player in the metastasis of non-small cell lung cancer (NSCLC), however the underlying mechanism remained unclear. METHODS The differential expression level of miR-335-5p and ROCK1 were determined by qRT-PCR and IHC analysis in human tissue samples with or without lymph node metastasis. Transwell assay was conducted to determine cell ability of migration and invasion. SiRNA interference, microRNA transfection and western blot analysis were utilized to clarify the underlying regulatory mechanism. RESULTS We showed that down-regulated expression of miR-335-5p and up-regulated expression of ROCK1 in NSCLC tissues were associated with lymph node metastasis. Over-expresion of miR-335-5p significantly inhibited TGF-β1-mediated NSCLC migration and invasion. Furthermore, luciferase reporter assays proved that miR-335-5p can bind to 3'-UTR of ROCK1 directly. Moreover, we confirmed that siRNA-mediated silencing of ROCK1 significantly diminished TGF-β1-mediated EMT and migratory and invasive capabilities of A549 and SPC-A1 cells. CONCLUSION This is the first time to report that miR-335-5p regulates ROCK1 and impairs its functions, thereby playing a key role in TGF-β1-induced EMT and cell migration and invasion in NSCLC.
Collapse
Affiliation(s)
- Wenwen Du
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Haicheng Tang
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.,Department of Respiratory Medicine, The First People's Hospital of Yancheng City, Yancheng, 224001, China
| | - Zhe Lei
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Jianjie Zhu
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Yuanyuan Zeng
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Zeyi Liu
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China. .,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China. .,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China.
| | - Jian-An Huang
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China. .,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China. .,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
26
|
Ong J, van den Berg A, Faiz A, Boudewijn IM, Timens W, Vermeulen CJ, Oliver BG, Kok K, Terpstra MM, van den Berge M, Brandsma CA, Kluiver J. Current Smoking is Associated with Decreased Expression of miR-335-5p in Parenchymal Lung Fibroblasts. Int J Mol Sci 2019; 20:ijms20205176. [PMID: 31635387 PMCID: PMC6829537 DOI: 10.3390/ijms20205176] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/22/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
Cigarette smoking causes lung inflammation and tissue damage. Lung fibroblasts play a major role in tissue repair. Previous studies have reported smoking-associated changes in fibroblast responses and methylation patterns. Our aim was to identify the effect of current smoking on miRNA expression in primary lung fibroblasts. Small RNA sequencing was performed on lung fibroblasts from nine current and six ex-smokers with normal lung function. MiR-335-5p and miR-335-3p were significantly downregulated in lung fibroblasts from current compared to ex-smokers (false discovery rate (FDR) <0.05). Differential miR-335-5p expression was validated with RT-qPCR (p-value = 0.01). The results were validated in lung tissue from current and ex-smokers and in bronchial biopsies from non-diseased smokers and never-smokers (p-value <0.05). The methylation pattern of the miR-335 host gene, determined by methylation-specific qPCR, did not differ between current and ex-smokers. To obtain insights into the genes regulated by miR-335-5p in fibroblasts, we overlapped all proven miR-335-5p targets with our previously published miRNA targetome data in lung fibroblasts. This revealed Rb1, CARF, and SGK3 as likely targets of miR-335-5p in lung fibroblasts. Our study indicates that miR-335-5p downregulation due to current smoking may affect its function in lung fibroblasts by targeting Rb1, CARF and SGK3.
Collapse
Affiliation(s)
- Jennie Ong
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, 9713 GZ Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands.
| | - Anke van den Berg
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, 9713 GZ Groningen, The Netherlands.
| | - Alen Faiz
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, 9713 GZ Groningen, The Netherlands.
- University of Technology Sydney, Respiratory Bioinformatics and Molecular Biology (RBMB) Faculty of Science, Ultimo, NSW 2007, Australia.
| | - Ilse M Boudewijn
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, 9713 GZ Groningen, The Netherlands.
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, 9713 GZ Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands.
| | - Cornelis J Vermeulen
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, 9713 GZ Groningen, The Netherlands.
| | - Brian G Oliver
- Woolcock Institute of Medical Research, Respiratory Cellular and Molecular Biology, The University of Sydney, New South Wales 2037, Australia.
