1
|
Gu Q, Liu J, Shen LL. FXR activation reduces the formation of macrophage foam cells and atherosclerotic plaque, possibly by down regulating hepatic lipase in macrophages. FEBS Open Bio 2024. [PMID: 39601316 DOI: 10.1002/2211-5463.13925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/24/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Macrophages are the most important immune cells affecting the formation of atherosclerotic plaque. Nevertheless, the mechanisms that promote formation of foamy macrophages during atherogenesis remain poorly understood. This study explored the effects of Farnesoid X receptor (FXR) and hepatic lipase (HL, encoded by LIPC) on atherogenesis, particularly in foamy macrophage formation. A luciferase reporter assay indicated that FXR could bind to the LIPC promoter and inhibit LIPC transcription. FXR agonist GW4064 decreased HL expression, foam cell formation, and increased the expression of FXR downstream genes and polarization to M2 in ox-LDL-induced THP-1 and U937 foam cells. In addition, GW4064 exerted anti-atherosclerotic effects in ApoE-/- mice, manifested as decreased serum cholesterol and triglyceride levels, and alleviated atherosclerotic plaque formation. Collectively, FXR exerted anti-atherosclerotic effects, possibly by negatively regulating HL expression in macrophages.
Collapse
Affiliation(s)
- Qiang Gu
- Institute of Cardiovascular Surgery, Xinqiao Hospital, Second Affiliated Hospital of the Army Military Medical University, Chongqing, China
| | - Jia Liu
- Department of Pathology, Chongqing University Cancer Hospital, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, China
| | - Li Li Shen
- Department of Pathology, Chongqing University Cancer Hospital, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, China
| |
Collapse
|
2
|
Patial R, Batta I, Thakur M, Sobti RC, Agrawal DK. Etiology, Pathophysiology, and Treatment Strategies in the Prevention and Management of Metabolic Syndrome. ARCHIVES OF INTERNAL MEDICINE RESEARCH 2024; 7:273-283. [PMID: 39574946 PMCID: PMC11580789 DOI: 10.26502/aimr.0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Metabolic Syndrome (MetS) is a complex cluster of metabolic irregularities that significantly increase the risk of developing chronic conditions, such as hypertension, type 2 diabetes, cardiovascular diseases, and other related disorders. This review aims to provide a comprehensive overview of the current understanding of MetS, its etiology and underlying pathogenesis, and the management strategies. MetS is characterized by central obesity, high blood pressure, insulin resistance, hyperglycemia, hypertriglyceridemia, and low high-density lipoprotein cholesterol levels. The prevalence of MetS is remarkably high, affecting approximately 25% of the global population, particularly in developed nations with inactive lifestyles and high-calorie diets. The development of MetS involves genetic and acquired factors, resulting in an inflammatory state that enhances the risk for cardiovascular disease. The biochemical alterations observed in MetS establish pathological connections between MetS, diabetes, and cardiovascular and neurodegenerative conditions. Despite its clinical importance, there is still debate regarding the precise components and pathophysiological associations among MetS elements. However, advancements in therapeutic measures, including drug therapies, surgical options, and experimental methods present promising avenues for managing and potentially reversing MetS. Further investigation of the MetS is critical because of its significant implications for public health and its connection to other clinical conditions and severe health outcomes, placing a substantial burden on healthcare system and society.
