1
|
Okumuş EB, Böke ÖB, Turhan SŞ, Doğan A. From development to future prospects: The adipose tissue & adipose tissue organoids. Life Sci 2024; 351:122758. [PMID: 38823504 DOI: 10.1016/j.lfs.2024.122758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Living organisms store their energy in different forms of fats including lipid droplets, triacylglycerols, and steryl esters. In mammals and some non-mammal species, the energy is stored in adipose tissue which is the innervated specialized connective tissue that incorporates a variety of cell types such as macrophages, fibroblasts, pericytes, endothelial cells, adipocytes, blood cells, and several kinds of immune cells. Adipose tissue is so complex that the scope of its function is not only limited to energy storage, it also encompasses to thermogenesis, mechanical support, and immune defense. Since defects and complications in adipose tissue are heavily related to certain chronic diseases such as obesity, cardiovascular diseases, type 2 diabetes, insulin resistance, and cholesterol metabolism defects, it is important to further study adipose tissue to enlighten further mechanisms behind those diseases to develop possible therapeutic approaches. Adipose organoids are accepted as very promising tools for studying fat tissue development and its underlying molecular mechanisms, due to their high recapitulation of the adipose tissue in vitro. These organoids can be either derived using stromal vascular fractions or pluripotent stem cells. Due to their great vascularization capacity and previously reported incontrovertible regulatory role in insulin sensitivity and blood glucose levels, adipose organoids hold great potential to become an excellent candidate for the source of stem cell therapy. In this review, adipose tissue types and their corresponding developmental stages and functions, the importance of adipose organoids, and the potential they hold will be discussed in detail.
Collapse
Affiliation(s)
- Ezgi Bulut Okumuş
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, Turkey
| | - Özüm Begüm Böke
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, Turkey
| | - Selinay Şenkal Turhan
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, Turkey
| | - Ayşegül Doğan
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, Turkey.
| |
Collapse
|
2
|
Di Stefano AB, Urrata V, Trapani M, Moschella F, Cordova A, Toia F. Systematic review on spheroids from adipose‐derived stem cells: Spontaneous or artefact state? J Cell Physiol 2022; 237:4397-4411. [PMID: 36209478 PMCID: PMC10091738 DOI: 10.1002/jcp.30892] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022]
Abstract
Three-dimensional (3D) cell cultures represent the spontaneous state of stem cells with specific gene and protein molecular expression that are more alike the in vivo condition. In vitro two-dimensional (2D) cell adhesion cultures are still commonly employed for various cellular studies such as movement, proliferation and differentiation phenomena; this procedure is standardized and amply used in laboratories, however their representing the original tissue has recently been subject to questioning. Cell cultures in 2D require a support/substrate (flasks, multiwells, etc.) and use of fetal bovine serum as an adjuvant that stimulates adhesion that most likely leads to cellular aging. A 3D environment stimulates cells to grow in suspended aggregates that are defined as "spheroids." In particular, adipose stem cells (ASCs) are traditionally observed in adhesion conditions, but a recent and vast literature offers many strategies that obtain 3D cell spheroids. These cells seem to possess a greater ability in maintaining their stemness and differentiate towards all mesenchymal lineages, as demonstrated in in vitro and in vivo studies compared to adhesion cultures. To date, standardized procedures that form ASC spheroids have not yet been established. This systematic review carries out an in-depth analysis of the 76 articles produced over the past 10 years and discusses the similarities and differences in materials, techniques, and purposes to standardize the methods aimed at obtaining ASC spheroids as already described for 2D cultures.
Collapse
Affiliation(s)
- Anna Barbara Di Stefano
- BIOPLAST‐Laboratory of BIOlogy and Regenerative Medicine‐PLASTic Surgery, Plastic and Reconstructive Surgery Unit, Department of Surgical, Oncological and Oral Sciences University of Palermo Palermo Italy
| | - Valentina Urrata
- BIOPLAST‐Laboratory of BIOlogy and Regenerative Medicine‐PLASTic Surgery, Plastic and Reconstructive Surgery Unit, Department of Surgical, Oncological and Oral Sciences University of Palermo Palermo Italy
| | - Marco Trapani
- BIOPLAST‐Laboratory of BIOlogy and Regenerative Medicine‐PLASTic Surgery, Plastic and Reconstructive Surgery Unit, Department of Surgical, Oncological and Oral Sciences University of Palermo Palermo Italy
| | - Francesco Moschella
- BIOPLAST‐Laboratory of BIOlogy and Regenerative Medicine‐PLASTic Surgery, Plastic and Reconstructive Surgery Unit, Department of Surgical, Oncological and Oral Sciences University of Palermo Palermo Italy
| | - Adriana Cordova
- BIOPLAST‐Laboratory of BIOlogy and Regenerative Medicine‐PLASTic Surgery, Plastic and Reconstructive Surgery Unit, Department of Surgical, Oncological and Oral Sciences University of Palermo Palermo Italy
