1
|
Zhang A, Lu L, Yang F, Luo T, Yang S, Yang P, Li X, Deng X, Qiu Y, Chen L, Long K, Pan D, Jin L, Li M, Chen L. Effects of miR-29c on proliferation and adipogenic differentiation of porcine bone marrow mesenchymal stromal cells. Adipocyte 2024; 13:2365211. [PMID: 38858810 PMCID: PMC11174058 DOI: 10.1080/21623945.2024.2365211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
microRNAs (miRNAs), a subclass of noncoding short RNAs, direct cells fate decisions that are important for cell proliferation and cell lineage decisions. Adipogenic differentiation contributes greatly to the development of white adipose tissue, involving of highly organized regulation by miRNAs. In the present study, we screened and identified 78 differently expressed miRNAs of porcine BMSCs during adipogenic differentiation. Of which, the role of miR-29c in regulating the proliferation and adipogenic differentiation was proved and detailed. Specifically, over-expression miR-29c inhibits the proliferation and adipogenic differentiation of BMSCs, which were reversed upon miR-29c inhibitor. Interference of IGF1 inhibits the proliferation and adipogenic differentiation of BMSCs. Mechanistically, miR-29c regulates the proliferation and adipogenic differentiation of BMSCs by targeting IGF1 and further regulating the MAPK pathway and the PI3K-AKT-mTOR pathway, respectively. In conclusion, we highlight the important role of miR-29c in regulating proliferation and adipogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Anjing Zhang
- Department of Pig Production, Chongqing Academy of Animal Science, Chongqing, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lu Lu
- Department of Pig Production, Chongqing Academy of Animal Science, Chongqing, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Fuxing Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Tingting Luo
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shuqi Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Peidong Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xuemin Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaoli Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yang Qiu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Litong Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Keren Long
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Dengke Pan
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Long Jin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Li Chen
- Department of Pig Production, Chongqing Academy of Animal Science, Chongqing, China
- Key Laboratory of Animal Resource Evaluation and Utilization (Pigs), Ministry of Agriculture and Rural Affairs, Chongqing, China
| |
Collapse
|
2
|
Jankowski M, Farzaneh M, Ghaedrahmati F, Shirvaliloo M, Moalemnia A, Kulus M, Ziemak H, Chwarzyński M, Dzięgiel P, Zabel M, Piotrowska-Kempisty H, Bukowska D, Antosik P, Mozdziak P, Kempisty B. Unveiling Mesenchymal Stem Cells' Regenerative Potential in Clinical Applications: Insights in miRNA and lncRNA Implications. Cells 2023; 12:2559. [PMID: 37947637 PMCID: PMC10649218 DOI: 10.3390/cells12212559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023] Open
Abstract
It is now widely recognized that mesenchymal stem cells (MSCs) possess the capacity to differentiate into a wide array of cell types. Numerous studies have identified the role of lncRNA in the regulation of MSC differentiation. It is important to elucidate the role and interplay of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the regulation of signalling pathways that govern MSC function. Furthermore, miRNAs and lncRNAs are important clinical for innovative strategies aimed at addressing a wide spectrum of existing and emerging disease. Hence it is important to consider their impact on MSC function and differentiation. Examining the data available in public databases, we have collected the literature containing the latest discoveries pertaining to human stem cells and their potential in both fundamental research and clinical applications. Furthermore, we have compiled completed clinical studies that revolve around the application of MSCs, shedding light on the opportunities presented by harnessing the regulatory potential of miRNAs and lncRNAs. This exploration of the therapeutic possibilities offered by miRNAs and lncRNAs within MSCs unveils exciting prospects for the development of precision therapies and personalized treatment approaches. Ultimately, these advancements promise to augment the efficacy of regenerative strategies and produce positive outcomes for patients. As research in this field continues to evolve, it is imperative to explore and exploit the vast potential of miRNAs and lncRNAs as therapeutic agents. The findings provide a solid basis for ongoing investigations, fuelling the quest to fully unlock the regenerative potential of MSCs.