Collapse
Affiliation(s)
- Ritika Patial
- Centre for System Biology & Bioinformatics, Panjab University, Chandigarh, India
| | - Irene Batta
- Bothell High School, Bothell, Washington, USA
| | - Manish Thakur
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | | | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
3
|
Ahmed Z, Chaudhary F, Agrawal DK. Epidemiology, Pathophysiology, and Current Treatment Strategies in Stroke. CARDIOLOGY AND CARDIOVASCULAR MEDICINE 2024; 8:389-404. [PMID: 39301121 PMCID: PMC11412115 DOI: 10.26502/fccm.92920399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Both ischemic and hemorrhagic strokes are critical health issues and the incidence is on the rise. The rapid neurological degeneration that can occur with either type of stroke warrants prompt medical attention. In the article, we critically reviewed the literature examining their incidence, pathophysiology, and present treatment strategies. Clinical trials show conflicting findings, with ischemic strokes accounting for 87% of all strokes. Brain injury following an ischemic stroke results in cell death and necrosis, immune cells being the primary actors in the process of neuroinflammation. In order to develop neuroprotective drugs against ischemic stroke, detailed investigation of glutamate production and metabolism as well as downstream pathways controlled by glutamate receptors provides significant information on the underlying mechanisms. The permeability of the blood-brain barrier and the degradation of glutamine synthase are two potential mechanisms by which peritoneal dialysis accelerates brain-to-blood glutamate clearance and thus reduces glutamate levels in the brain after a stroke. Oxidative stress in an ischemic stroke disturbs the oxidant-antioxidant balance, which is particularly problematic for brain cells that are high in polyunsaturated fatty acids. Because of demographic factors like age, sex, race/ethnicity, and socioeconomic status, the incidence and prevalence of stroke differ across people and regions. For rapid diagnosis and treatment decisions, diagnostic imaging tools such as vascular imaging, CT, and MRI are essential. To aid in the recovery and lessen neurological impairments following a stroke, novel avenues of research are under investigation on neuroprotective medications that target inflammation, oxidative stress, and neuronal death.
Collapse
Affiliation(s)
- Zubair Ahmed
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Fihr Chaudhary
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
4
|
Kłosowicz M, Leksa D, Bartusik-Aebisher D, Myśliwiec A, Dynarowicz K, Aebisher D. Biomarkers That Seem to Have the Greatest Impact on Promoting the Formation of Atherosclerotic Plaque in Current Scientific Research. Curr Issues Mol Biol 2024; 46:9503-9522. [PMID: 39329916 PMCID: PMC11430558 DOI: 10.3390/cimb46090564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease that causes degenerative and productive changes in the arteries. The resulting atherosclerotic plaques restrict the vessel lumen, causing blood flow disturbances. Plaques are formed mainly in large- and medium-sized arteries, usually at bends and forks where there is turbulence in blood flow. Depending on their location, they can lead to various disease states such as myocardial infarction, stroke, renal failure, peripheral vascular diseases, or sudden cardiac death. In this work, we reviewed the literature on the early detection of atherosclerosis markers in the application of photodynamic therapy to atherosclerosis-related diseases. Herein, we described the roles of C-reactive protein, insulin, osteopontin, osteoprotegerin, copeptin, the TGF-β cytokine family, and the amino acid homocysteine. Also, we discuss the role of microelements such as iron, copper, zinc, and Vitamin D in promoting the formation of atherosclerotic plaque. Dysregulation of the administered compounds is associated with an increased risk of atherosclerosis. Additionally, taking into account the pathophysiology of atherosclerotic plaque formation, we believe that maintaining homeostasis in the range of biomarkers mentioned in this article is crucial for slowing down the process of atherosclerotic plaque development and the stability of plaque that is already formed.