- Department of Surgical, Oncological and Oral Sciences, Unit of Plastic and Reconstructive Surgery University of Palermo Palermo Italy
- Department of D.A.I. Chirurgico, Plastic and Reconstructive Unit Azienda Ospedaliera Universitaria Policlinico “Paolo Giaccone” Palermo Italy
| | - Francesca Toia
- BIOPLAST‐Laboratory of BIOlogy and Regenerative Medicine‐PLASTic Surgery, Plastic and Reconstructive Surgery Unit, Department of Surgical, Oncological and Oral Sciences University of Palermo Palermo Italy
- Department of Surgical, Oncological and Oral Sciences, Unit of Plastic and Reconstructive Surgery University of Palermo Palermo Italy
- Department of D.A.I. Chirurgico, Plastic and Reconstructive Unit Azienda Ospedaliera Universitaria Policlinico “Paolo Giaccone” Palermo Italy
| |
Collapse
|
3
|
Kuhn P, Bubel M, Jennewein M, Guthörl S, Pohlemann T, Oberringer M. Dose-dependent dominance: How cell densities design stromal cell functions during soft tissue healing. Cell Biochem Funct 2022; 40:439-450. [PMID: 35707856 DOI: 10.1002/cbf.3705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/15/2022] [Accepted: 04/10/2022] [Indexed: 11/06/2022]
Abstract
Regular soft tissue healing relies on the well-organized interaction of different stromal cell types with endothelial cells. However, spatiotemporal conditions might provoke high densities of one special stromal cell type, potentially leading to impaired healing. Detailed knowledge of the functions of rivaling stromal cell types aiming for tissue contraction and stabilization as well as vascular support is mandatory. By the application of an in vitro approach comprising the evaluation of cell proliferation, cell morphology, myofibroblastoid differentiation, and cytokine release, we verified a density-dependent modulation of these functions among juvenile and adult fibroblasts, pericytes, and adipose-derived stem cells during their interaction with microvascular endothelial cells in cocultures. Results indicate that juvenile fibroblasts rather support angiogenesis via paracrine regulation at the early stage of healing, a role potentially compromised in adult fibroblasts. In contrast, pericytes showed a more versatile character aiming at angiogenesis, vessel stabilization, and tissue contraction. Such a universal character was even more pronounced among adipose-derived stem cells. The explicit knowledge of the characteristic functions of stromal cell types is a prerequisite for the development of new analytical and therapeutic approaches for impaired soft tissue healing. The present study delivers new considerations concerning the roles of rivaling stromal cell types within a granulation tissue, pointing to extraordinary properties of pericytes and adipose-derived stem cells.
Collapse
Affiliation(s)
- Philipp Kuhn
- Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Monika Bubel
- Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Martina Jennewein
- Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Silke Guthörl
- Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Tim Pohlemann
- Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Martin Oberringer
- Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
4
|
Lee DY, Choi YH, Choi JS, Eom MR, Kwon SK. Injection laryngoplasty of human adipose-derived stem cell spheroids with hyaluronic acid-based hydrogel improves the morphological and functional characteristics of geriatric larynx. Biomater Res 2022; 26:13. [PMID: 35382871 PMCID: PMC8981753 DOI: 10.1186/s40824-022-00261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/17/2022] [Indexed: 11/18/2022] Open
Abstract
Aim As the geriatric population increased, the need of treatment for laryngeal atrophy and dysfunction increased. This study was performed to evaluate the effects of injection of human adipose-derived stem cell (hASC) spheroid-loaded catechol-conjugated hyaluronic acid (HA-CA) hydrogel on therapeutic rejuvenation of the geriatric larynx. Methods Stem cell spheroids with hyaluronic acid-based hydrogel were injected into the laryngeal muscles of 18-month-old Sprague–Dawley rats. The effects of hASC spheroids were examined in the following four groups: SHAM, injected with PBS; GEL, injected with HA-CA hydrogel; MONO, injected with single hASCs in HA-CA hydrogel; and SP, injected with hASCs spheroids in HA-CA hydrogel. The rejuvenation efficacy in geriatric laryngeal muscle tissues at 12 weeks postinjection was evaluated and compared by histology, immunofluorescence staining, and functionality analysis. Results Total myofiber cross-sectional area and myofiber number/density, evaluated by detection of myosin heavy chain with antibodies against laminin and fast myosin heavy chain, were significantly higher in the SP group than in the other groups. The lamina propria of the larynx was evaluated by alcian blue staining, which showed that the HA was increased significantly in the SP group compared to the other groups. In functional analysis, the glottal gap area was significantly reduced in the SP group compared to the other groups. The phase difference in the vocal fold during vibration was also smaller in the SP group than in the other groups, but the difference did not reach statistical significance. Conclusion Injection of hASC spheroids with hyaluronic acid-based hydrogel improves the morphological and functional characteristics of geriatric larynx. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s40824-022-00261-x.