Collapse
Affiliation(s)
- Maurycy Jankowski
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Future Science Group, Unitec House, 2 Albert Place, London N3 1QB, UK
| | - Arash Moalemnia
- Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Ziemak
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Mikołaj Chwarzyński
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Physiotherapy, Wroclaw University School of Physical Education, 50-038 Wroclaw, Poland
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27607, USA
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic
| |
Collapse
|
3
|
Ou-yang Y, Dai MM. Screening for genes, miRNAs and transcription factors of adipogenic differentiation and dedifferentiation of mesenchymal stem cells. J Orthop Surg Res 2023; 18:46. [PMID: 36647068 PMCID: PMC9843867 DOI: 10.1186/s13018-023-03514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/08/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The purpose of present study was to reveal the molecular mechanisms responsible for both adipogenic differentiation and dedifferentiation of mesenchymal stem cells (MSCs). METHODS Microarray data GSE36923 were obtained from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between adipogenically differentiated cells vs undifferentiated bone marrow-derived MSCs, adipogenically differentiated cells vs dedifferentiated cells samples at day 7 and adipogenically differentiated cells vs dedifferentiated cells samples at day 35 were screened, and overlapped DEGs across the three groups were analyzed. The underlying functions of the upregulated and downregulated DEGs were investigated by Gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analysis. The protein-protein interaction network was constructed, and hub genes were obtained subsequently. Hub genes were verified with GSE113253 dataset, and then miRNA-gene network and TF-gene network were constructed. RESULTS A total of 284 upregulated DEGs and 376 downregulated DEGs overlapped across the three groups. PPAR signaling pathway, AMPK signaling pathway, insulin signaling pathway, carbon metabolism, pyruvate metabolism, fatty acid metabolism, regulation of lipolysis in adipocytes, biosynthesis of amino acids, citrate cycle (TCA cycle) and 2-Oxocarboxylic acid metabolism were the top 10 pathways involving in the upregulated DEGs, and graft-versus-host disease, allograft rejection, viral myocarditis, cell adhesion molecules, phagosome, type I diabetes mellitus, antigen processing and presentation, autoimmune thyroid disease, intestinal immune network for IgA production and rheumatoid arthritis were the top 10 pathways in downregulated DEGs. After validation, the 8 hub genes were IL6, PPARG, CCL2, FASN, CEBPA, ADIPOQ, FABP4 and LIPE. Ten key miRNAs were hsa-mir-27a-3p, hsa-mir-182-5p, hsa-mir-7-5p, hsa-mir-16-5p, hsa-mir-1-3p, hsa-mir-155-5p, hsa-mir-21-3p, hsa-mir-34a-5p, hsa-mir-27a-5p and hsa-mir-30c-5p, and 10 key TFs were TFDP1, GTF2A2, ZNF584, NRF1, ZNF512, NFRKB, CEBPG, KLF16, GLIS2 and MXD4. CONCLUSION Our study constructed miRNA-gene network and TF-gene network involved in both adipogenic differentiation and dedifferentiation of MSCs, contributing to enhancing the efficiency of MSCs transplantation in soft tissue defect repair and developing more potent remedies for adipogenesis-related skeletal disorders.
Collapse
Affiliation(s)
- Yi Ou-yang
- grid.284723.80000 0000 8877 7471Department of Traumatic Joint Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde, Foshan), No.1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong Province China
| | - Miao-miao Dai
- grid.284723.80000 0000 8877 7471Department of Ophthalmology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde, Foshan), No.1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong Province China
| |
Collapse
|
4
|
Voynova E, Kulebyakin K, Grigorieva O, Novoseletskaya E, Basalova N, Alexandrushkina N, Arbatskiy M, Vigovskiy M, Sorokina A, Zinoveva A, Bakhchinyan E, Kalinina N, Akopyan Z, Tkachuk V, Tyurin-Kuzmin P, Efimenko A. Declined adipogenic potential of senescent MSCs due to shift in insulin signaling and altered exosome cargo. Front Cell Dev Biol 2022; 10:1050489. [PMID: 36467400 PMCID: PMC9714334 DOI: 10.3389/fcell.2022.1050489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) maintain cellular homeostasis and regulate tissue renewal and repair both by differentiating into mesodermal lineage, e.g., adipocytes, or managing the functions of differentiated cells. Insulin is a key physiological inducer of MSC differentiation into adipocytes, and disturbances in MSC insulin sensitivity could negatively affect adipose tissue renewal. During aging, regulation and renewal of adipose tissue cells may be disrupted due to the altered insulin signaling and differentiation potential of senescent MSCs, promoting the development of serious metabolic diseases, including metabolic syndrome and obesity. However, the potential mechanisms mediating the dysfunction of adipose-derived senescent MSC remains unclear. We explored whether aging could affect the adipogenic potential of human adipose tissue-derived MSCs regulated by insulin. Age-associated senescent MSCs (isolated from donors older than 65 years) and MSCs in replicative senescence (long-term culture) were treated by insulin to induce adipogenic differentiation, and the efficiency of the process was compared to MSCs from young donors. Insulin-dependent signaling pathways were explored in these cells. We also analyzed the involvement of extracellular vesicles secreted by MSCs (MSC-EVs) into the regulation of adipogenic differentiation and insulin signaling of control and senescent cells. Also the microRNA profiles of MSC-EVs from aged and young donors were compared using targeted PCR arrays. Both replicatively and chronologically senescent MSCs showed a noticeably decreased adipogenic potential. This was associated with insulin resistance of MSCs from aged donors caused by the increase in the basal level of activation of crucial insulin-dependent intracellular effectors ERK1/2 and Akt. To assess the impact of the paracrine cross-talk of MSCs, we analyzed microRNAs profile differences in MSC-EVs and revealed that senescent MSCs produced EVs with increased content of miRNAs targeting components of insulin-dependent signaling cascade PTEN, MAPK1, GAREM1 and some other targets. We also confirmed these data by differentiation of control MSCs in the presence of EVs from senescent cells and vice versa. Thus, aging attenuated the adipogenic potential of MSCs due to autocrine or paracrine-dependent induction of insulin resistance associated with the specific changes in MSC-EV cargo.
