1
|
Zare Z, Tehrani M, Zarbakhsh S, Mohammadi M. Protective effects of treadmill exercise on apoptotic neuronal damage and astrocyte activation in ovariectomized and/or diabetic rat prefrontal cortex: molecular and histological aspects. Int J Neurosci 2024; 134:754-762. [PMID: 36377197 DOI: 10.1080/00207454.2022.2148529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Both estrogen deprivation and diabetes mellitus are known as risk factors for neuronal damage. Using an animal model of ovariectomized and/or streptozotocin (STZ)-induced diabetes mellitus, we examined expression of apoptosis-related proteins, neuronal damage, and astrocyte activation in prefrontal cortex of rats with/without treadmill exercise. METHODS Adult female Wistar rats were divided into control, ovariectomized (Ovx, bilateral ovariectomy), diabetic (Dia, STZ 60 mg/kg; i.p.), and ovariectomized diabetic (Ovx + Dia) groups. Next, animals in each group were randomly subdivided into non-exercise and exercise subgroups. Animals in the exercise groups underwent moderate treadmill running for 4 weeks (5 days/week). Thereafter, expression of Bax, Bcl-2, and caspase-3, as apoptosis-related proteins, number of neurons, and number of glial fibrillary acidic protein (GFAP)-positive cells in prefrontal cortex were measured using immunoblotting, cresyl violet staining, and immunohistochemistry, respectively. RESULTS In both Dia and Ovx + Dia groups, Bax and caspase-3 protein levels and number of GFAP-positive cells were higher than those in the control group, while Bcl-2 protein level and number of neurons compared were lower than the control group. Beneficial effects of exercise to prevent apoptosis-mediated neuronal damage and astrocyte activation were also observed in the Dia group. CONCLUSION Based on our results, physical exercise could be beneficial to attenuate diabetes-induced neuronal damage in the prefrontal cortex via inhibition of apoptosis.
Collapse
Affiliation(s)
- Zohreh Zare
- Department of Anatomical Sciences, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohsen Tehrani
- Department of Immunology, Gastrointestinal Cancer Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sam Zarbakhsh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Moslem Mohammadi
- Department of Physiology, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
2
|
Motor skills training-induced activation of descending pathways mediating cortical command to hindlimb motoneurons in experimental diabetic rats. Exp Neurol 2023; 363:114357. [PMID: 36849002 DOI: 10.1016/j.expneurol.2023.114357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/29/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Diabetes disrupts the corticospinal tract (CST) system components that control hindlimb and trunk movement, resulting in weakness of the lower extremities. However, there is no information about a method to improve these disorders. This study aimed to investigate the rehabilitative effects of 2 weeks of aerobic training (AT) and complex motor skills training (ST) on motor disorders in streptozotocin-induced type 1 diabetic rats. In this study, electrophysiological mapping of the motor cortex showed that the diabetes mellitus (DM)-ST group had a larger motor cortical area compared to the DM-AT group and sedentary diabetic animals. Moreover, hand grip strength and rotarod latency increased in the DM-ST group; however, these two parameters did not change in the DM-AT group, as well as in control and sedentary diabetic rats. Furthermore, in the DM-ST group, cortical stimulation-induced and motor-evoked potentials were preserved after the interception of the CST; however, this potential disappeared after additional lesions were made on lateral funiculus, suggesting that their function extends to activating motor descending pathways other than the CST locating lateral funiculus. According to immunohistochemical analysis, the larger fibers present on the dorsal part of the lateral funiculus, which corresponds to the rubrospinal tract of the DM-ST group, expressed the phosphorylated growth-associated protein, 43 kD, which is a specific marker of axons with plastic changes. Additionally, electrical stimulation of the red nucleus revealed expansion of the hindlimb-responsible area and increased motor-evoked potentials of the hindlimb in the DM-ST group, suggesting a strengthening of synaptic connections between the red nucleus and spinal interneurons driving motoneurons. These results reveal that ST induces plastic changes in the rubrospinal tract in a diabetic model, which can compensate for diabetes by disrupting the CST system components that control the hindlimb. This finding suggests that ST can be a novel rehabilitation strategy to improve motor dysfunctions in diabetic patients.
Collapse
|
3
|
Murphy KT, Camenzuli J, Myers SJ, Whitehead SN, Rajakumar N, Melling CWJ. Assessment of executive function in a rodent model of Type 1 diabetes. Behav Brain Res 2023; 437:114130. [PMID: 36179806 DOI: 10.1016/j.bbr.2022.114130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/29/2022] [Accepted: 09/24/2022] [Indexed: 11/15/2022]
Abstract
This study examined the impact of Type 1 Diabetes Mellitus (T1DM) on executive function using a series of operant conditioning-based tasks in rats. Sprague Dawley rats were randomized to either non-diabetic (n = 12; 6 male) or diabetic (n = 14; 6 male) groups. Diabetes was induced using multiple low-dose streptozotocin injections. All diabetic rodents were insulin-treated using subcutaneous insulin pellet implants (9-15 mM). At week 14 of the study, rats were placed on a food restricted diet to induce 5-10 % weight loss. Rodents were familiarized and their set-shifting ability was tested on a series of tasks that required continuous adjustments to novel stimulus-reward paradigms in order to receive food rewards. Results showed no differences in the number of trials, nor number and type of errors made to successfully complete each task between groups. Therefore, we report no differences in executive function, or more specifically set-shifting abilities between non-diabetic and diabetic rodents that receive insulin.
Collapse
Affiliation(s)
- Kevin T Murphy
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, ON, Canada
| | - Justin Camenzuli
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, ON, Canada
| | - Sarah J Myers
- Department of Anatomy and Cell Biology, Schulich School of Medicine, Western University, London, ON, Canada
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, Schulich School of Medicine, Western University, London, ON, Canada
| | - Nagalingam Rajakumar
- Department of Anatomy and Cell Biology, Schulich School of Medicine, Western University, London, ON, Canada
| | - C W James Melling
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, ON, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine, Western University, London, ON, Canada.
| |
Collapse
|
4
|
Nazanin M, Tolouei-Azar J, Razi M. Running exercise training-induced impact on oxidative stress and mitochondria-related apoptosis in rat's testicles. Andrologia 2022; 54:e14520. [PMID: 35818990 DOI: 10.1111/and.14520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/18/2022] [Accepted: 05/09/2022] [Indexed: 12/28/2022] Open
Abstract
The current study has been designed to explore the effects of running exercise training protocols (ETPs), with different intensities, on testicular redox and antioxidant capacities. Moreover, the crosstalk between oxidative stress (OS) and mitochondria-related apoptosis was analysed. To this end, 24 Wistar rats were subdivided into sedentary control, low- (LICT), moderate- (MICT), and high (HICT)-intensity continuous running ETP groups. Following 8 weeks, the Johnsen score, sperm count, testicular malondialdehyde (MDA) content, total oxidant status (TOS), and redox biomarkers, including glutathione peroxidase (GPX), superoxide dismutase (SOD), and catalase (CAT) levels were evaluated. Additionally, the expression levels of Bcl-2, Bax, caspase-3, proteins involving in the mitochondria-related apoptosis, and the apoptotic index were analysed. The LICT and MICT running ETPs did not affect the spermatogenesis development, sperm count, and antioxidant and redox capacities. Accordingly, no significant changes were revealed in Bcl-2, Bax, and caspase-3 expression levels and apoptosis index compared to sedentary rats. In contrast, the HICT-induced rats showed a significant (p < 0.05) reduction in spermatogenesis development, sperm count, antioxidant and redox capacities versus control, LICT, and MICT groups. Moreover, the expression of Bcl-2 was decreased, while the Bax and caspase-3 expression levels were increased in the HICT-induced group. Finally, the apoptosis index was increased in the HICT group. In conclusion, the suppressed redox system after HICT can trigger the mitochondria-mediated ROS overload, result in OS condition in the testicular tissue, and reversely target the mitochondrial membrane permeability. All of these molecular alterations are suspected to initiate progressive mitochondria-related apoptosis after HICT.
Collapse
Affiliation(s)
- Mozaffari Nazanin
- Department of Exercise Physiology and Corrective Exercises, Faculty of Sport Sciences, Urmia University, Urmia, Iran
| | - Javad Tolouei-Azar
- Department of Exercise Physiology and Corrective Exercises, Faculty of Sport Sciences, Urmia University, Urmia, Iran
| | - Mazdak Razi
- Department of basic Sciences, Division of Histology & Embryology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
5
|
Connolly MG, Bruce SR, Kohman RA. Exercise duration differentially effects age-related neuroinflammation and hippocampal neurogenesis. Neuroscience 2022; 490:275-286. [PMID: 35331843 PMCID: PMC9038708 DOI: 10.1016/j.neuroscience.2022.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 12/14/2022]
Abstract
The physiological effects of exercise vary as a function of frequency and length. However, research on the duration-dependent effects of exercise has focused primarily on young adults and less is known about the influence of exercise duration in the aged. The current study compared the effects of short-term and long-term running wheel access on hippocampal neurogenesis and neuroimmune markers in aged (19-23 months) male C57BL/6J mice. Aged mice were given 24-hour access to a running wheel for 14 days (short-term) or 51 days (long-term). Groups of non-running aged and young (5 months) mice served as comparison groups to detect age-related differences and effects of exercise. Long-term, but not short-term, exercise increased hippocampal neurogenesis as assessed by number of doublecortin (DCX) positive cells in the granular cell layer. Assessment of cytokines, receptors, and glial-activation markers showed the expected age-related increase compared to young controls. In the aged, exercise as a function of duration regulated select aspects of the neuroimmune profile. For instance, hippocampal expression of interleukin (IL)-10 was increased only following long-term exercise. While in contrast brain levels of IL-6 were reduced by both short- and long-term exercise. Additional findings showed that exercise does not modulate all aspects of age-related neuroinflammation and/or may have differential effects in hippocampal compared to brain samples. Overall, the data indicate that increasing exercise duration produces more robust effects on immune modulation and hippocampal neurogenesis.
Collapse
Affiliation(s)
- Meghan G Connolly
- University of Illinois Urbana-Champaign, Department of Animal Sciences, Champaign, IL, USA.
| | - Spencer R Bruce
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, USA.
| | - Rachel A Kohman
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, USA.
| |
Collapse
|
6
|
Sun D, Gao G, Zhong B, Zhang H, Ding S, Sun Z, Zhang Y, Li W. NLRP1 inflammasome involves in learning and memory impairments and neuronal damages during aging process in mice. Behav Brain Funct 2021; 17:11. [PMID: 34920732 PMCID: PMC8680336 DOI: 10.1186/s12993-021-00185-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/15/2021] [Indexed: 11/14/2022] Open
Abstract
Background Brain aging is an important risk factor in many human diseases, such as Alzheimer’s disease (AD). The production of excess reactive oxygen species (ROS) mediated by nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) and the maturation of inflammatory cytokines caused by activation of the NOD-like receptor protein 1 (NLRP1) inflammasome play central roles in promoting brain aging. However, it is still unclear when and how the neuroinflammation appears in the brain during aging process. Methods In this study, we observed the alterations of learning and memory impairments, neuronal damage, NLRP1 inflammasome activation, ROS production and NOX2 expression in the young 6-month-old (6 M) mice, presenile 16 M mice, and older 20 M and 24 M mice. Results The results indicated that, compared to 6 M mice, the locomotor activity, learning and memory abilities were slightly decreased in 16 M mice, and were significantly decreased in 20 M and 24 M mice, especially in the 24 M mice. The pathological results also showed that there were no significant neuronal damages in 6 M and 16 M mice, while there were obvious neuronal damages in 20 M and 24 M mice, especially in the 24 M group. Consistent with the behavioral and histological changes in the older mice, the activity of β-galactosidase (β-gal), the levels of ROS and IL-1β, and the expressions of NLRP1, ASC, caspase-1, NOX2, p47phox and p22phox were significantly increased in the cortex and hippocampus in the older 20 M and 24 M mice. Conclusion Our study suggested that NLRP1 inflammasome activation may be closely involved in aging-related neuronal damage and may be an important target for preventing brain aging. Supplementary Information The online version contains supplementary material available at 10.1186/s12993-021-00185-x.