Collapse
|
5
|
Azam M, Ghufran H, Butt H, Mehmood A, Ashfaq R, Ilyas AM, Ahmad MR, Riazuddin S. Curcumin preconditioning enhances the efficacy of adipose-derived mesenchymal stem cells to accelerate healing of burn wounds. BURNS & TRAUMA 2021; 9:tkab021. [PMID: 34514007 PMCID: PMC8430278 DOI: 10.1093/burnst/tkab021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/26/2021] [Indexed: 01/09/2023]
Abstract
Background Following recent findings from our group that curcumin preconditioning augments the therapeutic efficacy of adipose-derived stem cells in the healing of diabetic wounds in rats, we aimed to investigate the regenerative effects of curcumin preconditioned adipose-derived mesenchymal stem cells (ASCs) for better recovery of acid inflicted burns in this study. Methods ASCs were preconditioned with 5 μM curcumin for 24 hours and assessed for proliferation, migration, paracrine release potential and gene expression comparative to naïve ASCs. Subsequently, the healing capacity of curcumin preconditioned ASCs (Cur-ASCs) versus naïve ASCs was examined using acidic wounds in rats. For this, acid inflicted burns of 20 mm in diameter were made on the back of male Wistar rats. Then, 2 × 106 cells of Cur-ASCs and naïve ASCs were intradermally injected in the wound periphery (n = 6) for comparison with an untreated saline control. Post-transplantation, wounds were macroscopically analysed and photographed to evaluate the percentage of wound closure and period of re-epithelization. Healed wound biopsies were excised and used for histological evaluation and expression analysis of wound healing markers at molecular level by quantitative PCR and western blotting. Results We found that Cur-ASCs exhibited greater proliferation, migration and paracrine potential in vitro. Further, Cur-ASCs showed more effective recovery than naïve ASCs as exhibited by gross morphology, faster wound closure and earlier re-epithelialization. Masson’s trichrome and hematoxylin and eosin staining demonstrated the improved architecture of the healing burns, as evidenced by reduced infiltration of inflammatory cells, compact collagen and marked granulation in Cur-ASC treated rats. Corroborating these findings, molecular assessment showed significantly reduced expressions of pro-inflammatory factors (interleukin-1 beta, interleukin-6, tumor necrosis factor alpha) a with striking upsurge of an oxidative marker (superoxide dismutase 1), pro-angiogenic factors (vascular endothelial growth factor, hepatocyte growth factor, hypoxia-inducible factor-1 alpha) and collagen markers (transforming growth factor beta 1, fibroblast growth factor-2, collagen type 1 alpha 1), verifying that Cur-ASCs modulate the regulation of pro-inflammatory and healing markers at burn sites. Conclusions Treatment with Cur-ASCs resulted in faster re-epithelization of acid inflicted burns compared to the treatment with naïve ASCs. Based on observed findings, we suggest the transplantation of Cur-ASCs is a valuable therapy for the potent clinical management of acidic burns.
Collapse
Affiliation(s)
- Maryam Azam
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Hafiz Ghufran
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Hira Butt
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Azra Mehmood
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Ramla Ashfaq
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Asad M Ilyas
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Muhammad R Ahmad
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
6
|
Sung SE, Seo MS, Kang KK, Choi JH, Lee SJ, Lim JH, Yang SY, Kim SK, Lee GW. Isolation and Characterization of Extracellular Vesicle from Mesenchymal Stem Cells of the Epidural Fat of the Spine. Asian Spine J 2021; 16:153-161. [PMID: 34461688 PMCID: PMC9066249 DOI: 10.31616/asj.2021.0129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/11/2021] [Indexed: 01/18/2023] Open
Abstract
Study Design An experimental study with extracellular vesicles (EVs) from mesenchymal stem cell (MSC) of the epidural fat (EF) of the spine. Purpose This study aims to isolate the exosomes from epidural fat-derived mesenchymal stem cells (EF-MSCs) and fully characterize the EF-MSC-EVs. Overview of Literature EF-MSCs were reported in 2019, and a few studies have shown the positive outcomes of using EF-MSCs to treat specific spine pathologies. However, MSCs have significant limitations for conducting basic studies or developing therapeutic agents. Although EVs are an emerging research topic, no studies have focused on EVs, especially exosomes, from EF and EF-MSCs. Methods In this study, we isolated the exosomes using the tangential flow filtration (TFF) system with exosome-depleted fetal bovine serum and performed the characterization tests via western blotting, reverse transcription–polymerase chain reaction, nanoparticle tracking analysis (NTA), and transmission electron microscopy. Results In transmission electron microscopy, the exosome had a diameter of approximately 100–200 nm and had a spherical shape, whereas in the NTA, the exosome had an average diameter of 142.8 nm with a concentration of 1.27×1010 particles/mL. The flow cytometry analysis showed the expression of CD63 and CD81. The western blotting analysis showed the positive markers. Conclusions These findings showed that isolating the exosomes via TFF resulted in high-quality EF-MSC exosome yield. Further studies with exosomes from EF-MSC are needed to evaluate the function and role of the EF tissue.