Collapse
Affiliation(s)
- Elizaveta Voynova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia,*Correspondence: Elizaveta Voynova, ; Pyotr Tyurin-Kuzmin, ; Anastasia Efimenko,
| | - Konstantin Kulebyakin
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia,Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Grigorieva
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina Novoseletskaya
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia Basalova
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia Alexandrushkina
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail Arbatskiy
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim Vigovskiy
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Anna Sorokina
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Anna Zinoveva
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | | | - Natalia Kalinina
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Zhanna Akopyan
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Vsevolod Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Pyotr Tyurin-Kuzmin
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia,*Correspondence: Elizaveta Voynova, ; Pyotr Tyurin-Kuzmin, ; Anastasia Efimenko,
| | - Anastasia Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia,*Correspondence: Elizaveta Voynova, ; Pyotr Tyurin-Kuzmin, ; Anastasia Efimenko,
| |
Collapse
|
5
|
Changes in subcutaneous adipose tissue microRNA expression in response to exercise training in obese African women. Sci Rep 2022; 12:18408. [PMID: 36319747 PMCID: PMC9626597 DOI: 10.1038/s41598-022-23290-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
The mechanisms that underlie exercise-induced adaptations in adipose tissue have not been elucidated, yet, accumulating studies suggest an important role for microRNAs (miRNAs). This study aimed to investigate miRNA expression in gluteal subcutaneous adipose tissue (GSAT) in response to a 12-week exercise intervention in South African women with obesity, and to assess depot-specific differences in miRNA expression in GSAT and abdominal subcutaneous adipose tissue (ASAT). In addition, the association between exercise-induced changes in miRNA expression and metabolic risk was evaluated. Women underwent 12-weeks of supervised aerobic and resistance training (n = 19) or maintained their regular physical activity during this period (n = 12). Exercise-induced miRNAs were identified in GSAT using Illumina sequencing, followed by analysis of differentially expressed miRNAs in GSAT and ASAT using quantitative real-time PCR. Associations between the changes (pre- and post-exercise training) in miRNA expression and metabolic parameters were evaluated using Spearman's correlation tests. Exercise training significantly increased the expression of miR-155-5p (1.5-fold, p = 0.045), miR-329-3p (2.1-fold, p < 0.001) and miR-377-3p (1.7-fold, p = 0.013) in GSAT, but not in ASAT. In addition, a novel miRNA, MYN0617, was identified in GSAT, with low expression in ASAT. The exercise-induced differences in miRNA expression were correlated with each other and associated with changes in high-density lipoprotein concentrations. Exercise training induced adipose-depot specific miRNA expression within subcutaneous adipose tissue depots from South African women with obesity. The significance of the association between exercise-induced miRNAs and metabolic risk warrants further investigation.
Collapse
|
6
|
Halder S, Parte S, Kshirsagar P, Muniyan S, Nair HB, Batra SK, Seshacharyulu P. The Pleiotropic role, functions and targeted therapies of LIF/LIFR axis in cancer: Old spectacles with new insights. Biochim Biophys Acta Rev Cancer 2022; 1877:188737. [PMID: 35680099 PMCID: PMC9793423 DOI: 10.1016/j.bbcan.2022.188737] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/09/2022] [Accepted: 05/28/2022] [Indexed: 12/30/2022]
Abstract
The dysregulation of leukemia inhibitory factor (LIF) and its cognate receptor (LIFR) has been associated with multiple cancer initiation, progression, and metastasis. LIF plays a significant tumor-promoting role in cancer, while LIFR functions as a tumor promoter and suppressor. Epithelial and stromal cells secrete LIF via autocrine and paracrine signaling mechanism(s) that bind with LIFR and subsequently with co-receptor glycoprotein 130 (gp130) to activate JAK/STAT1/3, PI3K/AKT, mTORC1/p70s6K, Hippo/YAP, and MAPK signaling pathways. Clinically, activating the LIF/LIFR axis is associated with poor survival and anti-cancer therapy resistance. This review article provides an overview of the structure and ligands of LIFR, LIF/LIFR signaling in developmental biology, stem cells, cancer stem cells, genetics and epigenetics of LIFR, LIFR regulation by long non-coding RNAs and miRNAs, and LIF/LIFR signaling in cancers. Finally, neutralizing antibodies and small molecule inhibitors preferentially blocking LIF interaction with LIFR and antagonists against LIFR under pre-clinical and early-phase pre-clinical trials were discussed.