Collapse
Affiliation(s)
- Maksymilian Kłosowicz
- English Division Science Club, Medical College, University of Rzeszów, 35-310 Rzeszów, Poland
- Department of Photomedicine and Physical Chemistry, Medical College, University of Rzeszów, 35-310 Rzeszów, Poland
| | - Dawid Leksa
- Rzeszów Center for Vascular and Endovascular Surgery, 35-010 Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College, University of Rzeszów, 35-310 Rzeszów, Poland
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College, University of Rzeszów, 35-310 Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College, University of Rzeszów, 35-310 Rzeszów, Poland
| | - David Aebisher
- English Division Science Club, Medical College, University of Rzeszów, 35-310 Rzeszów, Poland
- Department of Photomedicine and Physical Chemistry, Medical College, University of Rzeszów, 35-310 Rzeszów, Poland
| |
Collapse
|
5
|
Akintunde AA, Olamoyegun MA, Akinlade MO, Yusuf OA, Salawu A. Abnormal blood pressure dipping pattern: frequency, determinants, and correlates in Diabetes Mellitus patients in the Cardiovascular Health Risk Assessment in Diabetes Mellitus (CHiD) study. J Diabetes Metab Disord 2024; 23:689-697. [PMID: 38932843 PMCID: PMC11196480 DOI: 10.1007/s40200-023-01337-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/24/2023] [Indexed: 06/28/2024]
Abstract
Purpose Non-dipping status is associated with increased total and cardiovascular mortality in many disease conditions including diabetes mellitus. The pattern and its implications are not well described among Africans. This study was done to describe the frequency of abnormal blood pressure (BP) dipping among T2DM subjects, its determinants and correlates in Ogbomoso, Nigeria. Methods This was a cross-sectional study done at the LAUTECH Teaching Hospital, Ogbomoso. One hundred individuals diagnosed with T2DM were recruited and they had 24-hour ambulatory BP monitoring, echocardiography, ECG, and carotid Doppler among other evaluations. Statistical analysis was done using SPSS 27.0 (Chicago Ill, USA). Results The mean age of the participants was 59.3 ± 10.8 years, mean body mass index 27.7 ± 5.9 kg/m2 with a mean duration of diabetes of 7.52 ± 5.54 years. Abnormal BP dipping was present in 89% (consisting of 41% or reverse dippers and 48% non-dippers). T2DM subjects with abnormal dipping pattern were more likely to be females, had higher glycated haemoglobin, lower fractional shortening, higher left atrial volume and left ventricular mass index, and a higher DM duration than those with normal BP dipping status. The major determinants of abnormal dipping pattern were the duration of diabetes and low HDL-C concentration. Conclusion Abnormal BP dipping pattern is highly prevalent in T2DM subjects, especially among females. Abnormal BP dipping was also associated with markers of increased cardiovascular risk such as impaired kidney function, left ventricular hypertrophy, postural hypotension, history of intermittent claudication, and presence of plaques on carotid Doppler studies. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01337-8.
Collapse
Affiliation(s)
- Adeseye A. Akintunde
- Cardiology Unit, Department of Medicine, Ladoke Akintola University of Technology Teaching Hospital, Ogbomoso, Nigeria
- Department of Medicine, Faculty of Clinical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Michael A. Olamoyegun
- Endocrinology Unit, Department of Medicine, Ladoke Akintola University of Technology Teaching Hospital, Ogbomoso, Nigeria
- Department of Medicine, Faculty of Clinical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Mathias O. Akinlade
- Cardiology Unit, Department of Medicine, Ladoke Akintola University of Technology Teaching Hospital, Ogbomoso, Nigeria
- Cardiology Department, Royal Infirmary of Edinburgh, 51 Little France, Edinburgh, EH16 4SA Scotland
| | | | - Afolabi Salawu
- Department of Chemical Pathology, Faculty of Basic Clinical Sciences, Ladoke Akintola University of Technology, Prof. Adeseye A. Akintunde, P.O. Box 3238, Osogbo, Nigeria
| |
Collapse
|
6
|
Castro R, Adair JH, Mastro AM, Neuberger T, Matters GL. VCAM-1-targeted nanoparticles to diagnose, monitor and treat atherosclerosis. Nanomedicine (Lond) 2024; 19:723-735. [PMID: 38420919 DOI: 10.2217/nnm-2023-0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Vascular cell adhesion molecule-1 (VCAM-1) was identified over 2 decades ago as an endothelial adhesion receptor involved in leukocyte recruitment and cell-based immune responses. In atherosclerosis, a chronic inflammatory disease of the blood vessels that is the leading cause of death in the USA, endothelial VCAM-1 is robustly expressed beginning in the early stages of the disease. The interactions of circulating immune cells with VCAM-1 on the activated endothelial cell surface promote the uptake of monocytes and the progression of atherosclerotic lesions in susceptible vessels. Herein, we review the role of VCAM-1 in atherosclerosis and the use of VCAM-1 binding peptides, antibodies and aptamers as targeting agents for nanoplatforms for early detection and treatment of atherosclerotic disease.