Collapse
Affiliation(s)
- Soo-Eun Sung
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Min-Soo Seo
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Kyung-Ku Kang
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Joo-Hee Choi
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Si-Joon Lee
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Ju-Hyeon Lim
- New Drug Development Center, Osong Medical Innovation Foundation, Cheonju, Korea.,Department of Orthopedic Surgery, Yeungnam University Medical Center, Yeungnam University College of Medicine, Daegu, Korea
| | - Seung Yun Yang
- Department of Biomaterials Science (BK21 Four Program), Pusan National University, Pusan, Korea
| | - Seul-Ki Kim
- Efficacy Evaluation Team, Food Science R&D Center, KolmarBNH Co. Ltd., Seoul, Korea
| | - Gun Woo Lee
- Department of Orthopedic Surgery, Yeungnam University Medical Center, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
7
|
Functional Properties of Human-Derived Mesenchymal Stem Cell Spheroids: A Meta-Analysis and Systematic Review. Stem Cells Int 2021; 2021:8825332. [PMID: 33884001 PMCID: PMC8041538 DOI: 10.1155/2021/8825332] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/31/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSC) are adult multi-potent cells that can be isolated from many types of tissues including adipose tissue, bone marrow, and umbilical cord. They show great potential for cell therapy-based treatments, which is why they are being used in numerous clinical trials for a wide range of diseases. However, the success of placebo-controlled clinical trials has been limited, so new ways of improving the therapeutic effects of MSC are being developed, such as their assembly in a 3D conformation. In this meta-analysis, we review aggregate formation, in vitro functional properties and in vivo therapeutic potential displayed by adipose tissue, bone marrow, and umbilical cord-derived MSC, assembled as spheroids. The databases PubMed and SciELO were used to find eligible articles, using free-words and MeSH terms related to the subject, finding 28 published articles meeting all inclusion and exclusion criteria. Of the articles selected 15 corresponded to studies using MSC derived from bone marrow, 10 from adipose tissue and 3 from umbilical cord blood or tissue. The MSC spheroids properties analyzed that displayed enhancement in comparison with monolayer 2D culture, are stemness, angiogenesis, differentiation potential, cytokine secretion, paracrine and immunomodulatory effects. Overall studies reveal that the application of MSC spheroids in vivo enhanced therapeutic effects. For instance, research exhibited reduced inflammation, faster wound healing, and closure, functional recovery and tissue repair due to immunomodulatory effects, better MSC engraftment in damaged tissue, higher MSC survival and less apoptosis at the injury. Still, further research and clinical studies with controlled and consistent results are needed to see the real therapeutic efficacy of MSC spheroids.
Collapse
|
8
|
Generation of immune cell containing adipose organoids for in vitro analysis of immune metabolism. Sci Rep 2020; 10:21104. [PMID: 33273595 PMCID: PMC7713299 DOI: 10.1038/s41598-020-78015-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue is an organized endocrine organ with important metabolic and immunological functions and immune cell-adipocyte crosstalk is known to drive various disease pathologies. Suitable 3D adipose tissue organoid models often lack resident immune cell populations and therefore require the addition of immune cells isolated from other organs. We have created the first 3D adipose tissue organoid model which could contain and maintain resident immune cell populations of the stromal vascular fraction (SVF) and proved to be effective in studying adipose tissue biology in a convenient manner. Macrophage and mast cell populations were successfully confirmed within our organoid model and were maintained in culture without the addition of growth factors. We demonstrated the suitability of our model for monitoring the lipidome during adipocyte differentiation in vitro and confirmed that this model reflects the physiological lipidome better than standard 2D cultures. In addition, we applied mass spectrometry-based lipidomics to track lipidomic changes in the lipidome upon dietary and immunomodulatory interventions. We conclude that this model represents a valuable tool for immune-metabolic research.
Collapse
|
9
|
Tae JY, Lee H, Lee H, Song Y, Park JB. Morphological stability, cellular viability and stem cell marker expression of three-dimensional cultures of stem cells from bone marrow and periodontium. Biomed Rep 2020; 14:9. [PMID: 33235724 PMCID: PMC7678627 DOI: 10.3892/br.2020.1385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/19/2020] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to evaluate the morphology, cellular viability and stem cell marker expression of three-dimensional cultures of bone marrow and gingiva-derived stem cells in different ratios. Stem cell spheroids were made with bone marrow and gingiva-derived stem cells using ratios of 6:0 (Group 1), 4:2 (Group 2), 3:3 (Group 3), 2:4 (Group 4) and 0:6 (Group 5), respectively. The viability of cell spheroids was analyzed using a Live/Dead kit assay and a Cell Counting Kit-8 assay. Total RNA extraction and reverse transcription-quantitative PCR were performed to detect the mRNA expression levels of Nanog and β-actin in each group. Stem cell spheroids were well formed in silicone elastomer-based concave microwells with different ratios of bone marrow and gingiva-derived stem cells. The shape of the spheroids and their viability were maintained throughout the entirety of the experimental procedure. Statistically significant increases in spheroid diameters were noted in Groups 4 and 5 on day 1 when compared with Group 1 on day 1. There was a significant increase in the cell viability values seen in Group 3 on day 1 when compared with Group 1 on day 1. Highest levels of Nanog expression was seen in Group 3 on day 10, but the increase was not significant when compared with Group 1 on day 1. Co-culturing with higher ratios of gingiva-derived stem cells produced stem cell spheroids with larger diameters and increased cellular viability. This co-culture technique may be used in stem cell therapy with allogenic stem cell transplantation.