Collapse
Affiliation(s)
- Sushanta Halder
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Seema Parte
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Prakash Kshirsagar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Eppley Institute for Research in Cancer and Allied Diseases, USA,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Corresponding authors at: Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA. (S.K. Batra), (P. Seshacharyulu)
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Eppley Institute for Research in Cancer and Allied Diseases, USA,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Corresponding authors at: Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA. (S.K. Batra), (P. Seshacharyulu)
| |
Collapse
|
7
|
Cui J, Li C, Cui X, Liu X, Meng C, Zhou G. Shortening of HO1 3'UTRs by Alternative Polyadenylation Suppresses Adipogenesis in 3T3-L1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8038-8049. [PMID: 34236846 DOI: 10.1021/acs.jafc.1c01822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Appropriately increasing intramuscular fat content can help improve meat quality, so it is necessary to explore the internal molecular mechanism of preadipocyte differentiation. The role of heme oxygenase 1 (HO1) in cell oxidative stress, energy metabolism, cell proliferation, and differentiation has gradually been revealed. Here, we used 3'RACE to identify the full-length 3' untranslated region (3'UTR) of HO1 and found that a very short 3'UTR variant was produced by alternative polyadenylation (APA). HO1 with a long 3'UTR variant was identified as a direct target of miR155-5P and miR377-3P. Our experimental results verified the inhibitory effect of HO1 on preadipocyte differentiation. In addition, our research confirms that by escaping microRNA inhibitory effects, the HO1 3'UTR short variant produced by APA has a higher level of expression. Thus, the HO1 3'UTR short variant has a stronger inhibitory effect on the preadipocyte differentiation than the HO1 3'UTR long variants in 3T3-L1.
Collapse
Affiliation(s)
- Jianwei Cui
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Chengping Li
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Xiao Cui
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Xueyan Liu
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Chaoqun Meng
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Guoli Zhou
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
8
|
Yang C, Luo M, Chen Y, You M, Chen Q. MicroRNAs as Important Regulators Mediate the Multiple Differentiation of Mesenchymal Stromal Cells. Front Cell Dev Biol 2021; 9:619842. [PMID: 34164391 PMCID: PMC8215576 DOI: 10.3389/fcell.2021.619842] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous short non-encoding RNAs which play a critical role on the output of the proteins, and influence multiple biological characteristics of the cells and physiological processes in the body. Mesenchymal stem/stromal cells (MSCs) are adult multipotent stem cells and characterized by self-renewal and multidifferentiation and have been widely used for disease treatment and regenerative medicine. Meanwhile, MSCs play a critical role in maintaining homeostasis in the body, and dysfunction of MSC differentiation leads to many diseases. The differentiation of MSCs is a complex physiological process and is the result of programmed expression of a series of genes. It has been extensively proven that the differentiation process or programmed gene expression is also regulated accurately by miRNAs. The differentiation of MSCs regulated by miRNAs is also a complex, interdependent, and dynamic process, and a full understanding of the role of miRNAs will provide clues on the appropriate upregulation or downregulation of corresponding miRNAs to mediate the differentiation efficiency. This review summarizes the roles and associated signaling pathways of miRNAs in adipogenesis, chondrogenesis, and osteogenesis of MSCs, which may provide new hints on MSCs or miRNAs as therapeutic strategies for regenerative medicine and biotherapy for related diseases.
Collapse
Affiliation(s)
- Chao Yang
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-Life Stem Cell Biotech Inc., Chengdu, China
| | - Maowen Luo
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-Life Stem Cell Biotech Inc., Chengdu, China
| | - Yu Chen
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-Life Stem Cell Biotech Inc., Chengdu, China
| | - Min You
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-Life Stem Cell Biotech Inc., Chengdu, China
| | - Qiang Chen
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-Life Stem Cell Biotech Inc., Chengdu, China.,Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu, China
| |
Collapse
|
9
|
Jiang L, Cao H, Deng T, Yang M, Meng T, Yang H, Luo X. Serum exosomal miR-377-3p inhibits retinal pigment epithelium proliferation and offers a biomarker for diabetic macular edema. J Int Med Res 2021; 49:3000605211002975. [PMID: 33906524 PMCID: PMC8108084 DOI: 10.1177/03000605211002975] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Objectives Diabetic macular edema (DME) is a complication of diabetes mellitus that leads to diabetic retinopathy. Thus far, the role of serum exosomal microRNAs (miRNAs) in DME progression remains elusive. This study investigated serum exosomal miRNAs from patients with type 2 diabetes (T2D) and DME to identify miRNAs associated with expression of vascular endothelial growth factor (VEGF), a pivotal component in DME progression; it also evaluated the diagnostic values of these miRNAs for DME. Methods Serum was collected from patients with T2D who did (n = 20) and did not have DME (n = 24). Exosomes were isolated from serum and subjected to real-time polymerase chain reaction, western blotting, luciferase reporter, and miRNA profiling analyses. Results VEGF was significantly upregulated in ARPE-19 cells treated with exosomes from patients with T2D and DME, compared with exosomes from patients with T2D alone. Among the top 10 downregulated miRNAs identified during exosomal miRNA profiling, miR-377-3p inhibited the expression of VEGF. Luciferase reporter assays confirmed that miR-377-3p could directly regulate VEGF expression. Receiver operating characteristic analysis identified serum exosomal miR-377-3p as a potential biomarker for DME. Conclusion Serum exosomal miR-377-3p inhibits VEGF expression to suppress retinal pigment epithelium proliferation and offers a diagnostic biomarker for DME.