Collapse
Affiliation(s)
- Dan Sun
- Department of Pharmacy, The First People's Hospital of Xiaoshan District, 199 Shixin South Road, Hangzhou, 311200, Zhejiang, China
| | - Guofang Gao
- Department of Pharmacy, The First People's Hospital of Xiaoshan District, 199 Shixin South Road, Hangzhou, 311200, Zhejiang, China
| | - Bihua Zhong
- Department of Pharmacy, The First People's Hospital of Xiaoshan District, 199 Shixin South Road, Hangzhou, 311200, Zhejiang, China
| | - Han Zhang
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.,Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shixin Ding
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.,Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhenghao Sun
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.,Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yaodong Zhang
- Department of Pharmacy, The First People's Hospital of Xiaoshan District, 199 Shixin South Road, Hangzhou, 311200, Zhejiang, China
| | - Weizu Li
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China. .,Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
7
|
Maugeri G, D’Agata V, Magrì B, Roggio F, Castorina A, Ravalli S, Di Rosa M, Musumeci G. Neuroprotective Effects of Physical Activity via the Adaptation of Astrocytes. Cells 2021; 10:cells10061542. [PMID: 34207393 PMCID: PMC8234474 DOI: 10.3390/cells10061542] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/27/2022] Open
Abstract
The multifold benefits of regular physical exercise have been largely demonstrated in human and animal models. Several studies have reported the beneficial effects of physical activity, both in peripheral tissues and in the central nervous system (CNS). Regular exercise improves cognition, brain plasticity, neurogenesis and reduces the symptoms of neurodegenerative diseases, making timeless the principle of “mens sana in corpore sano” (i.e., a healthy mind in a healthy body). Physical exercise promotes morphological and functional changes in the brain, acting not only in neurons but also in astrocytes, which represent the most numerous glial cells in the brain. The multiple effects of exercise on astrocytes comprise the increased number of new astrocytes, the maintenance of basal levels of catecholamine, the increase in glutamate uptake, the major release of trophic factors and better astrocytic coverage of cerebral blood vessels. The purpose of this review is to highlight the effects of exercise on brain function, emphasize the role of astrocytes in the healthy CNS, and provide an update for a better understanding of the effects of physical exercise in the modulation of astrocyte function.
Collapse
Affiliation(s)
- Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia n°87, 95100 Catania, Italy; (G.M.); (V.D.); (B.M.); (F.R.); (S.R.); (M.D.R.)
| | - Velia D’Agata
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia n°87, 95100 Catania, Italy; (G.M.); (V.D.); (B.M.); (F.R.); (S.R.); (M.D.R.)
| | - Benedetta Magrì
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia n°87, 95100 Catania, Italy; (G.M.); (V.D.); (B.M.); (F.R.); (S.R.); (M.D.R.)
| | - Federico Roggio
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia n°87, 95100 Catania, Italy; (G.M.); (V.D.); (B.M.); (F.R.); (S.R.); (M.D.R.)
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Broadway, NSW 2007, Australia;
- Laboratory of Neural Structure and Function (LNSF), School of Medical Sciences, (Anatomy and Histology), Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Silvia Ravalli
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia n°87, 95100 Catania, Italy; (G.M.); (V.D.); (B.M.); (F.R.); (S.R.); (M.D.R.)
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia n°87, 95100 Catania, Italy; (G.M.); (V.D.); (B.M.); (F.R.); (S.R.); (M.D.R.)
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia n°87, 95100 Catania, Italy; (G.M.); (V.D.); (B.M.); (F.R.); (S.R.); (M.D.R.)
- Research Center on Motor Activities (CRAM), University of Catania, Via S. Sofia n°97, 95100 Catania, Italy
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Correspondence: ; Tel.: +39-095-378-2043
| |
Collapse
|
8
|
ROS and metabolomics-mediated autophagy in rat's testicular tissue alter after exercise training; Evidence for exercise intensity and outcomes. Life Sci 2021; 277:119585. [PMID: 33957169 DOI: 10.1016/j.lfs.2021.119585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/15/2021] [Accepted: 04/24/2021] [Indexed: 11/21/2022]
Abstract
AIMS Oxidative damage and altered metabolic reactions are suspected to initiate the autophagy. The exercise training significantly impacts testicular antioxidant and metabolic potentials. However, the underlying mechanism(s) that the exercise-induced alterations can affect the autophagy markers remained unknown. This study explored the effect of exercise training on antioxidant and metabolic statuses of testicular tissue and uncovered the possible cross-link between these statuses and autophagy-inducers expression. MAIN METHODS Wistar rats were divided into sedentary control, low (LICT), moderate (MICT), and high (HICT) intensity continuous training groups. Following 8 weeks of training, the testicular total antioxidant capacity (TAC), total oxidant status (TOS), glutathione (GSH), and NADP+/NADPH as oxidative biomarkers along with intracytoplasmic carbohydrate and lipid droplet patterns, lactate dehydrogenase (LDH) activity, and lactate as metabolic elements were assessed. Finally, the autophagy-inducers expression and sperm count were examined. KEY FINDINGS With no significant impact on the oxidative biomarkers and metabolic elements, the LICT and MICT groups exhibited statistically unremarkable (p < 0.05) impacts on spermatogenesis differentiation, spermiogenesis ratio, and sperm count while increased the autophagy-inducers expression. Reversely, the HICT group, simultaneous with suppressing the antioxidant biomarkers (TAC↓, GSH↓, TOS↑, NADP+/NADPH↑), significantly (p < 0.05) reduced the testicular LDH activity and lactate level, changed the intracytoplasmic carbohydrate and lipid droplet's pattern, and amplified the classical autophagy-inducers p62, Beclin-1, autophagy-related gene (ATG)-7, and light chain 3 (LC3)-II/I expression. SIGNIFICANCE The autophagy-inducers overexpression has occurred after HICT induction, most probably to eliminate the oxidative damage cargoes, while increased to maintain the metabolic homeostasis in the LICT and MICT groups.
Collapse
|
9
|
Heidarianpour A, Mohammadi F, Keshvari M, Mirazi N. Ameliorative effects of endurance training and Matricaria chamomilla flowers hydroethanolic extract on cognitive deficit in type 2 diabetes rats. Biomed Pharmacother 2021; 135:111230. [PMID: 33434853 DOI: 10.1016/j.biopha.2021.111230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/18/2020] [Accepted: 12/31/2020] [Indexed: 12/26/2022] Open
Abstract
Diabetes mellitus is mainly associated with degeneration of the central nervous system, which eventually leads to cognitive deficit. Although some studies suggest that exercise can improve the cognitive decline associated with diabetes, the potential effects of endurance training (ET) accompanied by Matricaria chamomilla (M.ch) flowers extract on cognitive impairment in type 2 diabetes has been poorly understood. Forty male Wistar rats were randomized into 5 equal groups of 8: healthy-sedentary (H-sed), diabetes-sedentary (D-sed), diabetes-endurance training (D-ET), diabetes-Matricaria chamomilla. (D-M.ch), and diabetes-endurance training-Matricaria chamomilla. (D-ET-M.ch). Nicotinamide (110 mg/kg, i.p.) and Streptozotocin (65 mg/kg, i.p.) were utilized to initiate type 2 diabetes. Then, ET (5 days/week) and M.ch (200 mg/kg body weight/daily) were administered for 12 weeks. After 12 weeks of the experiment, cognitive functions were assessed using the Morris Water Maze (MWM) test and a passive avoidance paradigm using a shuttle box device. Subsequently, using crystal violet staining, neuron necrosis was examined in the CA3 area of the hippocampus. Diabetic rats showed cognitive impairment following an increase in the number of necrotic cells in region CA3 of the hippocampal tissue. Also, diabetes increased serum levels of lipid peroxidation and decreased total antioxidant capacity in serum and hippocampal tissue. ET + M.ch treatment prevented the necrosis of neurons in the hippocampal tissue. Following positive changes in hippocampal tissue and serum antioxidant enzyme levels, an improvement was observed in the cognitive impairment of the diabetic rats receiving ET + M.ch. Therefore the results showed that treatment with ET + M.ch could ameliorate memory and inactive avoidance in diabetic rats. Hence, the use of ET + M.ch interventions is proposed as a new therapeutic perspective on the death of hippocampal neurons and cognitive deficit caused by diabetes.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- CA3 Region, Hippocampal/drug effects
- CA3 Region, Hippocampal/metabolism
- CA3 Region, Hippocampal/pathology
- Cognition/drug effects
- Cognitive Dysfunction/metabolism
- Cognitive Dysfunction/pathology
- Cognitive Dysfunction/prevention & control
- Cognitive Dysfunction/psychology
- Combined Modality Therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/psychology
- Diabetes Mellitus, Experimental/therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/psychology
- Diabetes Mellitus, Type 2/therapy
- Endurance Training
- Flowers
- Lipid Peroxidation
- Male
- Matricaria/chemistry
- Morris Water Maze Test/drug effects
- Necrosis
- Oxidative Stress/drug effects
- Physical Conditioning, Animal
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Rats, Wistar
- Rats
Collapse
Affiliation(s)
- Ali Heidarianpour
- Department of Exercise Physiology, Faculty of Sport Science, Bu-Ali Sina University, Hamedan, Iran.
| | - Fereshteh Mohammadi
- Department of Exercise Physiology, Faculty of Sport Science, Bu-Ali Sina University, Hamedan, Iran
| | - Maryam Keshvari
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, Iran
| | - Naser Mirazi
- Department of Biology, Faculty of Basic Sciences, Bu- Ali Sina University, Hamedan, Iran
| |
Collapse
|
10
|
From Obesity to Hippocampal Neurodegeneration: Pathogenesis and Non-Pharmacological Interventions. Int J Mol Sci 2020; 22:ijms22010201. [PMID: 33379163 PMCID: PMC7796248 DOI: 10.3390/ijms22010201] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022] Open
Abstract
High-caloric diet and physical inactivity predispose individuals to obesity and diabetes, which are risk factors of hippocampal neurodegeneration and cognitive deficits. Along with the adipose-hippocampus crosstalk, chronically inflamed adipose tissue secretes inflammatory cytokine could trigger neuroinflammatory responses in the hippocampus, and in turn, impairs hippocampal neuroplasticity under obese and diabetic conditions. Hence, caloric restriction and physical exercise are critical non-pharmacological interventions to halt the pathogenesis from obesity to hippocampal neurodegeneration. In response to physical exercise, peripheral organs, including the adipose tissue, skeletal muscles, and liver, can secret numerous exerkines, which bring beneficial effects to metabolic and brain health. In this review, we summarized how chronic inflammation in adipose tissue could trigger neuroinflammation and hippocampal impairment, which potentially contribute to cognitive deficits in obese and diabetic conditions. We also discussed the potential mechanisms underlying the neurotrophic and neuroprotective effects of caloric restriction and physical exercise by counteracting neuroinflammation, plasticity deficits, and cognitive impairments. This review provides timely insights into how chronic metabolic disorders, like obesity, could impair brain health and cognitive functions in later life.