Collapse
Affiliation(s)
- Jae-Yong Tae
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyunjin Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyuna Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Youngmin Song
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
10
|
Toia F, Di Stefano AB, Muscolino E, Sabatino MA, Giacomazza D, Moschella F, Cordova A, Dispenza C. In-situ gelling xyloglucan formulations as 3D artificial niche for adipose stem cell spheroids. Int J Biol Macromol 2020; 165:2886-2899. [PMID: 33470202 DOI: 10.1016/j.ijbiomac.2020.10.158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
Three-dimensional spheroidal cell aggregates of adipose stem cells (SASCs) are a distinct upstream population of stem cells present in adipose tissue, with enhanced regeneration properties in vivo. The preservation of the 3D structure of the cells, from extraction to administration, can be a promising strategy to ensure optimal conditions for cell viability and maintenance of stemness potential. With this aim, an artificial niche was created by incorporating the spheroids into an injectable, in-situ gelling solution of partially degalactosylated xyloglucan (dXG) and an ad hoc formulated culture medium for the preservation of stem cell spheroid features. The evolution of the mechanical properties and the morphological structure of this artificial niche was investigated by small amplitude rheological analysis and scanning electron microscopy, respectively. Comparatively, systems produced with the same polymer and the typical culture medium (DMEM) used for adipose stem cell (ASC) growth in adherent cell culture conditions were also characterised. Cell viability of both SASCs and ASCs incorporated inside the hydrogel or seeded on top of the hydrogel were investigated as well as the preservation of SASC stemness conditions when embedded in the hydrogel.
Collapse
Affiliation(s)
- F Toia
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, via del Vespro 129, 90127 Palermo, Italy; BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - A B Di Stefano
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - E Muscolino
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze 6, 90128 Palermo, Italy
| | - M A Sabatino
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze 6, 90128 Palermo, Italy
| | - D Giacomazza
- Istituto di BioFisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
| | - F Moschella
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - A Cordova
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, via del Vespro 129, 90127 Palermo, Italy; BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - C Dispenza
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze 6, 90128 Palermo, Italy; Istituto di BioFisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy.
| |
Collapse
|
11
|
Ghufran H, Mehmood A, Azam M, Butt H, Ramzan A, Yousaf MA, Ejaz A, Tarar MN, Riazuddin S. Curcumin preconditioned human adipose derived stem cells co-transplanted with platelet rich plasma improve wound healing in diabetic rats. Life Sci 2020; 257:118091. [PMID: 32668325 DOI: 10.1016/j.lfs.2020.118091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/23/2020] [Accepted: 07/09/2020] [Indexed: 01/20/2023]
Abstract
AIM Inflammatory and oxidative microenvironment at diabetic' wound site hinder the therapeutic efficacy of cell-based therapies in diabetic patients. The purpose of this study is to explore the competence of curcumin preconditioned human adipose derived cells (hASCs) in combination with platelet rich plasma (PRP) for the repair of wounds in diabetic rats. MAIN METHODS The cytoprotective effect of curcumin preconditioning for hASCs against hyperglycemic stress was evaluated through analysis of cell morphology, viability, cytotoxicity, senescence, and scratch wound healing assays. Subsequently, the healing capacity of curcumin preconditioned hASCs (Cur-hASCs) added to PRP was examined in excisional wounded diabetic rat model. Healed skin biopsies were excised to analyze gene and protein expression of wound healing markers by qPCR and western blotting. Histopathological changes were observed through hematoxylin and eosin staining. KEY FINDINGS We found that Cur-hASCs counteract the glucose stress much better than non-preconditioned hASCs by maintaining their cellular morphology and viability as well as metabolic potential. Further in vivo results revealed that, Cur-hASCs co-injected with PRP resulted in faster wound closure, improved fibroblast proliferation, increased neovascularization, marked reduction in inflammatory cells, and compact extracellular matrix with completely covered thick epithelium. Moreover, Cur-hASCs + PRP treatment significantly improved the expression of key healing markers such as pro-angiogenic (Vegf), dermal matrix deposition (Col1α1), cell migration (bFgf) and cell proliferation (Pcna) at wound site. SIGNIFICANCE Our findings propose a combinatorial therapy (Cur-hASCs + PRP) as a novel modality to improve the efficacy of hASCs-based therapy for diabetic wounds.
Collapse
Affiliation(s)
- Hafiz Ghufran
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Azra Mehmood
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Maryam Azam
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Hira Butt
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Amna Ramzan
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | | | - Asim Ejaz
- Adipose Stem Cells Center, Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, USA
| | - Moazzam N Tarar
- Jinnah Burn and Reconstructive Surgery Centre, Lahore, Pakistan
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan; Jinnah Burn and Reconstructive Surgery Centre, Lahore, Pakistan.
| |
Collapse
|
12
|
Lin CL, Kuo YT, Tsao CH, Shyong YJ, Shih SH, Tu TY. Development of an In Vitro 3D Model for Investigating Ligamentum Flavum Hypertrophy. Biol Proced Online 2020; 22:20. [PMID: 32884451 PMCID: PMC7460798 DOI: 10.1186/s12575-020-00132-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/29/2020] [Indexed: 12/22/2022] Open
Abstract
Background Ligamentum flavum hypertrophy (LFH) is among the most crucial factors in degenerative lumbar spinal stenosis, which can cause back pain, lower extremity pain, cauda equina syndrome and neurogenic claudication. The exact pathogenesis of LFH remains elusive despite extensive research. Most in vitro studies investigating LFH have been carried out using conventional two-dimensional (2D) cell cultures, which do not resemble in vivo conditions, as they lack crucial pathophysiological factors found in three-dimensional (3D) LFH tissue, such as enhanced cell proliferation and cell cluster formation. In this study, we generated ligamentum flavum (LF) clusters using spheroid cultures derived from primary LFH tissue. Results The cultured LF spheroids exhibited good viability and growth on an ultra-low attachment 96-well plate (ULA 96-plate) platform according to live/dead staining. Our results showed that the 100-cell culture continued to grow in size, while the 1000-cell culture maintained its size, and the 5000-cell culture exhibited a decreasing trend in size as the culture time increased; long-term culture was validated for at least 28 days. The LF spheroids also maintained the extracellular matrix (ECM) phenotype, i.e., fibronectin, elastin, and collagen I and III. The 2D culture and 3D culture were further compared by cell cycle and Western blot analyses. Finally, we utilized hematoxylin and eosin (H&E) staining to demonstrate that the 3D spheroids resembled part of the cell arrangement in LF hypertrophic tissue. Conclusions The developed LF spheroid model has great potential, as it provides a stable culture platform in a 3D model that can further improve our understanding of the pathogenesis of LFH and has applications in future studies.