Collapse
Affiliation(s)
- Rita Castro
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Pharmaceutical Sciences & Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
| | - James H Adair
- Department of Materials Science, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Pharmacology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | - Thomas Neuberger
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gail L Matters
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
7
|
Belik E, Dyleva Y, Uchasova E, Ivanov S, Stasev A, Zinets M, Gruzdeva O. Sphingomyelins of Local Fat Depots and Blood Serum as Promising Biomarkers of Cardiovascular Diseases. Sovrem Tekhnologii Med 2024; 16:54-64. [PMID: 39421630 PMCID: PMC11482092 DOI: 10.17691/stm2024.16.1.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Indexed: 10/19/2024] Open
Abstract
Assessment of the blood lipid spectrum does not always properly reflect local dysfunctional changes in the adipose tissue and prevents identification of all patients at high risk of cardiovascular diseases (CVD). Monitoring of changes in sphingomyelin levels allows to assess and anticipate the development and/or severity of these diseases, as well as to make sphingomyelins new therapeutic targets. The aim of the study was to evaluate the sphingomyelin spectrum of local fat depots and blood serum in connection with clinical and instrumental indicators in patients with coronary artery disease (CAD) and patients with degenerative acquired valvular heart disease (AVHD). Materials and Methods The study analyzed samples of subcutaneous, epicardial, perivascular adipose tissue (SAT, EAT, PVAT, respectively) received from 30 patients with CAD and 30 patients with AVHD. Sphingomyelin spectrum of the blood serum was assessed using a high-resolution chromatography-mass spectrometric complex (liquid chromatograph of the Agilent 1200 series (Agilent Technologies, USA) with a maXis impact mass spectrometric detector (Bruker Daltonics, Germany)). Determination of the levels of sphingomyelins (SM) in adipose tissue samples was conducted by high performance liquid chromatography with mass spectrometric detection in the mass/charge ratio range from 100 to 1700. Results Consistent sphingomyelin spectrum of local fat depots and blood serum was revealed in CAD and AVHD. However, the content of SM varied: in CAD, a specific enhancement of SM in epicardial adipose tissue was observed compared to subcutaneous and perivascular localization. In AVHD, PVAT was characterized by a statistically significant increase in the levels of all SM relative to EAT. Almost all measured SM types in the serum of patients with CAD were higher than the levels in the AVHD group. Conclusion Established associations of indicators of the sphingomyelin profile of adipose tissue and blood serum with clinical and instrumental indicators in CVD indicate the relationship between the metabolism of SM in adipose tissue of cardiac localization and disorders of systolic and diastolic function of the LV in patients with CVD, multivessel coronary disease in CAD and allow the use of SM as promising biomarkers of CVD. However, further research is needed to clarify the nature of these relationships.