Collapse
|
11
|
Mohammadi M, Zare Z. Effects of treadmill exercise on cognitive functions and anxiety-related behaviors in ovariectomized diabetic rats. Physiol Behav 2020; 224:113021. [DOI: 10.1016/j.physbeh.2020.113021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 12/21/2022]
|
12
|
de Souza RF, Augusto RL, de Moraes SRA, de Souza FB, Gonçalves LVDP, Pereira DD, Moreno GMM, de Souza FMA, Andrade-da-Costa BLDS. Ultra-Endurance Associated With Moderate Exercise in Rats Induces Cerebellar Oxidative Stress and Impairs Reactive GFAP Isoform Profile. Front Mol Neurosci 2020; 13:157. [PMID: 32982688 PMCID: PMC7492828 DOI: 10.3389/fnmol.2020.00157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
Ultra-endurance (UE) race has been associated with brain metabolic changes, but it is still unknown which regions are vulnerable. This study investigated whether high-volume training in rodents, even under moderate intensity, can induce cerebellar oxidative and inflammatory status. Forty-five adult rats were divided into six groups according to a training period, followed or not by an exhaustion test (ET) that simulated UE: control (C), control + ET (C-ET), moderate-volume (MV) training and MV-ET, high-volume training (HV) and HV-ET. The training period was 30 (MV) and 90 (HV) min/day, 5 times/week for 3 months as a continuous running on a treadmill at a maximum velocity of 12 m/min. After 24 h, the ET was performed at 50% maximum velocities up to the animals refused to run, and then serum lactate levels were evaluated. Serum and cerebellar homogenates were obtained 24 h after ET. Serum creatine kinase (CK), lactate dehydrogenase (LDH), and corticosterone levels were assessed. Lipid peroxidation (LP), nitric oxide (NO), Interleukin 1β (IL-1β), and GFAP proteins, reduced and oxidized glutathione (GSH and GSSG) levels, superoxide dismutase (SOD) and catalase (CAT) activities were quantified in the cerebellum. Serum lactate concentrations were lower in MV-ET (∼20%) and HV-ET (∼40%) compared to the C-ET group. CK and corticosterone levels were increased more than ∼ twofold by HV training compared to control. ET increased CK levels in MV-ET vs. MV group (P = 0.026). HV induced higher LP levels (∼40%), but an additive effect of ET was only seen in the MV-ET group (P = 0.02). SOD activity was higher in all trained groups vs. C and C-ET (P < 0.05). CAT activity, however, was intensified only in the MV group (P < 0.02). The 50 kDa GFAP levels were enhanced in C-ET and MV-ET vs. respective controls, while 42 kDa (∼40%) and 39 kDa (∼26%) isoform levels were reduced. In the HV-ET group, the 50 KDa isoform amount was reduced ∼40-60% compared to the other groups and the 39 KDa isoform, increased sevenfold. LDH levels, GSH/GSSG ratio, and NO production were not modified. ET elevated IL-1β levels in the CT and MV groups. Data shows that cerebellar resilience to oxidative damage may be maintained under moderate-volume training, but it is reduced by UE running. High-volume training per se provoked systemic metabolic changes, cerebellar lipid peroxidation, and unbalanced enzymatic antioxidant resource. UE after high-volume training modified the GFAP isoform profile suggesting impaired astrocyte reactivity in the cerebellum.
Collapse
Affiliation(s)
- Raphael Fabricio de Souza
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife, Brazil
- Postgraduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Brazil
- Department of Physical Education, Federal University of Sergipe, São Cristovão, Brazil
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports – GEPEPS, Federal University of Sergipe, São Cristovão, Brazil
| | - Ricielle Lopes Augusto
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife, Brazil
| | - Silvia Regina Arruda de Moraes
- Laboratory of Neuromuscular Plasticity, Department of Anatomy, Center of Biosciences, Federal University of Pernambuco, Recife, Brazil
| | - Fabio Borges de Souza
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife, Brazil
| | - Lílian Vanessa da Penha Gonçalves
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife, Brazil
| | - Danielle Dutra Pereira
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife, Brazil
| | - Gisele Machado Magalhães Moreno
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife, Brazil
| | - Fernanda Maria Araujo de Souza
- Laboratory of Neuropharmacology and Integrative Physiology, Center of Biosciences, Federal University of Alagoas, Maceió, Brazil
| | - Belmira Lara da Silveira Andrade-da-Costa
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife, Brazil
- Postgraduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
13
|
Keshvari M, Rahmati M, Mirnasouri R, Chehelcheraghi F. Effects of endurance exercise and Urtica dioica on the functional, histological and molecular aspects of the hippocampus in STZ-Induced diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 256:112801. [PMID: 32247145 DOI: 10.1016/j.jep.2020.112801] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/17/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Many body systems and organs, including the hippocampus, are affected by diabetes, and undergo changes that may increase the risk of cognitive decline. Urtica dioica (UD) has long been recognized as a medicinal plant with beneficial effects on blood glucose control in diabetes. AIM OF THE STUDY The present study aimed to investigate the effect of endurance exercise (Ex), along with Urtica dioica (UD) hydro-alcoholic extract on some functional, histological, and molecular aspects of the hippocampus in streptozotocin (STZ)-induced diabetic rats. MATERIALS AND METHODS 60 male Wistar rats were divided into five groups (N = 12): healthy control (H-C), diabetes control (D-C), diabetes exercise (D-Ex), diabetes Urtica dioica (D-UD), and diabetes exercise Urtica dioica (D-Ex-UD). Diabetes was induced intraperitoneally by STZ (45 mg/kg) injection. Two weeks after the injection by STZ, Ex (moderate intensity/5day/week) and gavage of UD extract (50mg/kg/day) was performed for six weeks. Cognitive functions were evaluated by the Morris Water Maze test, routine histological examination, and molecular studies were done via Hematoxylin & Eosin stain, and Western blot. RESULTS Diabetic rats showed spatial learning and memory deficits, as well as negatively affects to the tissue and structure of the hippocampus in the dentate gyrus (DG) and cornu ammonis (CA) areas. Ex + UD treatment caused a decrease of neural disorganization, an increase of neural-microglial density, and thickness of the pyramidal-molecular layer in the hippocampus. In addition, Ex + UD caused a rise of GAP-43 protein levels, a reduction of CAP-1 protein levels, improved hippocampal structure, and improved learning and memory function. CONCLUSIONS These results show that Ex, along with the UD extract, may decrease levels of the central neural complications of diabetes. Given the importance of recognizing non-pharmacological complementary therapies in this field, future studies are warranted.
Collapse
Affiliation(s)
- Maryam Keshvari
- Sport Sciences Department, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, Iran.
| | - Masoud Rahmati
- Sport Sciences Department, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, Iran.
| | - Rahim Mirnasouri
- Sport Sciences Department, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, Iran.
| | - Farzaneh Chehelcheraghi
- Anatomical Sciences Department, School of Medicine, Lorestan University Medical of Sciences, Khorramabad, Iran.
| |
Collapse
|
14
|
Wartchow KM, Rodrigues L, Lissner LJ, Federhen BC, Selistre NG, Moreira A, Gonçalves CA, Sesterheim P. Insulin-producing cells from mesenchymal stromal cells: Protection against cognitive impairment in diabetic rats depends upon implant site. Life Sci 2020; 251:117587. [PMID: 32224027 DOI: 10.1016/j.lfs.2020.117587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/21/2020] [Accepted: 03/22/2020] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus (DM) is a serious public health problem and can cause long-term damage to the brain, resulting in cognitive impairment in these patients. Insulin therapy for type 1 DM (DM1) can achieve overall blood glucose control, but glycemic variations can occur during injection intervals, which may contribute to some complications. Among the additional therapies available for DM1 treatment is the implantation of insulin-producing cells (IPCs) to attenuate hyperglycemia and even reverse diabetes. Here, we studied the strategy of implanting IPCs obtained from mesenchymal stromal cells (MSCs) from adipose tissue, comparing two different IPC implant sites, subcapsular renal (SR) and subcutaneous (SC), to investigate their putative protection against hippocampal damage, induced by STZ, in a rat DM1 model. Both implants improved hyperglycemia and reduced the serum content of advanced-glycated end products in diabetic rats, but serum insulin was not observed in the SC group. The SC-implanted group demonstrated ameliorated cognitive impairment (evaluated by novel object recognition) and modulation of hippocampal astroglial reactivity (evaluated by S100B and GFAP). Using GFP+ cell implants, the survival of cells at the implant sites was confirmed, as well as their migration to the pancreas and hippocampus. The presence of undifferentiated MSCs in our IPC preparation may explain the peripheral reduction in AGEs and subsequent cognitive impairment recovery, mediated by autophagic depuration and immunomodulation at the hippocampus, respectively. Together, these data reinforce the importance of MSCs for use in neuroprotective strategies, and highlight the logistic importance of the subcutaneous route for their administration.
Collapse
Affiliation(s)
- Krista Minéia Wartchow
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Leticia Rodrigues
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Lílian Juliana Lissner
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Barbara Carolina Federhen
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Nicholas Guerini Selistre
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Aline Moreira
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil
| | - Carlos-Alberto Gonçalves
- Federal University of Rio Grande do Sul (UFRGS), Biochemistry Post-Graduate Program, Porto Alegre, Brazil.
| | - Patrícia Sesterheim
- Institute of Cardiology of Rio Grande do Sul, Experimental Center, Porto Alegre, Brazil
| |
Collapse
|
15
|
Abstract
There are vast literatures on the neural effects of alcohol and the neural effects of exercise. Simply put, exercise is associated with brain health, alcohol is not, and the mechanisms by which exercise benefits the brain directly counteract the mechanisms by which alcohol damages it. Although a degree of brain recovery naturally occurs upon cessation of alcohol consumption, effective treatments for alcohol-induced brain damage are badly needed, and exercise is an excellent candidate from a mechanistic standpoint. In this chapter, we cover the small but growing literature on the interactive neural effects of alcohol and exercise, and the capacity of exercise to repair alcohol-induced brain damage. Increasingly, exercise is being used as a component of treatment for alcohol use disorders (AUD), not because it reverses alcohol-induced brain damage, but because it represents a rewarding, alcohol-free activity that could reduce alcohol cravings and improve comorbid conditions such as anxiety and depression. It is important to bear in mind, however, that multiple studies attest to a counterintuitive positive relationship between alcohol intake and exercise. We therefore conclude with cautionary notes regarding the use of exercise to repair the brain after alcohol damage.
Collapse
|
16
|
Yu L, Chen Y, Xu Y, He T, Wei Y, He R. D-ribose is elevated in T1DM patients and can be involved in the onset of encephalopathy. Aging (Albany NY) 2019; 11:4943-4969. [PMID: 31307014 PMCID: PMC6682534 DOI: 10.18632/aging.102089] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/04/2019] [Indexed: 12/25/2022]
Abstract
Although many mechanisms have been proposed for diabetic encephalopathy in type 2 diabetes mellitus (T2DM), the risk factors for cognitive impairment in type 1 diabetes mellitus (T1DM) are less clear. Here, we show that streptozotocin (STZ)-induced T1DM rats showed cognitive impairment in both Y maze and Morris water maze assays, accompanied with D-ribose was significantly increased in blood and urine, in addition to D-glucose. Furthermore, advanced glycation end products (AGE), Tau hyperphosphorylation and neuronal death in the hippocampal CA4/DG region were detected in T1DM rats. The expression and activity of transketolase (TKT), an important enzyme in the pentose shunt, were decreased in the brain, indicating that TKT may be involved in D-ribose metabolism in T1DM. Support for these change was demonstrated by the activation of TKT with benfotiamine (BTMP) treatment. Decreased D-ribose levels but not D-glucose levels; markedly reduced AGE accumulation, Tau hyperphosphorylation, and neuronal death; and improved cognitive ability in T1DM rats were shown after BTMP administration. In clinical investigation, T1DM patients had high D-ribose levels in both urine and serum. Our work suggests that D-ribose is involved in the cognitive impairment in T1DM and may provide a potentially novel target for treating diabetic encephalopathy.