Collapse
Affiliation(s)
- Cheng-Li Lin
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan.,Skeleton Materials and Bio-compatibility Core Lab, Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan.,Medical Device Innovation Center (MDIC), National Cheng Kung University, Tainan, 70101 Taiwan
| | - Yi-Ting Kuo
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Che-Hao Tsao
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Yan-Jye Shyong
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 70101 Taiwan.,Institute of Clinical Pharmacy and Pharmaceutical Sciences, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Shu-Hsien Shih
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Ting-Yuan Tu
- Medical Device Innovation Center (MDIC), National Cheng Kung University, Tainan, 70101 Taiwan.,Department of Biomedical Engineering, National Cheng Kung University, Tainan, 70101 Taiwan.,International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, 70101 Taiwan
| |
Collapse
|
13
|
Lu GM, Rong YX, Liang ZJ, Hunag DL, Wu FX, Ma YF, Luo ZZ, Liu XH, Mo S, Li HM. FGF2-induced PI3K/Akt signaling evokes greater proliferation and adipogenic differentiation of human adipose stem cells from breast than from abdomen or thigh. Aging (Albany NY) 2020; 12:14830-14848. [PMID: 32706337 PMCID: PMC7425436 DOI: 10.18632/aging.103547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/04/2020] [Indexed: 12/15/2022]
Abstract
In this study, human adipose stem cells were isolated from subcutaneous fat in the thigh (htASCs), abdomen (haASCs) and breast (hbASCs). Flow cytometry was used to detect cell surface markers, and an enzyme-linked immunosorbent assay was used to detect paracrine activity. Paracrine gene expression in the three cell types was examined using real-time qPCR, and adipogenic ability was assessed using Oil Red O staining. RNA from third-passage haASCs and hbASCs was sequenced. The results showed that the differentiation potential marker markers CD49d and CD54 were similar across hbASCs from 10 subjects. The hbASCs showed higher colony forming ability and expression of fibroblast growth factor-2, tissue inhibitor of metalloproteinase-1 and stromal cell derived factor-1 than htASCs and haASCs. Stimulating hbASCs with FGF2 promoted adipogenic differentiation, while treating the cells with the PI3K inhibitor LY294002 inhibited differentiation. These results suggest that the PI3K/Akt signaling pathway can promote proliferation and adipogenic differentiation of adipose stem cells, and that activation of this pathway by FGF2 may explain why hbASCs show greater proliferation and adipogenic differentiation than haASCs and htASCs.
Collapse
Affiliation(s)
- Guan-Ming Lu
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi 533000, China
| | - Yong-Xian Rong
- Department of Burn and Plastic Surgery, Guiping People's Hospital, Guigping 537200, Guangxi, China
| | - Zhi-Jie Liang
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Guangxi Medical University and The First People's Hospital of Nanning, Nanning 530022, Guangxi, China
| | - Dong-Lin Hunag
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Guangxi Medical University and The First People's Hospital of Nanning, Nanning 530022, Guangxi, China
| | - Fang-Xiao Wu
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Guangxi Medical University and The First People's Hospital of Nanning, Nanning 530022, Guangxi, China
| | - Yan-Fei Ma
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi 533000, China
| | - Zhi-Zhai Luo
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi 533000, China
| | - Xin-Heng Liu
- Department of Burn and Plastic Surgery, Guiping People's Hospital, Guigping 537200, Guangxi, China
| | - Steven Mo
- Nanning Life-Ontology Biotechnology Co., Ltd., Nanning 530229, Guangxi, China
| | - Hong-Mian Li
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Guangxi Medical University and The First People's Hospital of Nanning, Nanning 530022, Guangxi, China
| |
Collapse
|
14
|
Kronemberger GS, Dalmônico GML, Rossi AL, Leite PEC, Saraiva AM, Beatrici A, Silva KR, Granjeiro JM, Baptista LS. Scaffold- and serum-free hypertrophic cartilage tissue engineering as an alternative approach for bone repair. Artif Organs 2020; 44:E288-E299. [PMID: 31950507 DOI: 10.1111/aor.13637] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/25/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
Human adipose stem/stromal cell (ASC) spheroids were used as a serum-free in vitro model to recapitulate the molecular events and extracellular matrix organization that orchestrate a hypertrophic cartilage phenotype. Induced-ASC spheroids (ø = 450 µm) showed high cell viability throughout the period of culture. The expression of collagen type X alpha 1 chain (COLXA1) and matrix metallopeptidase 13 (MMP-13) was upregulated at week 2 in induced-ASC spheroids compared with week 5 (P < .001) evaluated by quantitative real-time PCR. In accordance, secreted levels of IL-6 (P < .0001), IL-8 (P < .0001), IL-10 (P < .0001), bFGF (P < .001), VEGF (P < .0001), and RANTES (P < .0001) were the highest at week 2. Strong in situ staining for collagen type X and low staining for TSP-1 was associated with the increase of hypertrophic genes expression at week 2 in induced-ASC spheroids. Collagen type I, osteocalcin, biglycan, and tenascin C were detected at week 5 by in situ staining, in accordance with the highest expression of alkaline phosphatase (ALPL) gene and the presence of calcium deposits as evaluated by Alizarin Red O staining. Induced-ASC spheroids showed a higher force required to compression at week 2 (P < .0001). The human ASC spheroids under serum-free inducer medium and normoxic culture conditions were induced to a hypertrophic cartilage phenotype, opening a new perspective to recapitulate endochondral ossification in vivo.
