1
|
Xiao H, Liu S, Fang B, Zhang W, Wang M, Ye J, Huang T, Cao L, Zhang X, Sun G. Panax notoginseng saponins promotes angiogenesis after cerebral ischemia-reperfusion injury. J Ginseng Res 2024; 48:592-602. [PMID: 39583172 PMCID: PMC11584196 DOI: 10.1016/j.jgr.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/27/2024] [Accepted: 08/23/2024] [Indexed: 11/26/2024] Open
Abstract
Background Ischemic stroke is a devastating disease that can result in permanent disability and death, and angiogenesis plays a critical role in the recovery and survival of patients and animal models of ischemic stroke. Panax notoginseng has been used as a key herb in the treatment of stroke diseases due to its effect in promoting blood circulation and removing blood stasis. However, the role of Panax notoginseng saponins, in promoting angiogenesis is unclear. Purpose This study is aimed to investigate the effect of Xueshuantong (XST) injection, composed of Panax notoginseng saponins in post-stroke revascularization. Method In the present study, a middle cerebral artery occlusion/reperfusion model was established in Sprague-Dawley rats, with XST and the positive drug Dl-3-n-butylphthalide (NBP) administered via intraperitoneal injection to observe vascular changes after stroke. The protective and pro-angiogenic effects of XST after stroke were demonstrated by Triphenyltetrazolium chloride staining and optical coherence tomography angiography. Subsequently, network pharmacology and molecular docking techniques, as well as in vitro experimental validation, were used to further analyze the potential mechanism by which XST promotes angiogenesis. Results The results showed that XST could reduce the cerebral infarction region in rats. And the neovascularization in the ischemic area of the rat brain significantly increased after 7 or 14 days of XST administration. Furthermore, XST could activate the vascular endothelial growth factor A (VEGFA)/vascular endothelial growth factor receptor 2 (VEGFR2), and hypoxia-inducible factor 1 (HIF-1) signaling pathways. Conclusion XST may promote post-stroke angiogenesis by affecting the HIF1-α/VEGFA/VEGFR2 signaling pathways.
Collapse
Affiliation(s)
- Haiyan Xiao
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription,Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, China
| | - Shusen Liu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription,Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, China
- Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Binyu Fang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription,Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, China
- Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Wenchao Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription,Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription,Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, China
| | - Jingxue Ye
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription,Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, China
| | - Tianxiao Huang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Li Cao
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription,Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, China
| | - Xiaojun Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription,Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, China
| |
Collapse
|
2
|
Wei G, Zhang G, Li M, Zheng Y, Zheng W, Wang B, Zhang Z, Zhang X, Huang Z, Wei T, Shi L, Chen S, Dong L. Panax notoginseng: panoramagram of phytochemical and pharmacological properties, biosynthesis, and regulation and production of ginsenosides. HORTICULTURE RESEARCH 2024; 11:uhae170. [PMID: 39135729 PMCID: PMC11317898 DOI: 10.1093/hr/uhae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/12/2024] [Indexed: 08/15/2024]
Abstract
Panax notoginseng is a famous perennial herb widely used as material for medicine and health-care food. Due to its various therapeutic effects, research work on P. notoginseng has rapidly increased in recent years, urging a comprehensive review of research progress on this important medicinal plant. Here, we summarize the latest studies on the representative bioactive constituents of P. notoginseng and their multiple pharmacological effects, like cardiovascular protection, anti-tumor, and immunomodulatory activities. More importantly, we emphasize the biosynthesis and regulation of ginsenosides, which are the main bioactive ingredients of P. notoginseng. Key enzymes and transcription factors (TFs) involved in the biosynthesis of ginsenosides are reviewed, including diverse CYP450s, UGTs, bHLH, and ERF TFs. We also construct a transcriptional regulatory network based on multi-omics data and predicted candidate TFs mediating the biosynthesis of ginsenosides. Finally, the current three major biotechnological approaches for ginsenoside production are highlighted. This review covers advances in the past decades, providing insights into quality evaluation and perspectives for the rational utilization and development of P. notoginseng resources. Modern omics technologies facilitate the exploration of the molecular mechanisms of ginsenoside biosynthesis, which is crucial to the breeding of novel P. notoginseng varieties. The identification of functional enzymes for biosynthesizing ginsenosides will lead to the formulation of potential strategies for the efficient and large-scale production of specific ginsenosides.