Collapse
Affiliation(s)
- Lexiang Yu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yao Chen
- School of Basic Medical Sciences of Southwest Medical University, Luzhou 646000, China
| | - Yong Xu
- Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Tao He
- School of Basic Medical Sciences of Southwest Medical University, Luzhou 646000, China
| | - Yan Wei
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongqiao He
- School of Basic Medical Sciences of Southwest Medical University, Luzhou 646000, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100101, China
- Alzheimer’s Disease Center, Beijing Institute for Brain Disorders, Center for Brain Disorders Research, Capital Medical University, Beijing 100069, China
| |
Collapse
|
17
|
Shalimova A, Graff B, Gąsecki D, Wolf J, Sabisz A, Szurowska E, Jodzio K, Narkiewicz K. Cognitive Dysfunction in Type 1 Diabetes Mellitus. J Clin Endocrinol Metab 2019; 104:2239-2249. [PMID: 30657922 DOI: 10.1210/jc.2018-01315] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 01/15/2019] [Indexed: 02/02/2023]
Abstract
CONTEXT We have summarized key studies assessing the epidemiology, mechanisms, and consequences of cognitive dysfunction (CD) in type 1 diabetes. EVIDENCE SYNTHESIS In a number of studies, the severity of CD in type 1 diabetes was affected by the age of onset and duration, and the presence of proliferative retinopathy and autonomic neuropathy. Diabetes-related CD has been observed, not only in adults, but also in children and adolescents. Most neuroimaging studies of patients with type 1 diabetes did not show any differences in whole brain volumes; however, they did reveal selective deficits in gray matter volume or density within the frontal, posterior, and temporal cortex and subcortical gray matter. Studies of middle-age adults with long-standing type 1 diabetes using diffusion tensor imaging have demonstrated partial lesions in the white matter and decreased fractional anisotropy in posterior brain regions. The mechanisms underlying diabetes-related CD are very complex and include factors related to diabetes per se and to diabetes-related cardiovascular disease and microvascular dysfunction, including chronic hyperglycemia, hypoglycemia, macro- and microvascular disease, and increased inflammatory cytokine expression. These mechanisms might contribute to the development and progression of both vascular dementia and Alzheimer disease. CONCLUSIONS Higher rates of CD and faster progression in type 1 diabetes can be explained by both the direct effects of altered glucose metabolism on the brain and diabetes-related cardiovascular disease. Because the presence and progression of CD significantly worsens the quality of life of patients with diabetes, further multidisciplinary studies incorporating the recent progress in both neuroimaging and type 1 diabetes management are warranted to investigate this problem.
Collapse
Affiliation(s)
- Anna Shalimova
- Department of Hypertension and Diabetology, Medical University of Gdańsk, Faculty of Medicine, Gdańsk, Poland
| | - Beata Graff
- Department of Hypertension and Diabetology, Medical University of Gdańsk, Faculty of Medicine, Gdańsk, Poland
| | - Dariusz Gąsecki
- Department of Adult Neurology, Medical University of Gdańsk, Faculty of Medicine, Gdańsk, Poland
| | - Jacek Wolf
- Department of Hypertension and Diabetology, Medical University of Gdańsk, Faculty of Medicine, Gdańsk, Poland
| | - Agnieszka Sabisz
- Department of Radiology, Medical University of Gdańsk, Faculty of Medicine, Gdańsk, Poland
| | - Edyta Szurowska
- Department of Radiology, Medical University of Gdańsk, Faculty of Medicine, Gdańsk, Poland
| | - Krzysztof Jodzio
- Institute of Psychology, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Krzysztof Narkiewicz
- Department of Hypertension and Diabetology, Medical University of Gdańsk, Faculty of Medicine, Gdańsk, Poland
| |
Collapse
|
18
|
Li G, Zeng L, Cheng H, Han J, Zhang X, Xie H. Acupuncture Administration Improves Cognitive Functions and Alleviates Inflammation and Nuclear Damage by Regulating Phosphatidylinositol 3 Kinase (PI3K)/Phosphoinositol-Dependent Kinase 1 (PDK1)/Novel Protein Kinase C (nPKC)/Rac 1 Signaling Pathway in Senescence-Accelerated Prone 8 (SAM-P8) Mice. Med Sci Monit 2019; 25:4082-4093. [PMID: 31152645 PMCID: PMC6559003 DOI: 10.12659/msm.913858] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is an age-associated neurodegenerative disorder. This study aimed to investigate effects of acupuncture administration on cognitive function and associated mechanisms. MATERIAL AND METHODS Senescence-accelerated prone 8 (SAM-P8) mice were randomly divided into 3 groups: the SAM-P8 group (P8-CN), the SAM-P8 administrating with acupuncture (P8-Acup) group, and the SAM-P8 administrating without acupuncture (P8-Sham) group. Morris water maze test was conducted to evaluate cognitive functions (memory and learning ability). PDK1, nPKC, and Rac1 inhibitors were used to treat SAM-P8 mice. Transmission electron microscope analysis was used to examine nuclear damage hippocampal tissues. Hematoxylin and eosin (H&E) staining was employed to evaluate inflammation. Western blot was used to detect PI3K, PDK1, nPKC, and Rac 1 expression in hippocampal tissues. RESULTS Acupuncture administration significantly reduced PI3K, PDK1, nPKC, and Rac 1 levels compared to P8-CN group (P<0.05). Both acupuncture and enzyme inhibitors (NSC23766, Rottlerin, OSU03012) significantly improved cognitive functions, reduced inflammation, and alleviated nuclear damages of SAM-P8 mice compared to P8-CN group (P<0.05). Acupuncture significantly enhanced effects of inhibitors on inflammation and nuclear damages compared to inhibitor treatment single (P<0.05). Acupuncture significantly enhanced down-regulative effects of OSU03012 on PI3K and PDK1 levels, increased down-regulative effects of Rottlerin on nPKC and Rac 1 levels and enhanced effects of Rottlerin on Rac 1 compared to P8-CN group (P<0.05). CONCLUSIONS Acupuncture administration improved cognitive functions and alleviated inflammatory response and nuclear damage of SAM-P8 mice, by downregulating PI3K/PDK1/nPKC/Rac 1 signaling pathway. This study could provide potential insight for treating cognitive dysfunction and aging of AD patients.
Collapse
Affiliation(s)
- Guomin Li
- Department of Rehabilitation Medicine, The First People's Hospital of Chenzhou, Chenzhou, Hunan, China (mainland)
| | - Lirong Zeng
- Department of Rehabilitation Medicine, The First People's Hospital of Chenzhou, Chenzhou, Hunan, China (mainland)
| | - Haiyan Cheng
- Department of Traditional Chinese Medicine, Hubei Jianghan Oilfield General Hospital, Jianghan, Hubei, China (mainland)
| | - Jingxian Han
- Acupuncture and Moxibustion Research Institute, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China (mainland)
| | - Xuezhu Zhang
- Acupuncture and Moxibustion Research Institute, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China (mainland)
| | - Hui Xie
- Department of Rehabilitation Medicine, The First People's Hospital of Chenzhou, Chenzhou, Hunan, China (mainland)
| |
Collapse
|
19
|
Mechanisms of Aerobic Exercise Upregulating the Expression of Hippocampal Synaptic Plasticity-Associated Proteins in Diabetic Rats. Neural Plast 2019; 2019:7920540. [PMID: 30911292 PMCID: PMC6398012 DOI: 10.1155/2019/7920540] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/21/2018] [Accepted: 11/28/2018] [Indexed: 12/15/2022] Open
Abstract
We investigated the effects of aerobic exercise on the expression of hippocampal synaptic plasticity-associated proteins in rats with type 2 diabetes and their possible mechanisms. A type 2 diabetes rat model was established with 8 weeks of high-fat diet combined with a single intraperitoneal injection of streptozotocin (STZ). Then, a 4-week aerobic exercise intervention was conducted. Memory performance was measured with Y maze tests. The expression and activity of synaptic plasticity-associated proteins and of proteins involved in the PI3K/Akt/mTOR, AMPK/Sirt1, and NFκB/NLRP3/IL-1β signaling pathways were evaluated by western blot. Our results show that aerobic exercise promotes the expression of synaptic plasticity-associated proteins in the hippocampus of diabetic rats. Aerobic exercise also activates the PI3K/Akt/mTOR and AMPK/Sirt1 signaling pathways and inhibits the NFκB/NLRP3/IL-1β signaling pathway in the hippocampus of diabetic rats. Therefore, modulating the PI3K/Akt/mTOR, AMPK/Sirt1, and NFκB/NLRP3/IL-1β signaling pathways is probably the mechanism of aerobic exercise upregulating the expression of hippocampal synaptic plasticity-associated proteins in diabetic rats.
Collapse
|
20
|
Jahangiri Z, Gholamnezhad Z, Hosseini M. Neuroprotective effects of exercise in rodent models of memory deficit and Alzheimer's. Metab Brain Dis 2019; 34:21-37. [PMID: 30443769 DOI: 10.1007/s11011-018-0343-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/08/2018] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is a fastest growing neurodegenerative condition with no standard treatment. There are growing evidence about the beneficial effects of exercise in brain health promotion and slowing the cognitive decline. The aim of this study was to review the protective mechanisms of treadmill exercise in different models of rodent memory deficits. Online literature database, including PubMed-Medline, Scopus, Google scholar were searched from 2003 till 2017. Original article with English language were chosen according to following key words in the title: (exercise OR physical activity) AND (memory OR learning). Ninety studies were finally included in the qualitative synthesis. The results of these studies showed the protective effects of exercise on AD induced neurodegerative and neuroinflammatory process. Neuroperotective effects of exercise on the hippocampus seem to be increasing in immediate-early gene c-Fos expression in dentate gyrus; enhancing the Wnt3 expression and inhibiting glycogen synthase kinase-3β expression; increasing the 5-bro-mo-2'-deoxyridine-positive and doublecortin-positive cells (dentate gyrus); increasing the level of astrocytes glial fibrillary acidic protein and decrease in S100B protein, increasing in blood brain barrier integrity; prevention of oxidative stress injury, inducing morphological changes in astrocytes in the stratum radiatum of cornu ammonis 1(CA1) area; increase in cell proliferation and suppress apoptosis in dentate gyrus; increase in brain-derived neurotrophic factor and tropomyosin receptor kinase B expressions; enhancing the glycogen levels and normalizing the monocarboxylate transporter 2 expression.
Collapse
Affiliation(s)
- Zahra Jahangiri
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Gholamnezhad
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran.
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| |
Collapse
|
21
|
Stevenson ME, Lensmire NA, Swain RA. Astrocytes and radial glia-like cells, but not neurons, display a nonapoptotic increase in caspase-3 expression following exercise. Brain Behav 2018; 8:e01110. [PMID: 30240148 PMCID: PMC6192401 DOI: 10.1002/brb3.1110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/18/2018] [Accepted: 08/05/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Exercise induces plasticity in the hippocampus, which includes increases in neurogenesis, the proliferation of new neurons, and angiogenesis, the sprouting of new capillaries from preexisting blood vessels. Following exercise, astrocytes also undergo morphological changes that parallel the events occurring in the neurovascular system. Interestingly, there have also been reports of apoptosis in the hippocampus following aerobic exercise. This experiment aimed to identify which population of hippocampal cells undergoes apoptosis after an acute bout of exercise. METHODS Cleaved caspase-3, a terminal protein in the apoptotic cascade, was initially used to identify apoptotic cells in the hippocampus after rats completed an acute bout of exercise. Next, the proportion of immature neurons, adult neurons, astrocytes, or radial glia-like cells expressing cleaved caspase-3 was quantified. TUNEL staining was completed as a second measure of apoptosis. RESULTS Following exercise, cleaved caspase-3 expression was increased in the CA1 and DG regions of the hippocampus. Cleaved caspase-3 was not highly expressed in neuronal populations, and expression was not increased in these cells postexercise. Instead, cleaved caspase-3 was predominantly expressed in astrocytes. Following exercise, there was an increased number of cleaved caspase-3 positive astrocytes in DG and CA1, and cleaved caspase-3 positive radial glia-like cells located in the subgranular zone. To determine whether cleaved caspase-3 expression in these glial cells was associated with apoptosis, a TUNEL assay was completed. TUNEL staining was negligible in all groups and did not mirror the pattern of caspase-3 labeling. CONCLUSIONS Cleaved caspase-3 expression was detected largely in non-neuronal cell populations, and the pattern of cleaved caspase-3 expression did not match that of TUNEL. This suggests that after exercise, cleaved caspase-3 expression may serve a nonapoptotic role in these hippocampal astrocytes and radial glia-like cells. It will be important to identify the function of exercise-induced cleaved caspase-3 expression in the future experiments.