Collapse
Affiliation(s)
- Gabriela S Kronemberger
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ), Duque de Caxias, Brazil.,Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil
| | | | | | - Paulo Emílio Correa Leite
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Antonio M Saraiva
- Laboratory of Macromolecules, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Anderson Beatrici
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Scientific and Technological Metrology Division (Dimci), National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Karina Ribeiro Silva
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - José Mauro Granjeiro
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Laboratory of Clinical Research in Odontology, Fluminense Federal University (UFF), Niterói, Brazil
| | - Leandra Santos Baptista
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ), Duque de Caxias, Brazil.,Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| |
Collapse
|
15
|
Bachmann S, Jennewein M, Bubel M, Guthörl S, Pohlemann T, Oberringer M. Interacting adipose-derived stem cells and microvascular endothelial cells provide a beneficial milieu for soft tissue healing. Mol Biol Rep 2019; 47:111-122. [PMID: 31583562 DOI: 10.1007/s11033-019-05112-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
Abstract
There is growing evidence suggesting that healing of chronic soft tissue wounds profits from the presence of adipose-derived stem cells (ADSC). Among the large spectrum of mechanisms by which ADSC might act, especially the interaction with the microvascular endothelial cell, a main player during angiogenesis, is of special interest. In the present 2D model on the basis of endothelial cell ADSC co-cultures, we focused on the identification of characteristics of both cell types in response to a typical condition in acute and chronic wounds: hypoxia. Parameters like proliferation capacity, migration, myofibroblastoid differentiation of ADSC and the quantification of important paracrine factors related to angiogenesis and inflammation were used to correlate our experimental model with the in vivo situation of soft tissue healing. ADSC were not negatively affected by hypoxia in terms of proliferation, referring to their excellent hypoxia tolerance. Myofibroblastoid differentiation among ADSC was enhanced by hypoxia in mono- but not in co-culture. Furthermore, co-cultures were able to migrate under hypoxia. These effects might be caused to some extent by the distinct milieu created by interacting ADSC and endothelial cells, which was characterized by modulated levels of interleukin-6, interleukin-8, monocyte chemoattractant protein-1 and vascular endothelial growth factor. The identification of these cell characteristics in the present 2D in vitro model provide new insights into the process of human soft tissue healing, and underpin a beneficial role of ADSC by regulating inflammation and angiogenesis.
Collapse
Affiliation(s)
- Sophie Bachmann
- Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Kirrberger Straße, Bldng. 57, 66421, Homburg, Germany
| | - Martina Jennewein
- Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Kirrberger Straße, Bldng. 57, 66421, Homburg, Germany
| | - Monika Bubel
- Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Kirrberger Straße, Bldng. 57, 66421, Homburg, Germany
| | - Silke Guthörl
- Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Kirrberger Straße, Bldng. 57, 66421, Homburg, Germany
| | - Tim Pohlemann
- Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Kirrberger Straße, Bldng. 57, 66421, Homburg, Germany
| | - Martin Oberringer
- Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Kirrberger Straße, Bldng. 57, 66421, Homburg, Germany.
| |
Collapse
|
16
|
Stephens CJ, Spector JA, Butcher JT. Biofabrication of thick vascularized neo-pedicle flaps for reconstructive surgery. Transl Res 2019; 211:84-122. [PMID: 31170376 PMCID: PMC6702068 DOI: 10.1016/j.trsl.2019.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/06/2019] [Accepted: 05/14/2019] [Indexed: 01/01/2023]
Abstract
Wound chronicity due to intrinsic and extrinsic factors perturbs adequate lesion closure and reestablishment of the protective skin barrier. Immediate and proper care of chronic wounds is necessary for a swift recovery and a reduction of patient vulnerability to infection. Advanced therapies supplemented with standard wound care procedures have been clinically implemented to restore aberrant tissue; however, these treatments are ineffective if local vasculature is too compromised to support minimally-invasive strategies. Autologous "flaps", which are tissues equipped with their own hierarchical vascular supply, can be harvested from one region of the patient and transplanted to the wound where it is reperfused upon microsurgical anastomosis to appropriate recipient vessels. Despite the success of autologous flap transfer, these procedures are extremely invasive, incur obligatory donor-site morbidity, and require sufficient donor-tissue availability, microsurgical expertise, and specialized equipment. 3D-bioprinting modalities, such as extrusion-based bioprinting, can be used to address the clinical constraints of autologous flap transfer, primarily addressing donor-site morbidity and tissue availability. This advancement in regenerative medicine allows the biofabrication of heterogeneous tissue structures with high shape fidelity and spatial resolution to generate biomimetic constructs with the anatomically-precise geometries of native tissue to ensure tissue-specific function. Yet, meaningful progress toward this clinical application has been limited by the lack of vascularization required to meet the nutrient and oxygen demands of clinically relevant tissue volumes. Thus, various criteria for the fabrication of functional tissues with hierarchical, patent vasculature must be considered when implementing 3D-bioprinting technologies for deep, chronic wounds.