Collapse
Affiliation(s)
- Guangfei Wei
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| | - Guozhuang Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| | - Mengzhi Li
- Nanyang Institute of Technology, Nanyang, No.80, Changjiang Road, Wulibao Street, Wancheng District, 473000, China
| | - Yuqing Zheng
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd, No. 1 Amber Road, Xiangcheng District, Zhangzhou, Fujian, 363099, China
| | - Wenke Zheng
- Tianjin University of Traditional Chinese Medicine, No. 312, Anshan West Road, Nankai District, Tianjin, 301617, China
| | - Bo Wang
- Hubei Institute for Drug Control, No.54, Dingziqiao Road, Zhongnan Road, Wuchang District, Wuhan, 430012, China
| | - Zhaoyu Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| | - Xiao Zhang
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd, No. 1 Amber Road, Xiangcheng District, Zhangzhou, Fujian, 363099, China
| | - Ziying Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| | - Tengyun Wei
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd, No. 1 Amber Road, Xiangcheng District, Zhangzhou, Fujian, 363099, China
| | - Liping Shi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| | - Shilin Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, No. 37, 12 Qiao Road, Jinniu District, Chengdu, 611137, China
| | - Linlin Dong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| |
Collapse
|
3
|
Liu Y, Niu P, Ji H, Chen Z, Zhai J, Jin X, Pang B, Zheng W, Zhang J, Yang F, Pang W. The use of Panax notoginseng saponins injections after intravenous thrombolysis in acute ischemic stroke: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1376025. [PMID: 38898926 PMCID: PMC11185952 DOI: 10.3389/fphar.2024.1376025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Background As a bioactive metabolite preparation widely used in acute ischemic stroke (AIS), the efficacy and safety of Panax notoginseng saponins injections (PNSI) in patients with AIS after intravenous thrombolysis remain to be evaluated. Methods This study included randomized controlled trials published before 26 April 2024 in 8 databases. AIS patients who received intravenous thrombolysis were included. The control group receiving conventional treatment and the treatment group receiving additional PNSI. Primary outcomes were selected as mortality, disability, and adverse events. Secondary outcomes were selected as all-cause mortality, improvement of neurological deficit, quality of life, and cerebral injury indicators. The revised Cochrane Risk of Bias tool was used to assess risk of bias. Risk ratio (RR) and mean differences (MD) were calculated for binary variables and continuous variables, respectively, based on a 95% confidence interval (CI). Results A total of 20 trials involving 1,856 participants were included. None of them reported mortality or disability. There was no significant difference in the adverse events [RR: 1.04; 95% CI: 0.60 to 1.81] and hemorrhagic transformation [RR: 0.99; 95% CI: 0.36 to 2.70] between the two groups. Compared to the control group, the treatment group had a better effect in neurological improvement assessed by National Institutes of Health Stroke Scale [MD: -2.91; 95% CI: -4.76 to -1.06], a better effect in activities of daily living changes in Barthel Index [MD: 9.37; 95% CI: 1.86 to 16.88], and a lower serum neuron-specific enolase level [MD: -2.08; 95% CI: -2.67 to -1.49]. Conclusion For AIS patients undergoing intravenous thrombolysis, the use of PNSI improved neurological deficits and enhanced activity of daily living in the short term without increasing the occurrence rate of adverse events. However, due to the moderate to very low certainty of evidence, it is advisable to conduct high-quality clinical trials to validate the findings of this study. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=466851, Identifier CRD42023466851.
Collapse
Affiliation(s)
- Yaoyuan Liu
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Puyu Niu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hongchang Ji
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhe Chen
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingbo Zhai
- School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinyao Jin
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bo Pang
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenke Zheng
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junhua Zhang
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fengwen Yang
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wentai Pang
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Ma L, Gao Y, Yang G, Zhao L, Zhao Z, Zhao Y, Zhang Y, Li S, Li S. Notoginsenoside R1 Ameliorate High-Fat-Diet and Vitamin D3-Induced Atherosclerosis via Alleviating Inflammatory Response, Inhibiting Endothelial Dysfunction, and Regulating Gut Microbiota. Drug Des Devel Ther 2024; 18:1821-1832. [PMID: 38845851 PMCID: PMC11155380 DOI: 10.2147/dddt.s451565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
Aim Natural medicines possess significant research and application value in the field of atherosclerosis (AS) treatment. The study was performed to investigate the impacts of a natural drug component, notoginsenoside R1, on the development of atherosclerosis (AS) and the potential mechanisms. Methods Rats induced with AS by a high-fat-diet and vitamin D3 were treated with notoginsenoside R1 for six weeks. The ameliorative effect of NR1 on AS rats was assessed by detecting pathological changes in the abdominal aorta, biochemical indices in serum and protein expression in the abdominal aorta, as well as by analysing the gut microbiota. Results The NR1 group exhibited a noticeable reduction in plaque pathology. Notoginsenoside R1 can significantly improve serum lipid profiles, encompassing TG, TC, LDL, ox-LDL, and HDL. Simultaneously, IL-6, IL-33, TNF-α, and IL-1β levels are decreased by notoginsenoside R1 in lowering inflammatory elements. Notoginsenoside R1 can suppress the secretion of VCAM-1 and ICAM-1, as well as enhance the levels of plasma NO and eNOS. Furthermore, notoginsenoside R1 inhibits the NLRP3/Cleaved Caspase-1/IL-1β inflammatory pathway and reduces the expression of the JNK2/P38 MAPK/VEGF endothelial damage pathway. Fecal analysis showed that notoginsenoside R1 remodeled the gut microbiota of AS rats by decreasing the count of pathogenic bacteria (such as Firmicutes and Proteobacteria) and increasing the quantity of probiotic bacteria (such as Bacteroidetes). Conclusion Notoginsenoside R1, due to its unique anti-inflammatory properties, may potentially prevent the progression of atherosclerosis. This mechanism helps protect the vascular endothelium from damage, while also regulating the imbalance of intestinal microbiota, thereby maintaining the overall health of the body.