Collapse
Affiliation(s)
| | - Nicole A. Lensmire
- Department of PsychologyUniversity of Wisconsin‐MilwaukeeMilwaukeeWisconsin
| | - Rodney A. Swain
- Department of PsychologyUniversity of Wisconsin‐MilwaukeeMilwaukeeWisconsin
| |
Collapse
|
22
|
Zarrinkalam E, Ranjbar K, Salehi I, Kheiripour N, Komaki A. Resistance training and hawthorn extract ameliorate cognitive deficits in streptozotocin-induced diabetic rats. Biomed Pharmacother 2017; 97:503-510. [PMID: 29091901 DOI: 10.1016/j.biopha.2017.10.138] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 10/17/2017] [Accepted: 10/24/2017] [Indexed: 10/18/2022] Open
Abstract
It has been shown that diabetic rats display cognitive impairment. The aim of this study was to investigate the effects of resistance training and natural antioxidants on learning and memory in type 1 diabetic rats. For this purpose, fifty male Wistar rats were randomly divided into five groups: (i) Control (Con, n=10), (ii) Diabetic (D, n=10), (iii) Diabetic+Resistance training (DRT, n=10), (iv) Diabetic+natural antioxidants (DHE, n=10), and (v) Diabetic+Resistance training+ natural antioxidants (DRH, n=10). Climbing the ladder for a period of 5days/week for 10 consecutive weeks was considered as the resistance training model in our study. Natural antioxidants (100mg/kg per day) were administered to natural antioxidant groups for a period of 10 weeks. Moreover, spatial and passive avoidance learning and memory function were evaluated by Morris Water Maze (MWM) and shuttle box tests. The results showed that, mean of total escape latency decreased 25% (P<0.0001) in the DRH group compared with the D group in MWM. The percentage of time spent in the target quadrant identically decreased (34%) in the D and DHE groups compared with the Con group (p=0.001). In this regard, time spent in the dark Compartment (TDC) respectively rose 86% and 95% in the D and DHE groups compared with the Con group (p<0.05), and decreased 88% in the DRT and DRH groups compared with the D group in the shuttle box test (p<0.05). Furthermore, we noticed that total antioxidant capacity increase and lipid peroxidation decrease in response to the treatments in the diabetic rats as well. Therefore, the current study indicated that exercise training and natural antioxidants synergistically ameliorated learning and memory deficits in type 1 diabetic rats via reducing oxidative stress. Hence, it may propose a potential role of resistance training and natural antioxidants as an adjuvant therapy for the prevention and treatment of diabetic complications.
Collapse
Affiliation(s)
- Ebrahim Zarrinkalam
- Department of Physical Education, Faculty of Physical Education and Sport Sciences, Islamic Azad University, Hamedan Branch, Hamedan, Iran
| | - Kamal Ranjbar
- Department of Physical Education and Sport Science, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nejat Kheiripour
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
23
|
Diabetes-Induced Dysfunction of Mitochondria and Stem Cells in Skeletal Muscle and the Nervous System. Int J Mol Sci 2017; 18:ijms18102147. [PMID: 29036909 PMCID: PMC5666829 DOI: 10.3390/ijms18102147] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/11/2017] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus is one of the most common metabolic diseases spread all over the world, which results in hyperglycemia caused by the breakdown of insulin secretion or insulin action or both. Diabetes has been reported to disrupt the functions and dynamics of mitochondria, which play a fundamental role in regulating metabolic pathways and are crucial to maintain appropriate energy balance. Similar to mitochondria, the functions and the abilities of stem cells are attenuated under diabetic condition in several tissues. In recent years, several studies have suggested that the regulation of mitochondria functions and dynamics is critical for the precise differentiation of stem cells. Importantly, physical exercise is very useful for preventing the diabetic alteration by improving the functions of both mitochondria and stem cells. In the present review, we provide an overview of the diabetic alterations of mitochondria and stem cells and the preventive effects of physical exercise on diabetes, focused on skeletal muscle and the nervous system. We propose physical exercise as a countermeasure for the dysfunction of mitochondria and stem cells in several target tissues under diabetes complication and to improve the physiological function of patients with diabetes, resulting in their quality of life being maintained.
Collapse
|
24
|
Zhang Y, Hu W, Zhang B, Yin Y, Zhang J, Huang D, Huang R, Li W, Li W. Ginsenoside Rg1 protects against neuronal degeneration induced by chronic dexamethasone treatment by inhibiting NLRP-1 inflammasomes in mice. Int J Mol Med 2017; 40:1134-1142. [PMID: 28849171 PMCID: PMC5593467 DOI: 10.3892/ijmm.2017.3092] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 07/28/2017] [Indexed: 02/06/2023] Open
Abstract
Glucocorticoids (GCs) are known to alter neuronal plasticity, impair learning and memory and play important roles in the generation and progression of Alzheimer's disease. There are no effective drug options for preventing neuronal injury induced by chronic GC exposure. Ginsenoside Rg1 (Rg1) is a steroidal saponin found in ginseng. The present study investigated the neuroprotective effect of Rg1 on neuroinflammation damage induced by chronic dexamethasone (5 mg/kg for 28 days) exposure in male mice. Our results showed that Rg1 (2 and 4 mg/kg) treatment increased spontaneous motor activity and exploratory behavior in an open field test, and increased the number of entries into the new object zone in a novel object recognition test. Moreover, Rg1 (2 and 4 mg/kg) treatment significantly alleviated neuronal degeneration and increased MAP2 expression in the frontal cortex and hippocampus. Additionally, inhibition of NLRP-1 inflammasomes was also involved in the mechanisms underlying the effect of Rg1 on GC-induced neuronal injury. We found that Rg1 (2 and 4 mg/kg) treatment increased the expression of glucocorticosteroid receptor and decreased the expression of NLRP-1, ASC, caspase-1, caspase-5, IL-1β and IL-18 in the hippocampus in male mice. The present study indicates that Rg1 may have protective effects on neuroinflammation and neuronal injury induced by chronic GC exposure.
Collapse
Affiliation(s)
- Yaodong Zhang
- Department of Pharmacology, Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wen Hu
- Department of Pharmacology, Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Biqiong Zhang
- Department of Pharmacology, Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yanyan Yin
- Department of Pharmacology, Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Junyan Zhang
- Department of Pharmacology, Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Dake Huang
- Synthetic Laboratory of Basic Medicine College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Rongrong Huang
- Department of Pharmacology, Anhui Xinhua University, Hefei, Anhui 230088, P.R. China
| | - Weiping Li
- Department of Pharmacology, Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Weizu Li
- Department of Pharmacology, Key Laboratory of Anti‑Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
25
|
Shima T, Matsui T, Jesmin S, Okamoto M, Soya M, Inoue K, Liu YF, Torres-Aleman I, McEwen BS, Soya H. Moderate exercise ameliorates dysregulated hippocampal glycometabolism and memory function in a rat model of type 2 diabetes. Diabetologia 2017; 60:597-606. [PMID: 27928614 DOI: 10.1007/s00125-016-4164-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/03/2016] [Indexed: 12/15/2022]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes is likely to be an independent risk factor for hippocampal-based memory dysfunction, although this complication has yet to be investigated in detail. As dysregulated glycometabolism in peripheral tissues is a key symptom of type 2 diabetes, it is hypothesised that diabetes-mediated memory dysfunction is also caused by hippocampal glycometabolic dysfunction. If so, such dysfunction should also be ameliorated with moderate exercise by normalising hippocampal glycometabolism, since 4 weeks of moderate exercise enhances memory function and local hippocampal glycogen levels in normal animals. METHODS The hippocampal glycometabolism in OLETF rats (model of human type 2 diabetes) was assessed and, subsequently, the effects of exercise on memory function and hippocampal glycometabolism were investigated. RESULTS OLETF rats, which have memory dysfunction, exhibited higher levels of glycogen in the hippocampus than did control rats, and breakdown of hippocampal glycogen with a single bout of exercise remained unimpaired. However, OLETF rats expressed lower levels of hippocampal monocarboxylate transporter 2 (MCT2, a transporter for lactate to neurons). Four weeks of moderate exercise improved spatial memory accompanied by further increase in hippocampal glycogen levels and restoration of MCT2 expression independent of neurotrophic factor and clinical symptoms in OLETF rats. CONCLUSIONS/INTERPRETATION Our findings are the first to describe detailed profiles of glycometabolism in the type 2 diabetic hippocampus and to show that 4 weeks of moderate exercise improves memory dysfunction in type 2 diabetes via amelioration of dysregulated hippocampal glycometabolism. Dysregulated hippocampal lactate-transport-related glycometabolism is a possible aetiology of type-2-diabetes-mediated memory dysfunction.
Collapse
Affiliation(s)
- Takeru Shima
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8574, Japan
| | - Takashi Matsui
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8574, Japan
- Department of Sports Neuroscience, Advanced Research Initiative for Human High Performance (ARIHHP), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Cajal Institute, CSIC, Madrid, Spain
| | - Subrina Jesmin
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8574, Japan
- Department of Sports Neuroscience, Advanced Research Initiative for Human High Performance (ARIHHP), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masahiro Okamoto
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8574, Japan
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Mariko Soya
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8574, Japan
| | - Koshiro Inoue
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8574, Japan
| | - Yu-Fan Liu
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8574, Japan
| | | | - Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Hideaki Soya
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8574, Japan.
- Department of Sports Neuroscience, Advanced Research Initiative for Human High Performance (ARIHHP), University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
26
|
de Senna PN, Bagatini PB, Galland F, Bobermin L, do Nascimento PS, Nardin P, Tramontina AC, Gonçalves CA, Achaval M, Xavier LL. Physical exercise reverses spatial memory deficit and induces hippocampal astrocyte plasticity in diabetic rats. Brain Res 2017; 1655:242-251. [DOI: 10.1016/j.brainres.2016.10.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/11/2016] [Accepted: 10/26/2016] [Indexed: 12/26/2022]
|
27
|
Hardigan T, Ward R, Ergul A. Cerebrovascular complications of diabetes: focus on cognitive dysfunction. Clin Sci (Lond) 2016; 130:1807-22. [PMID: 27634842 PMCID: PMC5599301 DOI: 10.1042/cs20160397] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/11/2015] [Indexed: 01/01/2023]
Abstract
The incidence of diabetes has more than doubled in the United States in the last 30 years and the global disease rate is projected to double by 2030. Cognitive impairment has been associated with diabetes, worsening quality of life in patients. The structural and functional interaction of neurons with the surrounding vasculature is critical for proper function of the central nervous system including domains involved in learning and memory. Thus, in this review we explore cognitive impairment in patients and experimental models, focusing on links to vascular dysfunction and structural changes. Lastly, we propose a role for the innate immunity-mediated inflammation in neurovascular changes in diabetes.