Collapse
Affiliation(s)
- Chelsea J Stephens
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Jason A Spector
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York; Division of Plastic Surgery, Weill Cornell Medical College, New York, New York
| | - Jonathan T Butcher
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York.
| |
Collapse
|
17
|
Lee GW, Seo MS, Kang KK, Oh SK. Epidural Fat-Derived Mesenchymal Stem Cell: First Report of Epidural Fat-Derived Mesenchymal Stem Cell. Asian Spine J 2019; 13:361-367. [PMID: 30669827 PMCID: PMC6547395 DOI: 10.31616/asj.2018.0215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/03/2018] [Indexed: 12/18/2022] Open
Abstract
Study Design Experimental study. Purpose To determine whether epidural fat (EF) tissue contains mesenchymal stem cells (MSC). Overview of Literature Spine surgeons are unaware of the contents of EF tissue and the reason for its presence between the ligamentum flavum and the dura mater; therefore, EF tissues are routinely eliminated during surgical procedures. However, EF removal causes certain postoperative problems, such as post-laminectomy syndrome. We hypothesized that the EF tissue may play a significant supportive role for the neural structures and other nearby conditions. Methods EF tissues were obtained from consenting patients (n=3) during posterior decompression surgery of the lumbar spine. The primary cells were isolated and cultured as per previously described methods with some modifications, and the cell morphology and cumulation were examined. Thereafter, reverse transcription–polymerase chain reaction (RT-PCR), a fluorescence-activated cell sorting (FACS) analysis, and differentiation potency for differentiation into osteoblasts, chondroblasts, and adipocytes were investigated to identify whether the cells derived from EF are MSC. Results The cells from the EF tissue had a fibroblast or neuron-like morphology that persisted until the senescence at p18. MSC-specific genes, such as OCT4, SOX2, KLF4, MYC, and GAPDH were expressed in the RT-PCR study, while MSC-specific surface markers such as CD105, CD90, and CD73 were exhibited in the FACS analysis. The differentiation properties of EF-MSC for differentiation into the three types of cells (osteoblast, chondroblast, and adipocyte) were also confirmed. Conclusions Based on the cell culture, FACS analysis, RT-PCR analysis, and differentiation potent outcomes, all the features of the cells corresponded to MSC. This is the first study to identify EF-MSC derived from the EF tissue.
Collapse
Affiliation(s)
- Gun Woo Lee
- Department of Orthopaedic Surgery, Spine Center, Yeungnam University Medical Center, Yeungnam University College of Medicine, Daegu, Korea
| | - Min-Soo Seo
- Labaratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Kyung-Ku Kang
- Labaratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Se-Kyung Oh
- Labaratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| |
Collapse
|
18
|
Single-Cell Gene Expression Analysis and Evaluation of the Therapeutic Function of Murine Adipose-Derived Stromal Cells (ASCs) from the Subcutaneous and Visceral Compartment. Stem Cells Int 2018; 2018:2183736. [PMID: 30651733 PMCID: PMC6311719 DOI: 10.1155/2018/2183736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/08/2018] [Indexed: 12/21/2022] Open
Abstract
Introduction Adipose-derived stromal cells (ASCs) are a promising resource for wound healing and tissue regeneration because of their multipotent properties and cytokine secretion. ASCs are typically isolated from the subcutaneous fat compartment, but can also be obtained from visceral adipose tissue. The data on their equivalence diverges. The present study analyzes the cell-specific gene expression profiles and functional differences of ASCs derived from the subcutaneous (S-ASCs) and the visceral (V-ASCs) compartment. Material and Methods Subcutaneous and visceral ASCs were obtained from mouse inguinal fat and omentum. The transcriptional profiles of the ASCs were compared on single-cell level. S-ASCs and V-ASCs were then compared in a murine wound healing model to evaluate their regenerative functionality. Results On a single-cell level, S-ASCs and V-ASCs displayed distinct transcriptional profiles. Specifically, significant differences were detected in genes associated with neoangiogenesis and tissue remodeling (for example, Ccl2, Hif1α, Fgf7, and Igf). In addition, a different subpopulation ecology could be identified employing a cluster model. Nevertheless, both S-ASCs and V-ASCs induced accelerated healing rates and neoangiogenesis in a mouse wound healing model. Conclusion With similar therapeutic potential in vivo, the significantly different gene expression patterns of ASCs from the subcutaneous and visceral compartments suggest different signaling pathways underlying their efficacy. This study clearly demonstrates that review of transcriptional results in vivo is advisable to confirm the tentative effect of cell therapies.
Collapse
|