- University of Technology Sydney, School of Life Sciences, Sydney, New South Wales 2007, Australia.
| | - Klaas Kok
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9713 GZ Groningen, The Netherlands.
| | - Martijn M Terpstra
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9713 GZ Groningen, The Netherlands.
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, 9713 GZ Groningen, The Netherlands.
| | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, 9713 GZ Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands.
| | - Joost Kluiver
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
27
|
Loh HY, Norman BP, Lai KS, Rahman NMANA, Alitheen NBM, Osman MA. The Regulatory Role of MicroRNAs in Breast Cancer. Int J Mol Sci 2019; 20:E4940. [PMID: 31590453 PMCID: PMC6801796 DOI: 10.3390/ijms20194940] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules which function as critical post-transcriptional gene regulators of various biological functions. Generally, miRNAs negatively regulate gene expression by binding to their selective messenger RNAs (mRNAs), thereby leading to either mRNA degradation or translational repression, depending on the degree of complementarity with target mRNA sequences. Aberrant expression of these miRNAs has been linked etiologically with various human diseases including breast cancer. Different cellular pathways of breast cancer development such as cell proliferation, apoptotic response, metastasis, cancer recurrence and chemoresistance are regulated by either the oncogenic miRNA (oncomiR) or tumor suppressor miRNA (tsmiR). In this review, we highlight the current state of research into miRNA involved in breast cancer, with particular attention to articles published between the years 2000 to 2019, using detailed searches of the databases PubMed, Google Scholar, and Scopus. The post-transcriptional gene regulatory roles of various dysregulated miRNAs in breast cancer and their potential as therapeutic targets are also discussed.
Collapse
Affiliation(s)
- Hui-Yi Loh
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| | - Brendan P Norman
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK.
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi 41012, UAE.
| | - Nik Mohd Afizan Nik Abd Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| | - Noorjahan Banu Mohamed Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| | - Mohd Azuraidi Osman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| |
Collapse
|
28
|
Qi J, Shi LY, Wu Y, Shen XJ, Yuan J, Jin CJ, Cong H, Ju SQ. Epigenetic silencing of miR-335 induces migration by targeting insulin-like growth factor-1 receptor in multiple myeloma. Leuk Lymphoma 2019; 60:3188-3198. [PMID: 31190579 DOI: 10.1080/10428194.2019.1627534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multiple myeloma (MM) is a common hematological malignancy and remains incurable. MiRNA-335 is a classic tumor suppressor, yet its expression pattern and biological role in MM is unclear. The aim of the present study was to determine the expression pattern, biological role, and mechanism of miR-335 in MM. In this study, we found that miR-335 expression was decreased in MM. The promoter of miR-335 was also hypermethylated in MM. It was found that over-expression of miR-335 or 5-azacytidine treatment suppressed migration of MM cells and down-regulated the expression of IGF-1R. MiR-335 thus acts as a metastatic suppressor by targeting IGF-1R in MM. Moreover, aberrant promoter hyper-methylation is critical for miR-335 silencing in MM. We also found that miR-335 assisted in predicting both the prognosis and progression of disease in MM patients. Observations might offer a new complementary diagnostic and therapeutic target in MM.
Collapse
Affiliation(s)
- Jing Qi
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Lin-Ying Shi
- Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Yin Wu
- Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Xian-Juan Shen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Jie Yuan
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Chun-Jing Jin
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Hui Cong
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Shao-Qing Ju
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
29
|
Fatima N, Srivastava AN, Nigam J, Raza ST, Rizvi S, Siddiqui Z, Kumar V. Low Expression of MicroRNA335-5p Is Associated with Malignant Behavior of Gallbladder Cancer: A Clinicopathological Study. Asian Pac J Cancer Prev 2019; 20:1895-1900. [PMID: 31244315 PMCID: PMC7021618 DOI: 10.31557/apjcp.2019.20.6.1895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 02/06/2023] Open
Abstract
Background: MicroRNAs (miRNAs) are non-coding RNAs that regulate multiple cellular processes during cancer
progression, identified to be involved in tumorgenesis of several cancers including cancers of digestive system. However
its role in gallbladder inflammatory disease (GID) and gallbladder cancer (GBC) has not been well documented.