Collapse
Affiliation(s)
- Li Jiang
- Department of Ophthalmology, Shenzhen People's Hospital Second Clinical Medical College of Jinan University, Shenzhen, China
| | - He Cao
- Department of Ophthalmology, Shenzhen People's Hospital Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Tingming Deng
- Department of Ophthalmology, Shenzhen People's Hospital Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Mingming Yang
- Department of Ophthalmology, Shenzhen People's Hospital Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Ting Meng
- Department of Ophthalmology, Shenzhen People's Hospital Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Huiqin Yang
- Department of Ophthalmology, Shenzhen People's Hospital Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Xiaoling Luo
- Department of Ophthalmology, Shenzhen People's Hospital Second Clinical Medical College of Jinan University, Shenzhen, China
| |
Collapse
|
10
|
Wang T, Cao L, He S, Long K, Wang X, Yu H, Ma B, Xu X, Li W. Small RNA sequencing reveals a novel tsRNA-06018 playing an important role during adipogenic differentiation of hMSCs. J Cell Mol Med 2020; 24:12736-12749. [PMID: 32939933 PMCID: PMC7686998 DOI: 10.1111/jcmm.15858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/28/2020] [Accepted: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
Transfer RNA-derived small RNAs (tsRNAs), a novel type of non-coding RNA derivative, are able to regulate a wide range of biological processes. What role these tsRNAs play in the regulation of human bone marrow mesenchymal stem cell (hMSCs) adipogenic differentiation remains uncertain. We induced the adipogenic differentiation of human bone marrow mesenchymal cells (hMSCs) and then performed small RNA transcriptomic sequencing, leading us to identify tsRNA-06018 as a target of interest based upon resultant the tsRNA expression profiles. When tsRNA-06018 was knocked down, this led to the inhibition of adipogenesis and a decrease in adipogenic marker expression. When STC2 was overexpressed, this impaired the adipogenic differentiation of these cells. We further used luciferase reporter assays to confirm that tsRNA-06018 directly binds the 3'-untranslated region (3'-UTR) of STC2. In addition, we determined that both knocking down tsRNA-06018 and overexpressing STC2 increased extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation within cells. We also assessed that the adipogenic differentiation of hMSCs in which tsRNA-06018 was knocked down was further enhanced upon the addition of the ERK1/2 inhibitor U0126 as compared tsRNA-06018 knockdown alone. Taken together, using small RNA sequencing we profiled tsRNAs in hMSCs during the process of adipogenesis, leading us to identify tsRNA-06018 as a novel regulator of this differentiation process. This tsRNA was able to regulate adipogenic differentiation by targeting STC2 via the ERK1/2 signalling pathway.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of System Bio‐medicine of Jiangxi ProvinceJiujiang UniversityJiujiangChina
| | - Lingling Cao
- Department of EndocrinologyJiujiang Hospital Affiliated to Nanchang UniversityJiujiangChina
| | - Shan He
- Key Laboratory of System Bio‐medicine of Jiangxi ProvinceJiujiang UniversityJiujiangChina
| | - Kai Long
- Key Laboratory of System Bio‐medicine of Jiangxi ProvinceJiujiang UniversityJiujiangChina
| | - Xinping Wang
- Key Laboratory of System Bio‐medicine of Jiangxi ProvinceJiujiang UniversityJiujiangChina
| | - Hui Yu
- Key Laboratory of System Bio‐medicine of Jiangxi ProvinceJiujiang UniversityJiujiangChina
| | - Baicheng Ma
- Key Laboratory of System Bio‐medicine of Jiangxi ProvinceJiujiang UniversityJiujiangChina
| | - Xiaoyuan Xu
- Key Laboratory of System Bio‐medicine of Jiangxi ProvinceJiujiang UniversityJiujiangChina
| | - Weidong Li
- Key Laboratory of System Bio‐medicine of Jiangxi ProvinceJiujiang UniversityJiujiangChina
| |
Collapse
|
11
|
Wang T, Mei J, Li X, Xu X, Ma B, Li W. A novel tsRNA-16902 regulating the adipogenic differentiation of human bone marrow mesenchymal stem cells. Stem Cell Res Ther 2020; 11:365. [PMID: 32831139 PMCID: PMC7444066 DOI: 10.1186/s13287-020-01882-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/18/2020] [Accepted: 08/10/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Transfer RNA-derived small RNAs (tsRNAs) are a recently discovered form of non-coding RNA capable of regulating myriad physiological processes. The role of tsRNAs in hMSC adipogenic differentiation, however, remains incompletely understood. The purpose of this study was to identify the novel tsRNA-16902 as a regulator of hMSC adipogenic differentiation. METHODS In this study, we conducted transcriptomic sequencing of hMSCs after inducing their adipogenic differentiation, and we were thereby able to clarify the molecular mechanism underlying the role of tsRNA-16902 in this context via a series of molecular biology methods. RESULTS When we knocked down tsRNA-16902 expression, this impaired hMSC adipogenic differentiation and associated marker gene expression. Bioinformatics analyses further revealed tsRNA-16902 to target retinoic acid receptor γ (RARγ). Luciferase reporter assays also confirmed the ability of tsRNA-16902 to bind to the RARγ 3'-untranslated region. Consistent with this, RARγ overexpression led to impaired hMSC adipogenesis. Further analyses revealed that Smad2/3 phosphorylation was increased in cells that either overexpressed RARγ or in which tsRNA-16902 had been knocked down. We also assessed the adipogenic differentiation of hMSCs in which tsRNA-16902 was knocked down and at the same time a Smad2/3 inhibitor was added to disrupt Smad2/3 phosphorylation. The adipogenic differentiation of hMSCs in which tsRNA-16902 was knocked down was further enhanced upon the addition of a Smad2/3 signaling inhibitor relative to tsRNA-16902 knockdown alone. CONCLUSIONS Through a comprehensive profiling analysis of tsRNAs that were differentially expressed in the context of hMSC adipogenic differentiation, we were able to identify tsRNA-16902 as a previously uncharacterized regulator of adipogenesis. tsRNA-16902 is able to regulate hMSC adipogenic differentiation by targeting RARγ via the Smad2/3 signaling pathway. Together, our results may thus highlight novel strategies of value for treating obesity.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, 332000, China.