Collapse
Affiliation(s)
- Trevor Hardigan
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, U.S.A
| | - Rebecca Ward
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, U.S.A
| | - Adviye Ergul
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, U.S.A. Charlie Norwood Veterans Administration Medical Center, Augusta, GA 30912, U.S.A.
| |
Collapse
|
28
|
Tatsumi K, Okuda H, Morita-Takemura S, Tanaka T, Isonishi A, Shinjo T, Terada Y, Wanaka A. Voluntary Exercise Induces Astrocytic Structural Plasticity in the Globus Pallidus. Front Cell Neurosci 2016; 10:165. [PMID: 27445692 PMCID: PMC4914586 DOI: 10.3389/fncel.2016.00165] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/07/2016] [Indexed: 12/19/2022] Open
Abstract
Changes in astrocyte morphology are primarily attributed to the fine processes where intimate connections with neurons form the tripartite synapse and participate in neurotransmission. Recent evidence has shown that neurotransmission induces dynamic synaptic remodeling, suggesting that astrocytic fine processes may adapt their morphologies to the activity in their environment. To illustrate such a neuron-glia relationship in morphological detail, we employed a double transgenic Olig2CreER/WT; ROSA26-GAP43-EGFP mice, in which Olig2-lineage cells can be visualized and traced with membrane-targeted GFP. Although Olig2-lineage cells in the adult brain usually become mature oligodendrocytes or oligodendrocyte precursor cells with NG2-proteoglycan expression, we found a population of Olig2-lineage astrocytes with bushy morphology in several brain regions. The globus pallidus (GP) preferentially contains Olig2-lineage astrocytes. Since the GP exerts pivotal motor functions in the indirect pathway of the basal ganglionic circuit, we subjected the double transgenic mice to voluntary wheel running to activate the GP and examined morphological changes of Olig2-lineage astrocytes at both the light and electron microscopic levels. The double transgenic mice were divided into three groups: control group mice were kept in a cage with a locked running wheel for 3 weeks, Runner group were allowed free access to a running wheel for 3 weeks, and the Runner-Rest group took a sedentary 3-week rest after a 3-week running period. GFP immunofluorescence analysis and immunoelectron microscopy revealed that astrocytic fine processes elaborated complex arborization in the Runner mice, and reverted to simple morphology comparable to that of the Control group in the Runner-Rest group. Our results indicated that the fine processes of the Olig2-lineage astrocytes underwent plastic changes that correlated with overall running activities, suggesting that they actively participate in motor functions.
Collapse
Affiliation(s)
- Kouko Tatsumi
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University Kashihara, Japan
| | - Hiroaki Okuda
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical UniversityKashihara, Japan; Department of Functional Anatomy, Graduate School of Medical Sciences, Kanazawa UniversityKanazawa, Japan
| | - Shoko Morita-Takemura
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University Kashihara, Japan
| | - Tatsuhide Tanaka
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University Kashihara, Japan
| | - Ayami Isonishi
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University Kashihara, Japan
| | - Takeaki Shinjo
- Department of Anesthesiology, Faculty of Medicine, Nara Medical University Kashihara, Japan
| | - Yuki Terada
- Department of Anesthesiology, Faculty of Medicine, Nara Medical University Kashihara, Japan
| | - Akio Wanaka
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University Kashihara, Japan
| |
Collapse
|
29
|
Nardin P, Zanotto C, Hansen F, Batassini C, Gasparin MS, Sesterheim P, Gonçalves CA. Peripheral Levels of AGEs and Astrocyte Alterations in the Hippocampus of STZ-Diabetic Rats. Neurochem Res 2016; 41:2006-16. [PMID: 27084774 DOI: 10.1007/s11064-016-1912-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 12/25/2022]
Abstract
Diabetic patients and streptozotocin (STZ)-induced diabetes mellitus (DM) models exhibit signals of brain dysfunction, evidenced by neuronal damage and memory impairment. Astrocytes surrounding capillaries and synapses modulate many brain activities that are connected to neuronal function, such as nutrient flux and glutamatergic neurotransmission. As such, cognitive changes observed in diabetic patients and experimental models could be related to astroglial alterations. Herein, we investigate specific astrocyte changes in the rat hippocampus in a model of DM induced by STZ, particularly looking at glial fibrillary acidic protein (GFAP), S100B protein and glutamate uptake, as well as the content of advanced glycated end products (AGEs) in serum and cerebrospinal fluid (CSF), as a consequence of elevated hyperglycemia and the content of receptor for AGEs in the hippocampus. We found clear peripheral alterations, including hyperglycemia, low levels of proinsulin C-peptide, elevated levels of AGEs in serum and CSF, as well as an increase in RAGE in hippocampal tissue. We found specific astroglial abnormalities in this brain region, such as reduced S100B content, reduced glutamate uptake and increased S100B secretion, which were not accompanied by changes in GFAP. We also observed an increase in the glucose transporter, GLUT-1. All these changes may result from RAGE-induced inflammation; these astroglial alterations together with the reduced content of GluN1, a subunit of the NMDA receptor, in the hippocampus may be associated with the impairment of glutamatergic communication in diabetic rats. These findings contribute to understanding the cognitive deficits in diabetic patients and experimental models.
Collapse
Affiliation(s)
- Patrícia Nardin
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
| | - Caroline Zanotto
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Fernanda Hansen
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Cristiane Batassini
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Manuela Sangalli Gasparin
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Patrícia Sesterheim
- Centro de Desenvolvimento Científico e Tecnológico, Fundação Estadual de Produção e Pesquisa em Saúde, Porto Alegre, Brazil
| | - Carlos-Alberto Gonçalves
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| |
Collapse
|
30
|
Zanotto C, Simão F, Gasparin MS, Biasibetti R, Tortorelli LS, Nardin P, Gonçalves CA. Exendin-4 Reverses Biochemical and Functional Alterations in the Blood-Brain and Blood-CSF Barriers in Diabetic Rats. Mol Neurobiol 2016; 54:2154-2166. [PMID: 26927659 DOI: 10.1007/s12035-016-9798-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/16/2016] [Indexed: 01/08/2023]
Abstract
Diabetes mellitus (DM) is a metabolic disorder associated with micro- and macrovascular alterations that contribute to the cognitive impairment observed in diabetic patients. Signs of breakdown of the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) have been found in patients and animal models of DM. Breakdown of the BBB and BCSFB can lead to disruptions in cerebral homeostasis and eventually neural dysfunction and degeneration. However, our understanding of the biochemistry underlying barrier protein modifications is incomplete. Herein, we evaluated changes in the levels of specific proteins in the BBB (occludin, claudin-5, ZO-1, and aquaporin-4) and BCSFB (claudin-2 and aquaporin-1) in the hippocampus of diabetic rats, and we also investigated the functional alterations in these barriers. In addition, we evaluated the ability of exendin-4 (EX-4), a glucagon-like peptide-1 agonist that can cross the BBB to reverse the functional and biochemical modifications observed in these animals. We observed a decrease in BBB proteins (except ZO-1) in diabetic rats, whereas the EX-4 treatment recovered the occludin and aquaporin-4 levels. Similarly, we observed a decrease in BCSFB proteins in diabetic rats, whereas EX-4 reversed such changes. EX-4 also reversed alterations in the permeability of the BBB and BCSFB in diabetic rats. Additionally, altered cognitive parameters in diabetic rats were improved by EX-4. These data further our understanding of the alterations in the central nervous system caused by DM, particularly changes in the proteins and permeability of the brain barriers, as well as cognitive dysfunction. Furthermore, these data suggest a role for EX-4 in therapeutic strategies for cognitive dysfunction in DM.
Collapse
Affiliation(s)
- Caroline Zanotto
- Biochemistry Department, Basic Sciences Institute of Health, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fabrício Simão
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Manuela Sangalli Gasparin
- Biochemistry Department, Basic Sciences Institute of Health, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Regina Biasibetti
- Biochemistry Department, Basic Sciences Institute of Health, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Lucas Silva Tortorelli
- Biochemistry Department, Basic Sciences Institute of Health, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Nardin
- Biochemistry Department, Basic Sciences Institute of Health, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| | - Carlos-Alberto Gonçalves
- Biochemistry Department, Basic Sciences Institute of Health, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
31
|
Hu W, Zhang Y, Wu W, Yin Y, Huang D, Wang Y, Li W, Li W. Chronic glucocorticoids exposure enhances neurodegeneration in the frontal cortex and hippocampus via NLRP-1 inflammasome activation in male mice. Brain Behav Immun 2016; 52:58-70. [PMID: 26434621 DOI: 10.1016/j.bbi.2015.09.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 09/09/2015] [Accepted: 09/30/2015] [Indexed: 12/18/2022] Open
Abstract
Neuroinflammation plays an important role in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD) and depression. Chronic glucocorticoids (GCs) exposure has deleterious effects on the structure and function of neurons and is associated with development and progression of AD. However, little is known about the proinflammatory effects of chronic GCs exposure on neurodegeneration in brain. Therefore, the aim of this study was to evaluate the effects of chronic dexamethasone (DEX) treatment (5mg/kg, s.c. for 7, 14, 21 and 28 days) on behavior, neurodegeneration and neuroinflammatory parameters of nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 1 (NLRP-1) inflammasome in male mice. The results showed that DEX treatment for 21 and 28 days significantly reduced the spontaneous motor activity and exploratory behavior of the mice. In addition, these mice showed significant neurodegeneration and a decrease of microtubule-associated protein 2 (MAP2) in the frontal cortex and hippocampus CA3. DEX treatment for 7, 14, 21 and 28 days significantly decreased the mRNA and protein expression of glucocorticoid receptor (GR). Moreover, DEX treatment for 21 and 28 days significantly increased the proteins expression of NLRP-1, Caspase-1, Caspase-5, apoptosis associated speck-like protein (ASC), nuclear factor-κB (NF-κB), p-NF-κB, interleukin-1β (IL-1β), IL-18 and IL-6 in the frontal cortex and hippocampus brain tissue. DEX treatment for 28 days also significantly increased the mRNA expression levels of NLRP-1, Caspase-1, ASC and IL-1β. These results suggest that chronic GCs exposure may increase brain inflammation via NLRP-1 inflammasome activation and induce neurodegeneration.
Collapse
Affiliation(s)
- Wen Hu
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China
| | - Yaodong Zhang
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China
| | - Wenning Wu
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China
| | - Yanyan Yin
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China
| | - Dake Huang
- Synthetic Laboratory of Basic Medicine College, Anhui Medical University, Hefei 230032, PR China
| | - Yuchan Wang
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China
| | - Weiping Li
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China
| | - Weizu Li
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
32
|
Redivo DD, Schreiber AK, Adami ER, Ribeiro DE, Joca SR, Zanoveli JM, Cunha JM. Effect of omega-3 polyunsaturated fatty acid treatment over mechanical allodynia and depressive-like behavior associated with experimental diabetes. Behav Brain Res 2016; 298:57-64. [DOI: 10.1016/j.bbr.2015.10.058] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/27/2015] [Accepted: 10/31/2015] [Indexed: 12/24/2022]
|
33
|
Brambilla Bagatini P, Xavier LL, Neves L, Saur L, Barbosa S, Baptista PPA, Augustin OA, Nunes de Senna P, Mestriner RG, Souto AA, Achaval M. Resveratrol prevents akinesia and restores neuronal tyrosine hydroxylase immunoreactivity in the substantia nigra pars compacta of diabetic rats. Brain Res 2015; 1592:101-12. [PMID: 25446006 DOI: 10.1016/j.brainres.2014.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/03/2014] [Accepted: 10/05/2014] [Indexed: 12/25/2022]
Abstract
This study evaluated the effects of resveratrol on locomotor behaviors, neuronal and glial densities, and tyrosine hydroxylase immunoreactivity in the substantia nigra pars compacta of rats with streptozotocin-induced diabetes. Animals were divided into four groups: non-diabetic rats treated with saline (SAL), non-diabetic rats treated with resveratrol (RSV), diabetic rats treated with saline (DM) and diabetic rats treated with resveratrol (DM+RSV). The animals received oral gavage with resveratrol (20 mg/kg) for 35 days. The open field test and the bar test were performed to evaluate bradykinesia and akinesia, respectively. The Nissl-stained neuronal and glial densities and the dopaminergic neuronal density were estimated using planar morphometry. Tyrosine hydroxylase immunoreactivity was evaluated using regional and cellular optical densitometry. In relation to the locomotor behaviors, it was observed that the DM group developed akinesia, which was attenuated by resveratrol in the DM+RSV group, while the DM and DM+RSV groups showed bradykinesia. Our main morpho-physiological results demonstrated: a decrease in the cellular tyrosine hydroxylase immunoreactivity in the DM group, which was attenuated by resveratrol in the DM+RSV group; a higher neuronal density in the RSV group, when compared to the DM and DM+RSV groups; an increase in the glial density in the DM group, which was also reversed by resveratrol in the DM+RSV group. Resveratrol treatment prevents akinesia development and restores neuronal tyrosine hydroxylase immunoreactivity and glial density in the substantia nigra pars compacta of diabetic rats, suggesting that this polyphenol could be a potential therapeutic option against diabetes-induced nigrostriatal dysfunctions.