The present study was aimed to investigate the clinical significance of hsa-miRNA-335-5p (miR-335) in GBC and
GID. Subjects and Methods: This prospective case control study, conducted from July 1, 2014 to December 1, 2017
in Era’s Lucknow Medical College & Hospital, India, evaluated miR-335 expression by real-time polymerase chain
reaction. Hundred tissue samples GID (control; n=50) and GBC (case; n=50) were studied. Relative quantification of
target miR-335 expression was examined using the comparative cycle threshold method. Their expression was correlated
with different clinicopathological parameters. Fishers’ exact test, Student’s t-test, and Chi-square test were used as
appropriate for data analysis. Kaplan-Meier methods were used to calculate overall and disease-free survival rate.
Two sided P<0.05 was considered as significant. Results: miR-335 expression was found to be significantly low in
GBC lesions when compared with GID lesions (P<0.001). The low expression level of miR-335 was correlated with
histological grade (P=0.007), clinical stage (P<0.001), lymph node metastasis (P<0.001) and liver metastasis (P=0.016).
Reduced expression of miRNA-335 was associated with a shorter median overall survival (7 months vs. 25 months)
in GBC patients (P<0.001). Conclusions: Down regulation of miR-335 is associated with the severity of the disease
and thus indicate that miR-335 expression may serve as prognostic marker for GBC.
Collapse
Affiliation(s)
- Naseem Fatima
- Department of Pathology, Era's Lucknow Medical College & Hospital, Lucknow, India.
| | | | - Jaya Nigam
- Department of Surgical Gastroenterology, King George's Medical University, Lucknow India
| | - Syed Tasleem Raza
- Department of Biochemistry, Era's Lucknow Medical College & Hospital, Lucknow, India
| | - Saliha Rizvi
- Department of Biochemistry, Era's Lucknow Medical College & Hospital, Lucknow, India
| | - Zainab Siddiqui
- Department of Pathology, Era's Lucknow Medical College & Hospital, Lucknow, India.
| | - Vijay Kumar
- Department of Surgical Oncology, King George's Medical University, Lucknow India
| |
Collapse
|
30
|
Swellam M, Mahmoud MS, Hashim M, Hassan NM, Sobeih ME, Nageeb AM. Clinical aspects of circulating miRNA‐335 in breast cancer patients: A prospective study. J Cell Biochem 2018; 120:8975-8982. [DOI: 10.1002/jcb.28168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Menha Swellam
- High Throughput Molecular and Genetic Laboratory, Center for Excellences for Advanced Sciences Giza Egypt
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division National Research Centre Dokki Giza Egypt
| | - Magda Sayed Mahmoud
- High Throughput Molecular and Genetic Laboratory, Center for Excellences for Advanced Sciences Giza Egypt
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division National Research Centre Dokki Giza Egypt
| | - Maha Hashim
- High Throughput Molecular and Genetic Laboratory, Center for Excellences for Advanced Sciences Giza Egypt
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division National Research Centre Dokki Giza Egypt
| | - Naglaa M Hassan
- Department of Clinical Pathology National Cancer Institute Cairo Egypt
| | | | - Amira M Nageeb
- High Throughput Molecular and Genetic Laboratory, Center for Excellences for Advanced Sciences Giza Egypt
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division National Research Centre Dokki Giza Egypt
| |
Collapse
|
31
|
Xue D, Cheng P, Han M, Liu X, Xue L, Ye C, Wang K, Huang J. An integrated bioinformatical analysis to evaluate the role of KIF4A as a prognostic biomarker for breast cancer. Onco Targets Ther 2018; 11:4755-4768. [PMID: 30127624 PMCID: PMC6091482 DOI: 10.2147/ott.s164730] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose The aim of this study was to investigate the diagnostic and prognostic value of human kinesin family member 4A (KIF4A) as an effective biomarker for breast cancer. Materials and methods Cancer Genome Atlas data and 12 independent public breast cancer microarray data sets were downloaded and analyzed using individual and pooled approaches. Results The results of our study revealed a strong and positive correlation between KIF4A expression and malignant features of breast cancer. KIF4A had a strong prognostic value in both ER-positive and ER-negative breast cancers comparable to or even better than tumor size, lymph node invasion, and Elston grade. We also found that KIF4A might be the target gene of microRNA-335, which can suppress KIF4A expression by targeting the 3′-untranslated region of its mRNA. Conclusion KIF4A might serve as a robust prognostic predictor for breast cancer. Targeting KIF4A activity could be a promising therapeutic option in breast cancer treatment.