| | - Jun Mei
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, 332000, China
| | - Xingnuan Li
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, 332000, China
| | - Xiaoyuan Xu
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, 332000, China
| | - Baicheng Ma
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, 332000, China.
| | - Weidong Li
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, 332000, China.
| |
Collapse
|
12
|
Xie M, Zhang Z, Cui Y. Long Noncoding RNA SNHG1 Contributes to the Promotion of Prostate Cancer Cells Through Regulating miR-377-3p/AKT2 Axis. Cancer Biother Radiopharm 2020; 35:109-119. [PMID: 32077748 DOI: 10.1089/cbr.2019.3177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Long noncoding RNAs could serve as a candidate target for prostate cancer (PCa) diagnosis and treatment. The current study aimed to investigate the role and functions of SNHG1 in PCa cells. Materials and Methods: Abnormal expression of SNHG1, survival analysis, and target gene were determined or predicted by bioinformatics techniques. Gene expressions at transcriptional and translational levels were determined by Quantitative Real-time PCR and Western blotting, respectively. Cell viability, growth, and apoptosis rate were detected by Cell Counting Kit-8, colony formation assay and flow cytometry. Results: The results showed that SNHG1 was highly expressed in PCa tissues, which was accompanied by decreased miR-377-3p expression and poor overall survival rate, and that miR-377-3p was predicted as the target of SNHG1 in PCa cells. Moreover, SNHG1 counteracted the effects of miR-377-3p on inhibiting cell growth and promoting apoptosis of PCa cells. Furthermore, miR-377-3p counteracted the effects of AKT2 on promoting cell viability, growth, and suppressing apoptosis of PCa cells. In addition, AKT2 expression was proved to be regulated by miR-377-3p. Conclusions: The SNHG1/miR-377-3p/AKT2 regulatory axis in PCa cells was disclosed. The upregulated AKT2 might be a result of dysregulated interaction balance between the expressions of miR-377-3p and SNHG1. Based on such discoveries, the intervention of SNHG1/miR-377-3p/AKT2 axis could be further explored in the treatment of PCa.
Collapse
Affiliation(s)
- Mao Xie
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao, Yantai, China
| | - Zhiyu Zhang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao, Yantai, China
| | - Yupeng Cui
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao, Yantai, China
| |
Collapse
|
13
|
MicroRNA-377-3p alleviates IL-1β-caused chondrocyte apoptosis and cartilage degradation in osteoarthritis in part by downregulating ITGA6. Biochem Biophys Res Commun 2019; 523:46-53. [PMID: 31831175 DOI: 10.1016/j.bbrc.2019.11.186] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/28/2019] [Indexed: 12/23/2022]
Abstract
Increasing evidence indicates that altered expression of microRNAs (miRNAs) is associated with osteoarthritis (OA) progression. In our study, we demonstrated that miR-377-3p is underexpressed in OA-affected cartilage and IL-1β-treated chondrocytes. Overexpression of miR-377-3p enhanced chondrocyte proliferation and restrained apoptosis and signs of cartilage matrix degradation and of an inflammatory response. Furthermore, ITGA6 was identified as a target gene of miR-377-3p. The latter was found to directly bind to the 3' untranslated region (3'UTR) of ITGA6 mRNA and downregulate ITGA6. In addition, ITGA6 expression was high in OA-affected tissues and negatively correlated with miR-77-3p expression. Overexpression of ITGA6 reversed the effects of miR-377-3p on IL-1β-caused chondrocyte apoptosis, cartilage matrix degradation, and the inflammatory response. Moreover, bioinformatic analysis and a luciferase assay indicated that miR-377-3p expression is regulated by long noncoding RNA NEAT1, which binds to miR-377-3p and inactivates it. We showed that NEAT1 was highly expressed in OA-affected cartilage, negatively correlated with miR-377-3p levels, and positively correlated with ITGA6 levels. These findings provide information for the development of future treatments of OA, suggesting that miR-377-3p may be a therapeutic target in OA.