Collapse
Affiliation(s)
- Liying Ma
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, People’s Republic of China
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Yansong Gao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, People’s Republic of China
| | - Ge Yang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, People’s Republic of China
| | - Lei Zhao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Zijian Zhao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, People’s Republic of China
| | - Yujuan Zhao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, People’s Republic of China
| | - Yuhang Zhang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Shenhui Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Shengyu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, People’s Republic of China
| |
Collapse
|
5
|
Fan G, Liu M, Liu J, Huang Y, Mu W. Traditional Chinese medicines treat ischemic stroke and their main bioactive constituents and mechanisms. Phytother Res 2024; 38:411-453. [PMID: 38051175 DOI: 10.1002/ptr.8033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/12/2023] [Accepted: 09/24/2023] [Indexed: 12/07/2023]
Abstract
Ischemic stroke (IS) remains one of the leading causes of death and disability in humans. Unfortunately, none of the treatments effectively provide functional benefits to patients with IS, although many do so by targeting different aspects of the ischemic cascade response. The advantages of traditional Chinese medicine (TCM) in preventing and treating IS are obvious in terms of early treatment and global coordination. The efficacy of TCM and its bioactive constituents has been scientifically proven over the past decades. Based on clinical trials, this article provides a review of commonly used TCM patent medicines and herbal decoctions indicated for IS. In addition, this paper also reviews the mechanisms of bioactive constituents in TCM for the treatment of IS in recent years, both domestically and internationally. A comprehensive review of preclinical and clinical studies will hopefully provide new ideas to address the threat of IS.
Collapse
Affiliation(s)
- Genhao Fan
- Tianjin University of Chinese Medicine, Tianjin, China
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Menglin Liu
- Tianjin University of Chinese Medicine, Tianjin, China
| | - Jia Liu
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhong Huang
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Mu
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
6
|
Shi X, Feng L, Li Y, Qin M, Li T, Cheng Z, Zhang X, Zhou C, Cheng S, Zhang C, Gao Y. Efficacy and safety of Panax notoginseng saponins (Xuesaitong) for patients with acute ischemic stroke: a systematic review and meta-analysis of randomized controlled trials. Front Pharmacol 2023; 14:1280559. [PMID: 37908976 PMCID: PMC10614024 DOI: 10.3389/fphar.2023.1280559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/26/2023] [Indexed: 11/02/2023] Open
Abstract
Background: Stroke is the major cause of mortality and permanent disability and is associated with an astonishing economic burden worldwide. In the past few decades, accumulated evidence has indicated that Xuesaitong (XST) has therapeutic benefits in cases of acute ischemic stroke (AIS). Our study aimed to provide the best current body of evidence of the efficacy and safety of XST for patients with AIS. Methods: This is a systematic review and meta-analysis of randomized controlled trials (RCTs). We searched eight electronic databases from inception to 17 July 2023 for relevant RCTs. The investigators independently screened trials, extracted data, and assessed the risk of bias. A meta-analysis was conducted using RevMan 5.3 and STATA 16.0 software. Results: In total, 46 RCTs involving 7,957 patients were included. The results showed that XST improved the long-term functional outcomes with lower modified Rankin Scale (mRS) scores (MD = -0.67; 95% CI [-0.92 to -0.42]; p < 0.00001) and a higher proportion of functional independence (mRS ≤2) (RR = 1.08; 95% CI [1.05 to 1.12]; p < 0.00001). Low-quality evidence indicated that XST improved the activities of daily living (MD = 10.17; 95% CI [7.28 to 13.06]; p < 0.00001), improved the neurological impairment (MD = -3.39; 95% CI [-3.94 to -2.84]; p < 0.00001), and enhanced the total efficiency rate (RR = 1.19; 95% CI [1.15 to 1.23]; p < 0.00001). No significant difference was found in the all-cause mortality or incidence of adverse events between the XST and control groups. The certainty of evidence was estimated as moderate to very low. Conclusion: Presently, the administration of XST within 14 days of AIS is associated with favorable long-term functional outcomes. In addition, XST can improve activities of daily living, alleviate neurological deficits, and has shown good tolerability. However, the current evidence is too weak, and the confidence of evidence synthesis was restricted by the high risk of bias. Given the insufficient evidence, appropriately sized and powered RCTs investigating the efficacy and safety of XST for patients with AIS are warranted. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=446208, CRD42023446208.