Collapse
Affiliation(s)
- Dan Xue
- Department of Plastic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pu Cheng
- Department of Gynaecology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Mengjiao Han
- Department of Medical Oncology, Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Xiyong Liu
- Biomarker Development, California Cancer Institute, Temple City, CA, USA.,School of Medicine, Taipei Medical University, Taipei, Taiwan, Republic of China
| | - Lijun Xue
- Department of Pathology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Chenyi Ye
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ke Wang
- Department of Surgical Oncology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,
| | - Jian Huang
- Department of Surgical Oncology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China, .,Gastroenterology Institute, Zhejiang University School of Medicine, Hangzhou, China,
| |
Collapse
|
32
|
Zhao W, Shen G, Ren H, Liang D, Yu X, Zhang Z, Huang J, Qiu T, Tang J, Shang Q, Yu P, Wu Z, Jiang X. Therapeutic potential of microRNAs in osteoporosis function by regulating the biology of cells related to bone homeostasis. J Cell Physiol 2018; 233:9191-9208. [PMID: 30078225 DOI: 10.1002/jcp.26939] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are novel regulatory factors that play important roles in numerous cellular processes through the posttranscriptional regulation of gene expression. Recently, deregulation of the miRNA-mediated mechanism has emerged as an important pathological factor in osteoporosis. However, a detailed molecular mechanism between miRNAs and osteoporosis is still not available. In this review, the roles of miRNAs in the regulation of cells related to bone homeostasis as well as miRNAs that deregulate in human or animal are discussed. Moreover, the miRNAs that act as clusters in the biology of cells in the bone microenvironment and the difference of some important miRNAs for bone homeostasis between bone and other organs are mentioned. Overall, miRNAs that contribute to the pathogenesis of osteoporosis and their therapeutic potential are considered.
Collapse
Affiliation(s)
- Wenhua Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gengyang Shen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Ren
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - De Liang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Yu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhida Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinjing Huang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Qiu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Tang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Shang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peiyuan Yu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zixian Wu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaobing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory Affiliated to National Key Discipline of Orthopaedic and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
33
|
Zhou X, Tao H. Overexpression of microRNA-936 suppresses non-small cell lung cancer cell proliferation and invasion via targeting E2F2. Exp Ther Med 2018; 16:2696-2702. [PMID: 30210611 DOI: 10.3892/etm.2018.6490] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/08/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNA (miR)-936 has been reported to inhibit the cell cycle and glioma cell proliferation. However, the roles of miR-936 in other human tumors remain largely unknown. In the present study, it was indicated that miR-936 was significantly downregulated in non-small cell lung cancer (NSCLC) tissues compared with adjacent normal tissues by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results also indicated that miR-936 was downregulated in NSCLC cell lines compared with 16HBE cells. Furthermore, it was demonstrated that overexpression of miR-936 significantly inhibited the proliferation, cell cycle progression and invasion of NSCLC cells. Notably, E2F2 was identified as a target gene of miR-936 in NSCLC cells. The results indicated that E2F2 was upregulated in NSCLC tissues and cell lines, and its expression was negatively correlated with that of miR-936 in NSCLC tissues. Overexpression of miR-936 significantly reduced the protein expression levels of E2F2 in NSCLC cells. Furthermore, restoration of E2F2 rescued the proliferation and invasion of NSCLC cells transfected with miR-936 mimics. To the best of our knowledge, the present findings demonstrated for the first time that miR-936 suppressed NSCLC progression by directly targeting E2F2.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Thoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Hui Tao