Collapse
Affiliation(s)
- E.V. Belik
- Researcher, Laboratory of Homeostasis Research, Department of Experimental Medicine; Research Institute for Complex Issues of Cardiovascular Diseases, 6 Academician L.S. Barbarash Blvd, Kemerovo, 650002, Russia
| | - Yu.A. Dyleva
- Senior Researcher, Laboratory for Homeostasis Research, Department of Experimental Medicine; Research Institute for Complex Issues of Cardiovascular Diseases, 6 Academician L.S. Barbarash Blvd, Kemerovo, 650002, Russia
| | - E.G. Uchasova
- Senior Researcher, Laboratory for Homeostasis Research, Department of Experimental Medicine; Research Institute for Complex Issues of Cardiovascular Diseases, 6 Academician L.S. Barbarash Blvd, Kemerovo, 650002, Russia
| | - S.V. Ivanov
- Leading Researcher, Laboratory of X-ray Endovascular and Reconstructive Surgery of the Heart and Vessels, Department of Cardiovascular Surgery; Research Institute for Complex Issues of Cardiovascular Diseases, 6 Academician L.S. Barbarash Blvd, Kemerovo, 650002, Russia
| | - A.N. Stasev
- Senior Researcher, Laboratory of Heart Diseases, Department of Cardiovascular Surgery; Research Institute for Complex Issues of Cardiovascular Diseases, 6 Academician L.S. Barbarash Blvd, Kemerovo, 650002, Russia
| | - M.G. Zinets
- Cardiac Surgeon, Department of Cardiac Surgery No.1; Research Institute for Complex Issues of Cardiovascular Diseases, 6 Academician L.S. Barbarash Blvd, Kemerovo, 650002, Russia
| | - O.V. Gruzdeva
- Associate Professor, Professor of the Russian Academy of Sciences, Head of the Laboratory for Homeostasis Research, Department of Experimental Medicine; Research Institute for Complex Issues of Cardiovascular Diseases, 6 Academician L.S. Barbarash Blvd, Kemerovo, 650002, Russia; Head of the Department of Medical Biochemistry; Kemerovo State Medical University, 22A Voroshilov St., Kemerovo, 650056, Russia
| |
Collapse
|
8
|
Zhao Y, Liu N, Zhang J, Zhao L. PCSK9i promoting the transformation of AS plaques into a stable plaque by targeting the miR-186-5p/Wipf2 and miR-375-3p/Pdk1/Yap1 in ApoE-/- mice. Front Med (Lausanne) 2024; 11:1284199. [PMID: 38596793 PMCID: PMC11002805 DOI: 10.3389/fmed.2024.1284199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/13/2024] [Indexed: 04/11/2024] Open
Abstract
Background Atherosclerosis (AS) is a multifaceted disease characterized by disruptions in lipid metabolism, vascular inflammation, and the involvement of diverse cellular constituents. Recent investigations have progressively underscored the role of microRNA (miR) dysregulation in cardiovascular diseases, notably AS. Proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) can effectively reduce circulating levels of low-density lipoprotein cholesterol (LDL-C) and lipoprotein (a) [Lp (a)], potentially fostering a more enduring phenotype for AS plaques. However, the underlying mechanisms by which PCSK9i enhances plaque stability remain unclear. In this study, we used microarray and bioinformatics techniques to analyze the regulatory impacts on gene expression pertinent to AS, thereby unveiling potential mechanisms underlying the plaque-stabilizing attributes of PCSK9i. Methods ApoE-/- mice were randomly allocated into control, AS, PCSK9i, and Atorvastatin groups. The AS model was induced through a high-fat diet (HFD), succeeded by interventions: the PCSK9i group was subjected to subcutaneous SBC-115076 injections (8 mg/kg, twice weekly), and the Atorvastatin group received daily oral Atorvastatin (10 mg/kg) while on the HFD. Subsequent to the intervention phase, serum analysis, histological assessment using hematoxylin and eosin (H&E) and Oil Red O staining, microarray-centered miRNA analysis utilizing predictions from TargetScan and miRTarBase, and analyses using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were executed to illuminate potential pathways. Real-time fluorescence quantitative PCR (RT-qPCR) was employed to quantify the expression levels of target genes. Results In comparison to the control group, the AS group displayed a significant elevation in blood lipid levels. Both PCSK9i and Atorvastatin effectively attenuated blood lipid levels, with PCSK9i exhibiting a more pronounced lipid-lowering impact, particularly concerning TG and LDL-C levels. Over the course of AS progression, the expression levels of