Collapse
|
34
|
de Senna PN, Xavier LL, Bagatini PB, Saur L, Galland F, Zanotto C, Bernardi C, Nardin P, Gonçalves CA, Achaval M. Physical training improves non-spatial memory, locomotor skills and the blood brain barrier in diabetic rats. Brain Res 2015; 1618:75-82. [PMID: 26032744 DOI: 10.1016/j.brainres.2015.05.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/19/2015] [Accepted: 05/22/2015] [Indexed: 10/23/2022]
Abstract
Type 1 diabetes mellitus (T1DM) progressively affects cognitive domains, increases blood-brain barrier (BBB) permeability and promotes neurovascular impairment in specific brain areas. Physical exercise, on the other hand, has beneficial effects on brain functions, improving learning and memory. This study investigated the effects of treadmill training on cognitive and motor behavior, and on the expression of proteins related to BBB integrity, such as claudin-5 and aquaporin-4 (AQP4) in the hippocampus and striatum in diabetic rats. For this study, 60 Wistar rats were divided into four groups (n=15 per group): non-trained control (NTC), trained control (TC), non-trained diabetic (NTD), trained diabetic (TD). After diabetic induction of 30 days by streptozotocin injection, the exercise groups were submitted to 5 weeks of running training. After that, all groups were assessed in a novel object-recognition task (NOR) and the rotarod test. Additionally, claudin-5 and AQP4 levels were measured using biochemical assays. The results showed that exercise enhanced NOR task performance and rotarod ability in the TC and TD animals. Diabetes produced a decrease in claudin-5 expression in the hippocampus and striatum and reduced AQP4 in the hippocampus. Exercise preserved the claudin-5 content in the striatum of TD rats, but not in the hippocampus. The reduction of AQP4 levels produced by diabetes was not reversed by exercise. We conclude that exercise improves short-term memory retention, enhances motor performance in diabetic rats and affects important structural components of the striatal BBB. The results obtained could enhance the knowledge regarding the neurochemical benefits of exercise in diabetes.
Collapse
Affiliation(s)
- Priscylla Nunes de Senna
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Biologia Celular e Tecidual, Departamento de Ciências Morfofisiológicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Léder Leal Xavier
- Laboratório de Biologia Celular e Tecidual, Departamento de Ciências Morfofisiológicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pamela Brambilla Bagatini
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lisiani Saur
- Laboratório de Biologia Celular e Tecidual, Departamento de Ciências Morfofisiológicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fabiana Galland
- Departamento de Bioquímica, Instituto de Ciências Básica da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Caroline Zanotto
- Departamento de Bioquímica, Instituto de Ciências Básica da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Caren Bernardi
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Patrícia Nardin
- Departamento de Bioquímica, Instituto de Ciências Básica da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos Alberto Gonçalves
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básica da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Matilde Achaval
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
35
|
Diabetes and stem cell function. BIOMED RESEARCH INTERNATIONAL 2015; 2015:592915. [PMID: 26075247 PMCID: PMC4449886 DOI: 10.1155/2015/592915] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/01/2014] [Indexed: 12/30/2022]
Abstract
Diabetes mellitus is one of the most common serious metabolic diseases that results in hyperglycemia due to defects of insulin secretion or insulin action or both. The present review focuses on the alterations to the diabetic neuronal tissues and skeletal muscle, including stem cells in both tissues, and the preventive effects of physical activity on diabetes. Diabetes is associated with various nervous disorders, such as cognitive deficits, depression, and Alzheimer's disease, and that may be caused by neural stem cell dysfunction. Additionally, diabetes induces skeletal muscle atrophy, the impairment of energy metabolism, and muscle weakness. Similar to neural stem cells, the proliferation and differentiation are attenuated in skeletal muscle stem cells, termed satellite cells. However, physical activity is very useful for preventing the diabetic alteration to the neuronal tissues and skeletal muscle. Physical activity improves neurogenic capacity of neural stem cells and the proliferative and differentiative abilities of satellite cells. The present review proposes physical activity as a useful measure for the patients in diabetes to improve the physiological functions and to maintain their quality of life. It further discusses the use of stem cell-based approaches in the context of diabetes treatment.
Collapse
|
36
|
Etemad A, Sheikhzadeh F, Asl NA. Evaluation of brain-derived neurotrophic factor in diabetic rats. Neurol Res 2014; 37:217-22. [DOI: 10.1179/1743132814y.0000000428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
37
|
Wang X, Zhang M, Feng R, Li WB, Ren SQ, Zhang J, Zhang F. Physical exercise training and neurovascular unit in ischemic stroke. Neuroscience 2014; 271:99-107. [PMID: 24780769 DOI: 10.1016/j.neuroscience.2014.04.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/16/2014] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
Abstract
Physical exercise could exert a neuroprotective effect in both clinical studies and animal experiments. A series of related studies have indicated that physical exercise could reduce infarct volume, alleviate neurological deficits, decrease blood-brain barrier dysfunction, promote angiogenesis in cerebral vascular system and increase the survival rate after ischemic stroke. In this review, we summarized the protective effects of physical exercise on neurovascular unit (NVU), including neurons, astrocytes, pericytes and the extracellular matrix. Furthermore, it was demonstrated that exercise training could decrease the blood-brain barrier dysfunction and promote angiogenesis in cerebral vascular system. An awareness of the exercise intervention benefits pre- and post stroke may lead more stroke patients and people with high-risk factors to accept exercise therapy for the prevention and treatment of stroke.
Collapse
Affiliation(s)
- X Wang
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - M Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - R Feng
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - W B Li
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - S Q Ren
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - J Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - F Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China; Hebei Provincial Orthopedic Biomechanics Key Laboratory, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China.
| |
Collapse
|
38
|
Jun C, Choi Y, Lim SM, Bae S, Hong YS, Kim JE, Lyoo IK. Disturbance of the glutamatergic system in mood disorders. Exp Neurobiol 2014; 23:28-35. [PMID: 24737937 PMCID: PMC3984954 DOI: 10.5607/en.2014.23.1.28] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/24/2014] [Accepted: 02/24/2014] [Indexed: 12/11/2022] Open
Abstract
The role of glutamatergic system in the neurobiology of mood disorders draws increasing attention, as disturbance of this system is consistently implicated in mood disorders including major depressive disorder and bipolar disorder. Thus, the glutamate hypothesis of mood disorders is expected to complement and improve the prevailing monoamine hypothesis, and may indicate novel therapeutic targets. Since the contribution of astrocytes is found to be crucial not only in the modulation of the glutamatergic system but also in the maintenance of brain energy metabolism, alterations in the astrocytic function and neuroenergetic environment are suggested as the potential neurobiological underpinnings of mood disorders. In the present review, the evidence of glutamatergic abnormalities in mood disorders based on postmortem and magnetic resonance spectroscopy (MRS) studies is presented, and disrupted energy metabolism involving astrocytic dysfunction is proposed as the underlying mechanism linking altered energy metabolism, perturbations in the glutamatergic system, and pathogenesis of mood disorders.
Collapse
Affiliation(s)
- Chansoo Jun
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea. ; Ewha Brain Institute, Ewha Womans University, Seoul 120-750, Korea
| | - Yera Choi
- Ewha Brain Institute, Ewha Womans University, Seoul 120-750, Korea. ; Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences, Seoul 151-747, Korea
| | - Soo Mee Lim
- Ewha Brain Institute, Ewha Womans University, Seoul 120-750, Korea. ; Department of Radiology, Ewha Womans University College of Medicine, Seoul 158-710, Korea
| | - Sujin Bae
- Brain Institute and Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Young Sun Hong
- Ewha Brain Institute, Ewha Womans University, Seoul 120-750, Korea. ; Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul 158-710, Korea
| | - Jieun E Kim
- Ewha Brain Institute, Ewha Womans University, Seoul 120-750, Korea. ; Department of Brain and Cognitive Sciences, Ewha Womans University Graduate School, Seoul 120-750, Korea
| | - In Kyoon Lyoo
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea. ; Ewha Brain Institute, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
39
|
Piazza FV, Segabinazi E, Centenaro LA, do Nascimento PS, Achaval M, Marcuzzo S. Enriched environment induces beneficial effects on memory deficits and microglial activation in the hippocampus of type 1 diabetic rats. Metab Brain Dis 2014; 29:93-104. [PMID: 24318482 DOI: 10.1007/s11011-013-9467-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 11/07/2013] [Indexed: 12/26/2022]
Abstract
Type 1 diabetes mellitus (T1DM) has been associated with long-term complications in the central nervous system, causing brain cellular dysfunctions and cognitive deficits. On the other hand, enriched environment (EE) induces experience-dependent plasticity, especially in the hippocampus, improving the performance of animals in learning and memory tasks. Thus, our objective was to investigate the influence of the EE on memory deficits, locomotion, corticosterone levels, synaptophysin (SYP) protein immunoreactivity, cell survival and microglial activation in the dentate gyrus (DG) of T1DM rat hippocampus. Male Wistar rats (21-day-old) were exposed to EE or maintained in standard housing (controls, C) for 3 months. At adulthood, the C and EE animals were randomly divided and diabetes was induced in half of them. All the animals received 4 doses of BrdU, 24 h apart. Hippocampus-dependent spatial memory, general locomotion and serum corticosterone levels were evaluated at the end of the experiment. The animals were transcardially perfused 30 days post-BrdU administration. Our results showed that EE was able to prevent/delay the development of memory deficits caused by diabetes in rats, however it did not revert the motor impairment observed in the diabetic group. SYP immunoreactivity was increased in the enriched healthy group. The EE decreased the serum corticosterone levels in diabetic adult rats and attenuated the injurious microglial activation, though without altering the decrease of the survival cell. Thus, EE was shown to help to ameliorate cognitive comorbidities associated with T1DM, possibly by reducing hyperactivity in the hypothalamic-pituitary-adrenal axis and microglial activation in diabetic animals.