Collapse
|
14
|
Androgen-Regulated microRNAs (AndroMiRs) as Novel Players in Adipogenesis. Int J Mol Sci 2019; 20:ijms20225767. [PMID: 31744106 PMCID: PMC6888160 DOI: 10.3390/ijms20225767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
The development, homeostasis, or increase of the adipose tissue is driven by the induction of the adipogenic differentiation (adipogenesis) of undifferentiated mesenchymal stem cells (MSCs). Adipogenesis can be inhibited by androgen stimulation of these MSCs resulting in the transcription initiation or repression of androgen receptor (AR) regulated genes. AR not only regulates the transcription of protein-coding genes but also the transcription of several non-coding microRNAs involved in the posttranscriptional gene regulation (herein designated as AndroMiRs). As microRNAs are largely involved in differentiation processes such as adipogenesis, the involvement of AndroMiRs in the androgen-mediated inhibition of adipogenesis is likely, however, not yet intensively studied. In this review, existing knowledge about adipogenesis-related microRNAs and AndroMiRs is summarized, and putative cross-links are drawn, which are still prone to experimental validation.
Collapse
|
15
|
Ghasemi A, Hashemy SI, Azimi-Nezhad M, Dehghani A, Saeidi J, Mohtashami M. The cross-talk between adipokines and miRNAs in health and obesity-mediated diseases. Clin Chim Acta 2019; 499:41-53. [PMID: 31476303 DOI: 10.1016/j.cca.2019.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Multiple studies have revealed a direct correlation between obesity and the development of multiple comorbidities, including metabolic diseases, cardiovascular disorders, chronic inflammatory disease, and cancers. However, the molecular mechanism underlying the link between obesity and the progression of these diseases is not completely understood. Adipokines are factors that are secreted by adipocytes and play a key role in whole body homeostasis. Collaboratively, miRNAs are suggested to have key functions in the development of obesity and obesity-related disorders. Based on recently emerging evidence, obesity leads to the dysregulation of both adipokines and obesity-related miRNAs. In the present study, we described the correlations between obesity and its related diseases that are mediated by the mutual regulatory effects of adipokines and miRNAs. METHODS We reviewed current knowledge of the modulatory effects of adipokines on miRNAs activity and their relevant functions in pathological conditions and vice versa. RESULTS Our research reveals the ability of adipokines and miRNAs to control the expression and activity of the other class of molecules, and their effects on obesity-related diseases. CONCLUSIONS This study may help researchers develop a roadmap for future investigations and provide opportunities to develop new therapeutic and diagnostic methods for treating obesity-related diseases.
Collapse
Affiliation(s)
- Ahmad Ghasemi
- Non-communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Seyed Isaac Hashemy
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohsen Azimi-Nezhad
- Non-communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran; UMR INSERM U 1122, IGE-PCV, Interactions Gène-Environment en Physiopathologie Cardiovascular Université de Lorraine, France
| | - Alireza Dehghani
- Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Jafar Saeidi
- Department of Physiology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Mahnaz Mohtashami
- Department of Biology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| |
Collapse
|
16
|
Yi X, Liu J, Wu P, Gong Y, Xu X, Li W. The key microRNA on lipid droplet formation during adipogenesis from human mesenchymal stem cells. J Cell Physiol 2019; 235:328-338. [PMID: 31210354 DOI: 10.1002/jcp.28972] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Xia Yi
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Jianyun Liu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Ping Wu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Ying Gong
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Xiaoyuan Xu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Weidong Li
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| |
Collapse
|
17
|
Wang T, Yan R, Xu X, Yu H, Wu J, Yang Y, Li W. Effects of leukemia inhibitory factor receptor on the adipogenic differentiation of human bone marrow mesenchymal stem cells. Mol Med Rep 2019; 19:4719-4726. [PMID: 31059010 PMCID: PMC6522817 DOI: 10.3892/mmr.2019.10140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 04/01/2019] [Indexed: 01/21/2023] Open
Abstract
Leukemia inhibitory factor (LIF) modulates various biological processes. Although previous studies have described the effects of LIF on adipocyte differentiation, the role of LIF receptor (LIFR) on adipocyte differentiation remains unclear. Using reverse transcription‑quantitative PCR (RT‑qPCR), LIFR expression was demonstrated to increase during adipogenic differentiation of human bone marrow mesenchymal stem cells (hMSCs), indicating that LIFR may be involved in this process. To further evaluate the association between LIFR and adipogenic differentiation, lentivirus‑mediated LIFR knockdown was performed in hMSCs. Cells were divided into two groups: Negative control group and LIFR‑knockdown group. During the adipogenic differentiation process, intracellular lipid accumulation was assessed with Oil Red O staining at various time points (days 3, 6 and 9). Additionally, the mRNA and protein expression levels of LIF, LIFR and three molecular indicators of adipogenesis, peroxisome proliferator‑activated receptor γ (PPARγ), CCAAT enhancer binding protein α (C/EBPα) and fatty acid binding protein 4 (FABP4/aP2), were assessed by RT‑qPCR and western blotting. The culture supernatant was collected to evaluate the concentration of LIF using ELISA. The present results suggested that LIFR expression progressively increased during adipogenic differentiation of hMSCs. Conversely, LIFR knockdown significantly suppressed this process. Additionally, PPARγ, C/EBPα and aP2 were inhibited following LIFR knockdown. In contrast with LIFR, the expression levels of LIF were significantly decreased after the initiation of adipogenic differentiation. Therefore, the expression levels of LIF and LIFR exhibited opposite trends. Collectively, the present results suggested that LIFR promoted adipogenic differentiation, whereas LIF may negatively regulate this process.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of System Bio‑Medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China