Collapse
Affiliation(s)
- Xinyi Shi
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Luda Feng
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yixuan Li
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mingzhen Qin
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tingting Li
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Zixin Cheng
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xuebin Zhang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Congren Zhou
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Sisong Cheng
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chi Zhang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Gao
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Liu H, Wang D, Ma Y, Sun H, Wang L, Shi Y, Wang J, Chen X. Hyperbaric Oxygen Therapy Ameliorates Sperm Parameters in Apolipoprotein E Knockout Mice Testes by Attenuating Oxidative Stress and Inflammation. Reprod Sci 2023; 30:2252-2262. [PMID: 36745359 DOI: 10.1007/s43032-022-01158-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/21/2022] [Indexed: 02/07/2023]
Abstract
Apolipoprotein E (ApoE) is a member of apolipoprotein (apo) family and plays critical role in lipid metabolism. In this study, the relationship between abnormal lipid metabolism caused by ApoE-deficient and male reproduction was investigated. The effect of hyperbaric oxygen (HBO) therapy on 7-month-old ApoE-knockout male mice was assessed subsequently. Mice were randomly divided into 3 groups: control group (WT), ApoE (- / -) group (AP-CON), and ApoE (- / -) plus HBO group (AP-HBO), which received HBO treatment. We found that ApoE knockout caused a decrease in male reproductive capacity due to the reduced total sperm motility, progressive motility (PR), and lower blastocyst formation rate. HBO treatment could accelerate serum lipoprotein metabolism including LDL, T-CHO, and TG and semen quality. As a result, fertilization and blastocyst formation of AP-HBO group were higher than that of AP-CON, proving positive therapeutic effect. Mechanism exploration found that HBO treatment ameliorated the testicular microenvironment by attenuating inflammatory factor production and oxidative stress, eventually improved the sperm motility. Collectively, our study provided more evidences of HBO treatment for improving the semen quality of patients with abnormal lipid metabolism caused by ApoE-deficient.
Collapse
Affiliation(s)
- Huijun Liu
- Center of Reproduction, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, No. 68 Gehu Road, Jiangsu, 213003, Changzhou, China
| | - Danni Wang
- Center of Reproduction, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, No. 68 Gehu Road, Jiangsu, 213003, Changzhou, China
| | - Yang Ma
- Center of Reproduction, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, No. 68 Gehu Road, Jiangsu, 213003, Changzhou, China
| | - Huiting Sun
- Center of Reproduction, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, No. 68 Gehu Road, Jiangsu, 213003, Changzhou, China
| | - Linxiao Wang
- Laboratory of Neurological Diseases, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu, China
| | - Yichao Shi
- Center of Reproduction, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, No. 68 Gehu Road, Jiangsu, 213003, Changzhou, China
| | - Jiaping Wang
- Center of Reproduction, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, No. 68 Gehu Road, Jiangsu, 213003, Changzhou, China.
| | - Xia Chen
- Center of Reproduction, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, No. 68 Gehu Road, Jiangsu, 213003, Changzhou, China.
| |
Collapse
|
8
|
Zhang S, Yu Y, Xu P, Shen X, Fang C, Wu X, Qu P, Wu T, Wang QM, Luo X, Hong Y. Mechanical digit sensory stimulation: a randomized control trial on neurological and motor recovery in acute stroke. Front Neurosci 2023; 17:1134904. [PMID: 37287803 PMCID: PMC10242038 DOI: 10.3389/fnins.2023.1134904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
Background Mechanical digit sensory stimulation (MDSS) is a novel therapy designed to accelerate the recovery of upper limb (including hand) function in patients with hemiplegia following a stroke. The primary goal of this study was to investigate the effect of MDSS on patients with acute ischemic stroke (AIS). Methods Sixty-one inpatients with AIS were randomly divided into conventional rehabilitation group (RG) and stimulation group (SG), and the latter group received MDSS therapy. A healthy group consisting of 30 healthy adults was also included. The interleukin-17A (IL-17A), vascular endothelial growth factor A (VEGF-A), and tumor necrosis factor-alpha (TNF-α) plasma levels were measured in all subjects. The neurological and motor functions of patients were evaluated using the National Institutes of Health Stroke Scale (NIHSS), Mini-Mental State Examination (MMSE), Fugel-Meyer Assessment (FMA), and Modified Barthel Index (MBI). Results After 12 days of intervention, the IL-17A, TNF-α, and NIHSS levels were significantly decreased, while the VEGF-A, MMSE, FMA, and MBI levels were significantly increased in both disease groups. No significant difference was observed between both disease groups after intervention. The levels of IL-17A and TNF-α were positively correlated with NIHSS but negatively correlated with MMSE, FMA, and MBI. The VEGF-A levels were negatively correlated with NIHSS but positively correlated with MMSE, FMA, and MBI. Conclusion Both MDSS and conventional rehabilitation significantly reduce the production of IL-17A and TNF-α, increase the VEGF-A levels, and effectively improve cognition and motor function of hemiplegic patients with AIS, and the effects of MDSS and conventional rehabilitation are comparable.