Collapse
Affiliation(s)
- Francele Valente Piazza
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP: 90050-170, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
40
|
Diegues JC, Pauli JR, Luciano E, de Almeida Leme JAC, de Moura LP, Dalia RA, de Araújo MB, Sibuya CY, de Mello MAR, Gomes RJ. Spatial memory in sedentary and trained diabetic rats: Molecular mechanisms. Hippocampus 2014; 24:703-11. [DOI: 10.1002/hipo.22261] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 01/28/2014] [Accepted: 01/31/2014] [Indexed: 12/20/2022]
Affiliation(s)
- João Carlos Diegues
- Department of Biosciences; São Paulo Federal University (UNIFESP); Santos São Paulo Brazil
| | - José Rodrigo Pauli
- Department of Physical Education; University of Campinas, UNICAMP; Limeira São Paulo Brazil
| | - Eliete Luciano
- Department of Physical Education; São Paulo State University (UNESP); Rio Claro São Paulo Brazil
| | - José Alexandre Curiacos de Almeida Leme
- Department of Physical Education; São Paulo State University (UNESP); Rio Claro São Paulo Brazil
- Department of Physical Education, Catholic University Center Unisalesiano; Lins São Paulo Brazil
| | - Leandro Pereira de Moura
- Department of Physical Education; São Paulo State University (UNESP); Rio Claro São Paulo Brazil
| | - Rodrigo Augusto Dalia
- Department of Physical Education; São Paulo State University (UNESP); Rio Claro São Paulo Brazil
| | - Michel Barbosa de Araújo
- Department of Physical Education; São Paulo State University (UNESP); Rio Claro São Paulo Brazil
| | - Clarice Yoshiko Sibuya
- Department of Physical Education; São Paulo State University (UNESP); Rio Claro São Paulo Brazil
| | | | - Ricardo José Gomes
- Department of Biosciences; São Paulo Federal University (UNIFESP); Santos São Paulo Brazil
| |
Collapse
|
41
|
Fiedorowicz A, Prokopiuk S, Zendzian-Piotrowska M, Chabowski A, Car H. Sphingolipid profiles are altered in prefrontal cortex of rats under acute hyperglycemia. Neuroscience 2013; 256:282-91. [PMID: 24161280 DOI: 10.1016/j.neuroscience.2013.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/12/2013] [Accepted: 10/10/2013] [Indexed: 12/14/2022]
Abstract
Diabetes type 1 is a common autoimmune disease manifesting by insulin deficiency and hyperglycemia, which can lead to dementia-like brain dysfunctions. The factors triggering the pathological processes in hyperglycemic brain remain unknown. We reported in this study that brain areas with different susceptibility to diabetes (prefrontal cortex (PFC), hippocampus, striatum and cerebellum) revealed differential alterations in ceramide (Cer) and sphingomyelin (SM) profiles in rats with streptozotocin-induced hyperglycemia. Employing gas-liquid chromatography, we found that level of total Cer increased significantly only in the PFC of diabetic animals, which also exhibited a broad spectrum of sphingolipid (SLs) changes, such as elevations of Cer-C16:0, -C18:0, -C20:0, -C22:0, -C18:1, -C24:1 and SM-C16:0 and -C18:1. In opposite, only minor changes were noted in other examined structures. In addition, de novo synthesis pathway could play a role in generation of Cer containing monounsaturated fatty acids in PFC during hyperglycemia. In turn, simultaneous accumulation of Cers and their SM counterparts may suggest that overproduced Cers are converted to SMs to avoid excessive Cer-mediated cytotoxicity. We conclude that broad changes in SLs compositions in PFC induced by hyperglycemia may provoke membrane rearrangements in some cell populations, which can disturb cellular signaling and cause tissue damage.
Collapse
Affiliation(s)
- A Fiedorowicz
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland
| | - S Prokopiuk
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland
| | - M Zendzian-Piotrowska
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - A Chabowski
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - H Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland.
| |
Collapse
|
42
|
Treadmill exercise induces hippocampal astroglial alterations in rats. Neural Plast 2013; 2013:709732. [PMID: 23401802 PMCID: PMC3562665 DOI: 10.1155/2013/709732] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 11/23/2012] [Accepted: 12/03/2012] [Indexed: 11/17/2022] Open
Abstract
Physical exercise effects on brain health and cognitive performance have been described. Synaptic remodeling in hippocampus induced by physical exercise has been described in animal models, but the underlying mechanisms remain poorly understood. Changes in astrocytes, the glial cells involved in synaptic remodeling, need more characterization. We investigated the effect of moderate treadmill exercise (20 min/day) for 4 weeks on some parameters of astrocytic activity in rat hippocampal slices, namely, glial fibrillary acidic protein (GFAP), glutamate uptake and glutamine synthetase (GS) activities, glutathione content, and S100B protein content and secretion, as well as brain-derived neurotrophic factor (BDNF) levels and glucose uptake activity in this tissue. Results show that moderate treadmill exercise was able to induce a decrease in GFAP content (evaluated by ELISA and immunohistochemistry) and an increase in GS activity. These changes could be mediated by corticosterone, whose levels were elevated in serum. BDNF, another putative mediator, was not altered in hippocampal tissue. Moreover, treadmill exercise caused a decrease in NO content. Our data indicate specific changes in astrocyte markers induced by physical exercise, the importance of studying astrocytes for understanding brain plasticity, as well as reinforce the relevance of physical exercise as a neuroprotective strategy.
Collapse
|
43
|
Physical exercise increases GFAP expression and induces morphological changes in hippocampal astrocytes. Brain Struct Funct 2013; 219:293-302. [PMID: 23288255 DOI: 10.1007/s00429-012-0500-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/20/2012] [Indexed: 12/12/2022]
Abstract
Physical exercise has an important influence on brain plasticity, which affects the neuron-glia interaction. Astrocytes are susceptible to plasticity, and induce and stabilize synapses, regulate the concentration of various molecules, and support neuronal energy metabolism. The aim of our study was to investigate whether physical exercise is capable of altering the morphology, density and expression of glial fibrillary acidic protein (GFAP) in astrocytes from the CA1 region of rat hippocampus. Thirteen male rats were divided in two groups: sedentary (n = 6) and exercise (n = 7). The animals in the exercise group were submitted to a protocol of daily physical exercise on a treadmill for four consecutive weeks. GFAP immunoreactivity was evaluated using optical densitometry and the morphological analyses were an adaptation of Sholl's concentric circles method. Our results show that physical exercise is capable of increasing the density of GFAP-positive astrocytes as well as the regional and cellular GFAP expression. In addition, physical exercise altered astrocytic morphology as shown by the increase observed in the degree of ramification in the lateral quadrants and in the length of the longest astrocytic processes in the central quadrants. Our data demonstrate important changes in astrocytes promoted by physical exercise, supporting the idea that these cells are involved in regulating neural activity and plasticity.
Collapse
|
44
|
Beauquis J, Pavía P, Pomilio C, Vinuesa A, Podlutskaya N, Galvan V, Saravia F. Environmental enrichment prevents astroglial pathological changes in the hippocampus of APP transgenic mice, model of Alzheimer's disease. Exp Neurol 2013; 239:28-37. [PMID: 23022919 DOI: 10.1016/j.expneurol.2012.09.009] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/04/2012] [Accepted: 09/20/2012] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that affects neurons and glial cells and leads to dementia. Growing evidence shows that glial changes may precede neuronal alterations and behavioral impairment in the progression of the disease. The modulation of these changes could be addressed as a potential therapeutic strategy. Environmental enrichment has been classically associated to effects on neuronal morphology and function but less attention has been paid to the modulation of glia. We thus characterized astroglial changes in the hippocampus of adult PDAPP-J20 transgenic mice, a model of AD, exposed for 3 months to an enriched environment, from 5 to 8 months of age. Using confocal microscopy, three-dimensional reconstruction and Sholl analysis, we evaluated the morphology of two distinct populations of astrocytes: those associated to amyloid β plaques and those that were not. We found that plaque-associated astrocytes in PDAPP-J20 mice had an increased volume and process ramification than control astrocytes. Non-plaque-associated astrocytes showed a decrease in volume and an increase in the ramification of GFAP+ processes as compared with control astrocytes. Environmental enrichment prevented these alterations and promoted a cellular morphology similar to that found in control mice. Morphological changes in non-plaque-associated astrocytes were found also at 5 months of age, before amyloid β deposition in the hippocampus. These results suggest that glial alterations have an early onset in AD pathogenesis and that the exposure to an enriched environment is an appropriate strategy to reverse them. Cellular and molecular pathways involved in this regulation could constitute potential novel therapeutic targets.
Collapse
Affiliation(s)
- Juan Beauquis
- Laboratorio de Neurobiología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
45
|
Renno WM, Al-Banaw AG, George P, Abu-Ghefreh AA, Akhtar S, Benter IF. Angiotensin-(1-7) via the mas receptor alleviates the diabetes-induced decrease in GFAP and GAP-43 immunoreactivity with concomitant reduction in the COX-2 in hippocampal formation: an immunohistochemical study. Cell Mol Neurobiol 2012; 32:1323-36. [PMID: 22711212 DOI: 10.1007/s10571-012-9858-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/05/2012] [Indexed: 12/23/2022]
Abstract
We have previously shown that chronic treatment with angiotensin-(1-7) [Ang-(1-7)] can prevent diabetes-induced cardiovascular dysfunction. However, effect of Ang-(1-7) treatment on diabetes-induced alterations in the CNS is unknown. The aim of this study was to test the hypothesis that treatment with Ang-(1-7) can produce protection against diabetes-induced CNS changes. We examined the effect of Ang-(1-7) on the number of cyclooxygenase-2 (COX-2) immunoreactive neurons and the glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes and assessed the changes in the neuronal growth-associated protein-43 (GAP-43) of the hippocampal formation in streptozotocin-induced diabetes in rats. Animals were sacrificed 30 days after induction of diabetes and/or treatment with Ang-(1-7). Ang-(1-7) treatment significantly prevented diabetes-induced decrease in the number of GFAP immunoreactive astrocytes and GAP-43 positive neurons in all hippocampal regions. Co-administration of A779, a selective Ang-(1-7) receptor antagonist, inhibited Ang-(1-7)-mediated protective effects indicating that Ang-(1-7) produces its effects through activation of receptor Mas. Further, Ang-(1-7) treatment through activation of Mas significantly prevented diabetes-induced increase in the number of the COX-2 immunolabeled neurons in all sub-regions of the hippocampus examined. These results show that Ang-(1-7) has a protective role against diabetes-induced changes in the CNS.
Collapse
Affiliation(s)
- Waleed M Renno
- Department of Anatomy, Faculty of Medicine, Kuwait University, P. O. Box 24923, Safat, 13110, Kuwait.
| | | | | | | | | | | |
Collapse
|
46
|
Severo Do Nascimento P, Lovatel GA, Ilha J, Schaan BD, Achaval M. Diabetes increases mechanical sensitivity and causes morphological abnormalities in the sural nerve that are prevented by treadmill training. Muscle Nerve 2012; 47:46-52. [DOI: 10.1002/mus.23450] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2012] [Indexed: 01/28/2023]
|
47
|
Effect of exercise on diabetes-induced oxidative stress in the rat hippocampus. IRANIAN RED CRESCENT MEDICAL JOURNAL 2012; 14:222-8. [PMID: 22754685 PMCID: PMC3385801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Accepted: 01/31/2012] [Indexed: 11/08/2022]
Abstract
BACKGROUND Oxidative stress forms the foundation for the induction of multiple cellular pathways which can lead to the complications of diabetes mellitus that the most debilitating ones are diseases of the nervous system. In this study, we evaluated whether treadmill running could alleviate oxidative stress and apoptosis rate in the hippocampus of streptozotocin- induced diabetic rats. METHODS Forty male Wistar rats were randomly divided into four groups (n=10): Control group (CR), exercised group (CE), diabetic group (DR) and diabetic-exercised group (DE). Diabetes was induced by injection of streptozotocin in male rats. All rats in the trained group run on a rodent motor-driven treadmill for eight weeks. At the end of eight weeks, hippocampi of animals were immediately removed on ice and kept frozen. The light supernatant was taken and stored at -80°C. They were used for determination of antioxidant enzymes and TBARs level. Index of apoptosis was detected by cell death detection ELISA Kit. RESULTS Levels of TBARs in DR and DE groups were significantly higher than CR group. SOD and GPx activities significantly increased in CE group and decreased in DR group. CAT activity significantly decreased in DR group versus CR group. The apoptosis rate significantly increased and decreased in DR and CE groups respectively compared to CR. CONCLUSION Exercise had beneficial effects in the diabetic exercised rats, possibly in part because of alterations in the ability to adapt to exercise-induced oxidative stress.
Collapse
|