mmu-miR-134, mmu-miR-141-5p, mmu-miR-17-3p, mmu-miR-195-3p, mmu-miR-210, mmu-miR-33-5p, mmu-miR-410, mmu-miR-411-5p, mmu-miR-499, mmu-miR-672-5p, mmu-miR-675-3p, and mmu-miR-301b underwent dynamic fluctuations. PCSK9i significantly down-regulated the expression of mmu-miR-186-5p, mmu-miR-222, mmu-miR-375-3p, and mmu-miR-494-3p. Further enrichment analysis disclosed that mmu-miR-186-5p, mmu-miR-222, mmu-miR-375-3p, and mmu-miR-494-3p were functionally enriched for cardiovascular smooth muscle cell proliferation, migration, and regulation. RT-qPCR results manifested that, in comparison to the AS group, PCSK9i significantly upregulated the expression of Wipf2, Pdk1, and Yap1 (p < 0.05). Conclusion Aberrant miRNA expression may play a pivotal role in AS progression in murine models of AS. The subcutaneous administration of PCSK9i exerted anti-atherosclerotic effects by targeting the miR-186-5p/Wipf2 and miR-375-3p/Pdk1/Yap1 axes, thereby promoting the transition of AS plaques into a more stable form.
Collapse
Affiliation(s)
- Yanlong Zhao
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ning Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jifeng Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Lei Zhao
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
9
|
Molnár AÁ, Pásztor DT, Tarcza Z, Merkely B. Cells in Atherosclerosis: Focus on Cellular Senescence from Basic Science to Clinical Practice. Int J Mol Sci 2023; 24:17129. [PMID: 38138958 PMCID: PMC10743093 DOI: 10.3390/ijms242417129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Aging is a major risk factor of atherosclerosis through different complex pathways including replicative cellular senescence and age-related clonal hematopoiesis. In addition to aging, extracellular stress factors, such as mechanical and oxidative stress, can induce cellular senescence, defined as premature cellular senescence. Senescent cells can accumulate within atherosclerotic plaques over time and contribute to plaque instability. This review summarizes the role of cellular senescence in the complex pathophysiology of atherosclerosis and highlights the most important senotherapeutics tested in cardiovascular studies targeting senescence. Continued bench-to-bedside research in cellular senescence might allow the future implementation of new effective anti-atherosclerotic preventive and treatment strategies in clinical practice.
Collapse
Affiliation(s)
- Andrea Ágnes Molnár
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary; (D.T.P.); (Z.T.); (B.M.)
| | | | | | | |
Collapse
|
10
|
Canale P, Campolo J, Borghini A, Andreassi MG. Long Telomeric Repeat-Containing RNA (TERRA): Biological Functions and Challenges in Vascular Aging and Disease. Biomedicines 2023; 11:3211. [PMID: 38137431 PMCID: PMC10740775 DOI: 10.3390/biomedicines11123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Telomere dysfunction is implicated in vascular aging and shorter leucocyte telomeres are associated with an increased risk of atherosclerosis, myocardial infarction, and heart failure. Another pathophysiological mechanism that explains the causal relationship between telomere shortening and atherosclerosis development focuses on the clonal hematopoiesis of indeterminate potential (CHIP), which represents a new and independent risk factor in atherosclerotic cardiovascular diseases. Since telomere attrition has a central role in driving vascular senescence, understanding telomere biology is essential to modulate the deleterious consequences of vascular aging and its cardiovascular disease-related manifestations. Emerging evidence indicates that a class of long noncoding RNAs transcribed at telomeres, known as TERRA for "TElomeric Repeat-containing RNA", actively participates in the mechanisms regulating telomere maintenance and chromosome end protection. However, the multiple biological functions of TERRA remain to be largely elucidated. In particular, the role of TERRA in vascular biology is surprisingly unknown. In this review, we discuss the current knowledge of TERRA and its roles in telomere biology. Additionally, we outline the pieces of evidence that exist regarding the relationship between TERRA dysregulation and disease. Finally, we speculate on how a comprehensive understanding of TERRA transcription in the cardiovascular system may provide valuable insights into telomere-associated vascular aging, offering great potential for new therapeutic approaches.