Collapse
Affiliation(s)
- Shuting Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yang Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Panpan Xu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xianshan Shen
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Chuanqin Fang
- Department of Neurology, The Second Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xiaosan Wu
- Department of Neurology, The Second Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Ping Qu
- Department of Neurology, The Second Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Tingting Wu
- Key Laboratory of Oral Disease Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, Anhui Province, China
| | - Qing Mei Wang
- Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, United States
| | - Xun Luo
- School of Medicine, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Yongfeng Hong
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
9
|
Fakharaldeen Z, Al-Mudhafar A, Radhi A, Hadi N. POTENTIAL PROTECTIVE EFFECTS OF NIMODIPINE FROM CEREBRAI ISCHEMIA REPERFUSION INJURY IN RATS. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 75:3094-3101. [PMID: 36723333 DOI: 10.36740/wlek202212134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim: To see whether nimodipine had neuroprotective effects in cerebral ischemia/reperfusion injury. PATIENTS AND METHODS Materials and methods: A total of 28 adult male Sprauge-dawley rats weighting 200-300 g were distributed randomly into 4 groups (7 animals in each group): sham (neck dissection without bilateral common carotid artery occlusion), control (bilateral common carotid artery occlusion for 30 minutes and reperfusion for 1 hour), vehicle (7 days of daily carboxymethylcellulose by oral gavage followed by bilateral carotid artery occlusion and reperfusion), and nimodipine-treated rats (7 days of 3 mg/kg/day of oral Azelnidipine pretreatment then bilateral common carotid artery occlusion and reperfusion). Besides assessment of histological changes and brain infarct volume, the brain tissues were sectioned to estimate NF-κB p65, IL-6, IL-10, TNF-α, ICAM-1 and total anti-oxidant capacity. RESULTS Results: Cerebral NF-κB p65, IL-6, IL-10, TNF-α, ICAM-1, in addition to cerebral infarct size were markedly increased in control and vehicle related to sham rats, while total anti-oxidant capacity was considerably decreased. Treatment with nimodipine resulted in remarkable increment of total anti-oxidant capacity, while NF-κB p65, IL-6, TNF-α, and ICAM-1 showed great reduction. Cerebral IL-10 levels didn't change by nimodipine treatment. Histologically, control and vehicle rats showed severe brain ischemic changes which is dramatically reduced by nimodipine treatment. CONCLUSION Conclusions: Our study results revealed that nimodipine can greatly decrease cerebral infarct size and reduce histological ischemic injury in male rats subjected to cerebral ischemia/ reperfusion. The neuroprotective actions of nimodipine possibly originated from its anti-inflammatory and antioxidative effects. Nimodipine protection was unrelated to IL-10.
Collapse
Affiliation(s)
- Zainab Fakharaldeen
- DEPARTMENT OF PHARMACOLOGY AND THERAPEUTICS, FACULTY OF MEDICINE, UNIVERSITY OF KUFA, NAJAF, IRAQ
| | - Ahmed Al-Mudhafar
- DEPARTMENT OF PHARMACOLOGY AND THERAPEUTICS, FACULTY OF MEDICINE, UNIVERSITY OF KUFA, NAJAF, IRAQ
| | - Ali Radhi
- AL-HAKEEM HOSPITAL, AL-NAJAF AL-ASHRAF, NAJAF, IRAQ
| | - Najah Hadi
- DEPARTMENT OF PHARMACOLOGY AND THERAPEUTICS, FACULTY OF MEDICINE, UNIVERSITY OF KUFA, NAJAF, IRAQ
| |
Collapse
|
10
|
Zhai Z, Su PW, Ma LY, Yang H, Wang T, Fei ZG, Zhang YN, Wang Y, Ma K, Han BB, Wu ZC, Yu HY, Zhao HJ. Progress on traditional Chinese medicine in treatment of ischemic stroke via the gut-brain axis. Biomed Pharmacother 2023; 157:114056. [PMID: 36446240 DOI: 10.1016/j.biopha.2022.114056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022] Open
Abstract
Ischemic stroke is a common issue that severely affects the human health. Between the central nervous system and the enteric system, the " Gut-Brain " axis, the bidirectional connection involved in the neuro-immuno-endocrine network, is crucial for the occurrence and development of ischemic stroke. Ischemic stroke can lead to change in the gut microbiota and gastrointestinal hormones, which will then reversely affect the disease development. Traditional Chinese Medicine (TCM) has unique advantages with reference to the treatment for ischemic stroke. The latest research revealed that a significant portion of medicines and prescriptions of TCM exert their therapeutic effects by improving the gut microbiota and regulating the secretion of gastrointestinal hormones. The present review summarized the Chinese medicines that play a therapeutic role in cerebral ischemia through regulating the "Gut-Brain" axis and described the corresponding mechanisms. This study attempts to provide reference for clinical selection of Chinese medicines and helps better understand the relevant mechanisms of action.
Collapse
Affiliation(s)
- Zhe Zhai
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pei-Wei Su
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lan-Ying Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui Yang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tong Wang
- School of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zheng-Gen Fei
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ya-Nan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ke Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing-Bing Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhi-Chun Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hua-Yun Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hai-Jun Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
11
|
Zeng M, Zhang R, Yang Q, Guo L, Zhang X, Yu B, Gan J, Yang Z, Li H, Wang Y, Jiang X, Lu B. Pharmacological therapy to cerebral ischemia-reperfusion injury: Focus on saponins. Biomed Pharmacother 2022; 155:113696. [PMID: 36116247 DOI: 10.1016/j.biopha.2022.113696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
Secondary insult from cerebral ischemia-reperfusion injury (CIRI) is a major risk factor for poor prognosis of cerebral ischemia. Saponins are steroid or triterpenoid glycosides with various pharmacological activities that are effective in treating CIRI. By browsing the literature from 2001 to 2021, 55 references involving 24 kinds of saponins were included. Saponins were shown to relieve CIRI by inhibiting oxidation stress, neuroinflammation, and apoptosis, restoring BBB integrity, and promoting neurogenesis and angiogenesis. This review summarizes and classifies several common saponins and their mechanisms in relieving CIRI. Information provided in this review will benefit researchers to design, research and develop new medicines to treat CIRI-related conditions with saponins.