| | - Ruiqiao Yan
- Clinical Skills Center, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China
| | - Xiaoyuan Xu
- Key Laboratory of System Bio‑Medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China
| | - Huan Yu
- Key Laboratory of System Bio‑Medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China
| | - Jianfang Wu
- Key Laboratory of System Bio‑Medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China
| | - Yaofang Yang
- Key Laboratory of System Bio‑Medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China
| | - Weidong Li
- Key Laboratory of System Bio‑Medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China
| |
Collapse
|
18
|
MicroRNAs and other non-coding RNAs in adipose tissue and obesity: emerging roles as biomarkers and therapeutic targets. Clin Sci (Lond) 2019; 133:23-40. [PMID: 30606812 DOI: 10.1042/cs20180890] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023]
Abstract
Obesity is a metabolic condition usually accompanied by insulin resistance (IR), type 2 diabetes (T2D), and dyslipidaemia, which is characterised by excessive fat accumulation and related to white adipose tissue (WAT) dysfunction. Enlargement of WAT is associated with a transcriptional alteration of coding and non-coding RNAs (ncRNAs). For many years, big efforts have focused on understanding protein-coding RNAs and their involvement in the regulation of adipocyte physiology and subsequent role in obesity. However, diverse findings have suggested that a dysfunctional adipocyte phenotype in obesity might be also dependent on specific alterations in the expression pattern of ncRNAs, such as miRNAs. The aim of this review is to update current knowledge on the physiological roles of miRNAs and other ncRNAs in adipose tissue function and their potential impact on obesity. Therefore, we examined their regulatory role on specific WAT features: adipogenesis, adipokine secretion, inflammation, glucose metabolism, lipolysis, lipogenesis, hypoxia and WAT browning. MiRNAs can be released to body fluids and can be transported (free or inside microvesicles) to other organs, where they might trigger metabolic effects in distant tissues, thus opening new possibilities to a potential use of miRNAs as biomarkers for diagnosis, prognosis, and personalisation of obesity treatment. Understanding the role of miRNAs also opens the possibility of using these molecules on individualised dietary strategies for precision weight management. MiRNAs should be envisaged as a future therapeutic approach given that miRNA levels could be modulated by synthetic molecules (f.i. miRNA mimics and inhibitors) and/or specific nutrients or bioactive compounds.
Collapse
|
19
|
Yuan J, Jiang L, Guo C. The micro RNA hsa-miR-377-3p inhibits tumor growth in malignant melanoma. RSC Adv 2019; 9:19057-19064. [PMID: 35516861 PMCID: PMC9065064 DOI: 10.1039/c9ra02816a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022] Open
Abstract
Background/Aims: Most recently, micro RNAs (miRNAs/miRs) have been suggested to play a key role in various physiological and pathological processes by regulating the expression of specific genes. The influence of miR-377-3p on multitudinous cancer cells has been investigated; however, its function in melanoma remains undiscovered. Armadillo repeat-containing protein 8 (ARMC8), a target of miR-377-3p, plays essential roles in proliferation, differentiation and apoptosis. Our research aimed to detect the specific roles of miR-377-3p in melanoma. Methods: The MiRNA and mRNA expressions were evaluated by a real-time quantitative polymerase chain reaction in the A375 and HEMa-LP cell lines. We predicted the possible interactions between microRNA and mRNAs by bioinformatics database and constructed them with the Cytoscape software. The proliferation and migration activities were investigated using a cell counting kit-8 (CCK8) and wound-healing assay. Validation of the correlation between miR-377-3p and ARMC8 was implemented by the luciferase reporter assay and PCR. Results: The expression of miR-377-3p was found to be lower in malignant melanoma cells. The upregulation of miR-377-3p inhibited the melanoma cell proliferation, migration, and ARMC8 expression. miR-377-3p was identified to bind to the 3′UTR region of ARMC8 directly; this indicated that miR-377-3p suppressed melanoma cell growth partly mediated via the ARMC8 expression. Conclusion: These findings show that miR-377-3p negatively regulates tumor growth in malignant melanoma, which may thus provide a potential biological target for melanoma treatment and subsequently lead to the development of potential treatments. We have demonstrated that miR-377-3p inhibits melanoma cell growth by binding to the ARMC8 mRNA in the A375 cell line.![]()
Collapse
Affiliation(s)
- Jian Yuan
- TEDA Institute of Biological Sciences and Biotechnology
- Nankai University
- Tianjin 300457
- P. R. China
| | - Lei Jiang
- Department of Medical Technology
- Nanyang Medical College
- Nanyang
- P. R. China
| | - Chaotang Guo
- Department of Bone
- The First People's Hospital of Nanyang
- Nanyang
- P. R. China
| |
Collapse
|