- Department of Thoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
34
|
Crosstalk between Hedgehog pathway and energy pathways in human adipose-derived stem cells: A deep sequencing analysis of polysome-associated RNA. Sci Rep 2018; 8:8411. [PMID: 29849100 PMCID: PMC5976649 DOI: 10.1038/s41598-018-26533-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/14/2018] [Indexed: 12/19/2022] Open
Abstract
Adult stem cells are considered promising candidates for cellular therapies due to their capacity to differentiate and self-renew. Differentiation leads to changes in the metabolism, structure, and gene expression patterns of cells. Hedgehog is one of the pathways that is involved in the enhancement of osteogenesis and chondrogenesis in adult stem cells, but its mechanisms are poorly understood. In this study, we treated adipose tissue-derived stem cells (ADSC) with two well-characterized drugs, purmorphamine (Hedgehog pathway activator) and cyclopamine (Hedgehog pathway inhibitor), and identified mRNAs associated with polysomes in each treatment group to determine the post transcriptional genetic networks governed by the Hedgehog pathway. Activation of the Hedgehog pathway by purmorphamine results in significant upregulation of mRNAs associated with cellular communication and signal transduction. Furthermore, our experiments show that cyclopamine acts late downregulating GLI1 expression in ADSCs but promotes the upregulation of mRNAs associated with energy pathways and metabolism at early times. Through in silico analysis, we identified some miRNAs, such as miR-355, that could regulate these mRNAs association with polysomes and thereby modulate the Hedgehog pathway. Our results suggest that activation of the Hedgehog pathway by purmorphamine also results in a negative regulation of mRNAs in the protein translation machinery.
Collapse
|
35
|
Yin C, Mou Q, Pan X, Zhang G, Li H, Sun Y. MiR-577 suppresses epithelial-mesenchymal transition and metastasis of breast cancer by targeting Rab25. Thorac Cancer 2018. [PMID: 29524309 PMCID: PMC5879053 DOI: 10.1111/1759-7714.12612] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background MicroRNAs can act as both tumor suppressor genes and oncogenes and participate in cell proliferation, metastasis, and apoptosis. Low levels of miR‐577 are found in several cancers, for example, thyroid carcinoma, glioblastoma, and hepatocellular carcinoma. The aim of this study was to investigate the effect of miR‐577 on breast cancer (BC). Methods The relative level of miR‐577 in 120 BC tissues and cells was detected by real‐time PCR. MDA‐MB‐231 cells with upregulated miR‐577 and MCF‐7 cells with downregulated miR‐577 were established. Transwell invasion assays were used to examine the invasiveness of cells. Epithelial‐mesenchymal transition (EMT) markers were evaluated by immunofluorescence and Western blot. Targeted combinations of miR‐577 and Rab25 were analyzed by luciferase assays. Xenograft models were used to examine the effect of miR‐577 on BC metastasis. Results MiR‐577 expression was significantly suppressed in BC tissues. Tumor size, tumor stage, and lymphatic metastasis were attributed to miR‐577 expression. Moreover, miR‐577 overexpression strongly inhibited the invasiveness and EMT of BC cells in vitro. MiR‐577 directly regulated Rab25 in BC. Rab25 upregulation by miR‐577 decreased the levels of E‐cadherin and increased the levels of Vimentin. Notably, Rab25 knockdown inhibited BC invasion; however, an increase in Rab25 counteracted the invasive effect of miR‐577 in BC. Conclusion Results indicated that miR‐577 suppressed EMT by inhibiting Rab25 expression in BC. MiR‐577 and Rab25 are considered potential targets of BC treatment.
Collapse
Affiliation(s)
- Chonggao Yin
- College of Nursing, Qingdao University, Qingdao, China.,College of Nursing, Weifang Medical University, Weifang, China
| | - Qingjie Mou
- Medicine Research Center, Weifang Medical University, Weifang, China
| | - Xinting Pan
- Intensive Care Unit, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guoxin Zhang
- Medicine Research Center, Weifang Medical University, Weifang, China
| | - Hongli Li
- Medicine Research Center, Weifang Medical University, Weifang, China
| | - Yunbo Sun
- Intensive Care Unit, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|