Collapse
Affiliation(s)
- Miao Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ruifeng Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qiuyue Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bin Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhen Yang
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huhu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Bin Lu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
12
|
Changes and roles of IL-17A, VEGF-A and TNF-α in patients with cerebral infarction during the acute phase and early stage of recovery. Clin Biochem 2022; 107:67-72. [PMID: 35550786 DOI: 10.1016/j.clinbiochem.2022.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND PURPOSE Interleukin 17A (IL-17A), vascular endothelial growth factor A (VEGF-A) and tumour necrosis factor alpha (TNF-α) are important cytokines detected mostly within two weeks after stroke in previous clinical studies. Longer clinical studies investigating these cytokines are lacking. We aimed to explore the roles of these cytokines in patients within 35 days after cerebral infarction. METHODS Thirty patients with cerebral infarction and 30 healthy individuals were enrolled. Venous blood was collected from each patient at specific times and from each healthy individual only once. Coma and neurological functional deficits of the patients were evaluated by the Glasgow Coma Scale (GCS) and the National Institutes of Health Stroke Scale (NIHSS), respectively. Three cytokines were measured. The correlations among the three cytokines and between each cytokine and the GCS/NIHSS scores were analysed. RESULTS IL-17A and TNF-α began to increase on day 1 after cerebral infarction, peaked on day 4, then decreased, and increased again on day 18. IL-17A returned to normal on day 35, but TNF-α remained higher than normal on day 35. VEGF-A began to increase on day 1, peaked on day 7, and returned to normal on day 35. From days 18 to 35, IL-17A was positively correlated with the GCS scores, and both IL-17A and VEGF-A were negatively correlated with the NIHSS scores. CONCLUSION After cerebral infarction, VEGF-A from the acute phase and IL-17A from the early stage of recovery may be important for nerve protection and repair; TNF-α plays a complex role within 35 days.
Collapse
|
13
|
Research Trends, Hot Spots, and Prospects for Traditional Chinese Medicine in the Field of Ischemia-Reperfusion Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:4548367. [PMID: 35003301 PMCID: PMC8731293 DOI: 10.1155/2021/4548367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022]
Abstract
Ischemia-reperfusion (I/R) injury is one of the most common phenomena in ischemic disease or processes that causes progressive disability or even death. It has a major impact on global public health. Traditional Chinese medicine (TCM) has a long history of application in ischemic diseases and has significant clinical effect. Numerous studies have shown that the formulas or single herbs in TCM have specific roles in regulating oxidative stress, anti-inflammatory, inhibiting cell apoptosis, etc., in I/R injury. We used bibliometrics to quantitatively analyze the global output of publications on TCM in the field of I/R injury published in the period 2001–2021 to identify research hotspots and prospects. We included 446 related documents published in the Web of Science during 2001–2021. Visualization analysis revealed that the number of publications related to TCM in the field of I/R injury has increased year by year, reaching a peak in 2020. China is the country with the largest number of publications. Keywords and literature analyses demonstrated that neuroregeneration is likely one of the research hotspots and future directions of research in the field. Taken together, our findings suggest that although the inherent limitations of bibliometrics may affect the accuracy of the literature-based prediction of research hotspots, the results obtained from the included publications can provide a reference for the study of TCM in the field of I/R injury.
Collapse
|
14
|
Wang C, Chen H, Jiang HH, Mao BB, Yu H. Total Flavonoids of Chuju Decrease Oxidative Stress and Cell Apoptosis in Ischemic Stroke Rats: Network and Experimental Analyses. Front Neurosci 2021; 15:772401. [PMID: 34955724 PMCID: PMC8695723 DOI: 10.3389/fnins.2021.772401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/08/2021] [Indexed: 01/22/2023] Open
Abstract
Background: Pharmacological research results showed that total flavonoids of Chuju (TFCJ) could be used to treat acute myocardial ischemia and myocardial ischemia-reperfusion injury. In this study, we explored the protective effect of TFCJ on ischemic stroke (IS) in the IS rat model. We hypothesized that TFCJ might exert its neuroprotective effects by suppressing apoptosis and oxidative stress that are closely related to PI3K/Akt/mTOR signaling pathway. Method: TFCJ (10, 20, and 40 mg/kg) was administered for 7 days. Rats (260 ± 20 g) were subjected to middle cerebral artery occlusion (MCAO) for 2 h and reperfusion for 24 h. The neuroprotective effect of TFCJ was substantiated in terms of neurological deficits, oxidative stress (superoxide dismutase, glutathione peroxidase, catalase, and malondialdehyde), pathomorphological changes (HE staining and TUNEL staining), and neurobehavioral functions in the rats. Then, we employed network pharmacology to reveal the potential mechanism of TFCJ against IS. Western blot was used to determine the levels of PI3K/AKT/mTOR pathway proteins. The expression of BCL-2, BAX, and cleaved-Caspase-3 was also measured by Western blots and RT-PCR. Results: The histopathological assessment showed that TFCJ reduced MCAO-induced brain damage. Besides, TFCJ exerted a protective role in MCAO rats by alleviating cell apoptosis and oxidative stress. Network pharmacology showed that TFCJ might be used against IS through the PI3K/AKT signaling pathway. TFCJ reduced cell apoptosis and oxidative stress by increasing the level of p-AKT and p-mTOR in MCAO rats, while the effect of TFCJ was significantly reversed when applying LY294002 (PI3k inhibitor). Conclusion: These results indicated that TFCJ might decrease oxidative stress and apoptosis that are closely related to PI3K/Akt/mTOR pathway in IS. TFCJ is a promising authentic traditional Chinese medicine for the management of IS.