Collapse
Affiliation(s)
- Paola Canale
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (P.C.); (A.B.)
- Health Science Interdisciplinary Center, Sant’Anna School of Advanced Studies, 56124 Pisa, Italy
| | - Jonica Campolo
- CNR Institute of Clinical Physiology, ASST Grande Ospedale Metropolitano Niguarda, 20142 Milano, Italy;
| | - Andrea Borghini
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (P.C.); (A.B.)
| | | |
Collapse
|
11
|
Netiazhenko VZ, Mostovyi SI, Safonova OM, Gurianov VG, Mikhaliev KO. INTRACARDIAC HEMODYNAMICS, CEREBRAL BLOOD FLOW AND MICROEMBOLIC SIGNAL BURDEN IN STABLE CORONARY ARTERY DISEASE PATIENTS WITH CONCOMITANT COVID-19. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 76:1205-1215. [PMID: 37364074 DOI: 10.36740/wlek202305211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
OBJECTIVE The aim: To estimate the changes in intracardiac hemodynamics, cerebral blood flow (CBF), and microembolic signals` (MES) burden in stable coronary artery disease (SCAD) patients with concomitant COVID-19. PATIENTS AND METHODS Materials and methods: The cross-sectional study analyzed the data from 80 patients, being subdivided as follows: group 1 (G1) - SCAD without COVID-19 (n=30); group 2 (G2) - SCAD with concomitant COVID-19 (n=25); group 3 (G3) - COVID-19 without SCAD (n=25). The control group (CG) included 30 relatively healthy volunteers. CBF and total MES count were assessed by transcranial Doppler ultrasound. RESULTS Results: Transthoracic echocardiography data from G2 revealed the most pronounced left ventricular (LV) dilation and its contractility decline (the rise of end-systolic volume (ESV) and ejection fraction decrease), as compared to G1 and G3. G1-G3 patients (vs. CG) presented with lower peak systolic velocities in all the studied intracranial arteries (middle and posterior cerebral arteries bilaterally, and basilar artery), along with the higher MES count. Such a drop in CBF was the most pronounced in G2. Both G2 and G3 demonstrated the highest amount of MES, with slightly higher count in G2. We built a linear neural network, discriminating the pattern of both higher LV ESV and MES count, being inherent to G2. CONCLUSION Conclusions: G2 patients demonstrated the LV dilation and its systolic function impairment, and presented with CBF drop and MES burden increase, being more advanced in contrast to G1 and G3. LV contractility decrease was associated with the higher MES load in the case of SCAD and COVID-19 constellation.
Collapse
Affiliation(s)
- Vasyl Z Netiazhenko
- BOGOMOLETS NATIONAL MEDICAL UNIVERSITY, KYIV, UKRAINE; STATE INSTITUTION OF SCIENCE "RESEARCH AND PRACTICAL CENTER OF PREVENTIVE AND CLINICAL MEDICINE" STATE ADMINISTRATIVE DEPARTMENT, KYIV, UKRAINE
| | - Serhii I Mostovyi
- BOGOMOLETS NATIONAL MEDICAL UNIVERSITY, KYIV, UKRAINE; SE «MEDBUD», KYIV, UKRAINE
| | | | | | - Kyrylo O Mikhaliev
- STATE INSTITUTION OF SCIENCE "RESEARCH AND PRACTICAL CENTER OF PREVENTIVE AND CLINICAL MEDICINE" STATE ADMINISTRATIVE DEPARTMENT, KYIV, UKRAINE
| |
Collapse
|