Collapse
Affiliation(s)
- Cong Wang
- College of Life and Health Sciences, Anhui Science and Technology University, Chuzhou, China
| | - Hao Chen
- College of Life and Health Sciences, Anhui Science and Technology University, Chuzhou, China
| | - Hui-hui Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Bin-bin Mao
- College of Life and Health Sciences, Anhui Science and Technology University, Chuzhou, China
| | - Hao Yu
- School of Chinese Medicine, Bozhou University, Bozhou, China
- Department of Pharmacy, College of Life and Health Sciences, Anhui Science and Technology University, Chuzhou, China
| |
Collapse
|
15
|
Kim S, Kim JH, Seok SH, Park ES. Enhanced permeability and oral absorption of Panax notoginseng saponins by borneol. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Pan YW, Wu DP, Liang HF, Tang GY, Fan CL, Shi L, Ye WC, Li MM. Total Saponins of Panax notoginseng Activate Akt/mTOR Pathway and Exhibit Neuroprotection in vitro and in vivo against Ischemic Damage. Chin J Integr Med 2021; 28:410-418. [PMID: 34581940 DOI: 10.1007/s11655-021-3454-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To reveal the neuroprotective effect and the underlying mechanisms of a mixture of the main components of Panax notoginseng saponins (TSPN) on cerebral ischemia-reperfusion injury and oxygen-glucose deprivation/reoxygenation (OGD/R) of cultured cortical neurons. METHODS The neuroprotective effect of TSPN was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, flow cytometry and live/dead cell assays. The morphology of dendrites was detected by immunofluorescence. Middle cerebral artery occlusion (MCAO) was developed in rats as a model of cerebral ischemia-reperfusion. The neuroprotective effect of TSPN was evaluated by neurological scoring, tail suspension test, 2,3,5-triphenyltetrazolium chloride (TTC) and Nissl stainings. Western blot analysis, immunohistochemistry and immunofluorescence were used to measure the changes in the Akt/mammalian target of rapamycin (mTOR) signaling pathway. RESULTS MTT showed that TSPN (50, 25 and 12.5 µ g/mL) protected cortical neurons after OGD/R treatment (P<0.01 or P<0.05). Flow cytometry and live/dead cell assays indicated that 25 µ g/mL TSPN decreased neuronal apoptosis (P<0.05), and immunofluorescence showed that 25 µ g/mL TSPN restored the dendritic morphology of damaged neurons (P<0.05). Moreover, 12.5 µ g/mL TSPN downregulated the expression of Beclin-1, Cleaved-caspase 3 and LC3B-II/LC3B-I, and upregulated the levels of phosphorylated (p)-Akt and p-mTOR (P<0.01 or P<0.05). In the MCAO model, 50 µ g/mL TSPN improved defective neurological behavior and reduced infarct volume (P<0.05). Moreover, the expression of Beclin-1 and LC3B in cerebral ischemic penumbra was downregulated after 50 µ g/mL TSPN treatment, whereas the p-mTOR level was upregulated (P<0.05 or P<0.01). CONCLUSION TSPN promoted neuronal survival and protected dendrite integrity after OGD/R and had a potential therapeutic effect by alleviating neurological deficits and reversing neuronal loss. TSPN promoted p-mTOR and inhibited Beclin-1 to alleviate ischemic damage, which may be the mechanism that underlies the neuroprotective activity of TSPN.
Collapse
Affiliation(s)
- Yu-Wei Pan
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, 510632, China.,Department of TCM Preventive Medicine, Tianhe District Hospital of Traditional Chinese Medicine, Guangzhou, 510632, China
| | - Dong-Ping Wu
- Institute of Traditional Chinese Medicine and Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Hua-Feng Liang
- Institute of Traditional Chinese Medicine and Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Gen-Yun Tang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, 510632, China
| | - Chun-Lin Fan
- Institute of Traditional Chinese Medicine and Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Lei Shi
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, 510632, China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine and Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Man-Mei Li
- Institute of Traditional Chinese Medicine and Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
17
|
The RIG-I Signal Pathway Mediated Panax notoginseng Saponin Anti-Inflammatory Effect in Ischemia Stroke. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8878428. [PMID: 34462642 PMCID: PMC8403041 DOI: 10.1155/2021/8878428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/09/2021] [Accepted: 08/07/2021] [Indexed: 01/10/2023]
Abstract
Panax notoginseng saponins (PNS), the main bioactive constituents of a traditional Chinese herb Panax notoginseng, were commonly used for ischemic stroke in China. However, the associated cellular and molecular mechanisms of PNS have not been well examined. This study aimed to decipher the underlying molecular target of PNS in the treatment of cerebral ischemia. The oxygen-glucose-deprived (OGD) model of rat brain microvascular endothelial cells (BMECs) was used in this study. The alteration of gene expression in rat BMECs after PNS treatment was measured by microarray and indicated that there were 38 signaling pathways regulated by PNS. Among them, RIG-I receptor and related signaling molecules TNF receptor-associated factor 2 (Traf2) and nuclear factor-kappa B (NF-κB) were significantly suppressed by PNS, which was verified again in OGD-induced BMECs measured by FQ-PCR and western blotting and in middle cerebral artery occlusion (MCAO) rats measured by immunohistochemistry. The levels of TNF-α, IL-8, and the downstream cytokines regulated by RIG-I receptor pathway were also decreased by PNS. Meanwhile, the neurological evaluation, hematoxylin and eosin (HE) staining, and Evans blue staining were conducted to evaluate the effect of PNS in MCAO rats. Results showed PNS significantly improved functional outcome and cerebral vascular leakage. Flow cytometry showed the number of the inflammatory cells infiltrated in brain tissue was decreased in PNS treatment. Our results identified that RIG-I signaling pathway mediated anti-inflammatory properties of PNS in cerebral ischemia, which provided the novel insights of PNS application in clinics.
Collapse
|
18
|
Zhou D, Cen K, Liu W, Liu F, Liu R, Sun Y, Zhao Y, Chang J, Zhu L. Xuesaitong exerts long-term neuroprotection for stroke recovery by inhibiting the ROCKII pathway, in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2021; 272:113943. [PMID: 33617967 DOI: 10.1016/j.jep.2021.113943] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/17/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xuesaitong (XST) is a traditional Chinese medicine injection with neuroprotective properties and has been extensively used to treat stroke for many years. The main component of XST is Panax notoginseng saponins (PNS), which is the main extract of the Chinese herbal medicine Panax notoginseng. AIM OF THE STUDY In this study, we investigated whether XST provided long-term neuroprotection by inhibiting neurite outgrowth inhibitor-A (Nogo-A) and the ROCKII pathway in experimental rats after middle cerebral artery occlusion (MCAO) and in SH-SY5Y cells exposed to oxygen-glucose deprivation/reperfusion (OGD/R). MATERIALS AND METHODS Rats with permanent MCAO were administered XST, Y27632, XST plus Y27632, and nimodipine for 14 and 28 days. Successful MCAO onset was confirmed by 2,3,5-triphenyl tetrazolium chloride (TTC) staining. Neurological deficit score (NDS) was used to assess neurological impairment. Hematoxylin-eosin (HE) staining and immunohistochemical (IHC) analysis of synaptophysin (SYN) and postsynaptic density protein-95 (PSD-95) were performed to evaluate cerebral ischemic injury and the neuroprotective capability of XST. Nogo-A levels and the ROCKII pathway were detected by IHC analysis, western blotting, and quantitative real-time polymerase chain reaction (qRT-PCR) to explore the protective mechanism of XST. OGD/R model was established in SH-SY5Y cells. Cell counting kit 8 (CCK8) was applied to detect the optimum OGD time and XST concentration. The expression levels Nogo-A and ROCKII pathway were determined using western blotting. RESULTS Our results showed that XST reduced neurological dysfunction and pathological damage, promoted weight gain and synaptic regeneration, reduced Nogo-A mRNA and protein levels, and inhibited the ROCKII pathway in MCAO rats. CCK8 assay displayed that the optimal OGD time and optimal XST concentration were 7 h and 20 μg/mL respectively in SH-SY5Y cells. XST could evidently inhibit OGD/R-induced Nogo-A protein expression and ROCKII pathway activation in SH-SY5Y cells. CONCLUSIONS The present study suggested that XST exerted long-term neuroprotective effects that assisted in stroke recovery, possibly through inhibition of the ROCKII pathway.
Collapse
Affiliation(s)
- Dongrui Zhou
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China.
| | - Kai Cen
- Department of Stomatology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China.
| | - Wei Liu
- Department of Rehabilitation, Beijing Children's Hospital, Capital Medical University, 100045, Beijing, China.
| | - Fengzhi Liu
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China.
| | - Ruijia Liu
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China.
| | - Yikun Sun
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China.
| | - Yizhou Zhao
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China.
| | - Jingling Chang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China.
| | - Lingqun Zhu
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China; Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China.
| |
Collapse
|
19
|
Feng L, Han F, Zhou L, Wu S, Du Y, Zhang D, Zhang C, Gao Y. Efficacy and Safety of Panax Notoginseng Saponins (Xueshuantong) in Patients With Acute Ischemic Stroke (EXPECT) Trial: Rationale and Design. Front Pharmacol 2021; 12:648921. [PMID: 33967788 PMCID: PMC8101545 DOI: 10.3389/fphar.2021.648921] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Although revascularization treatment is recommended as the first-line therapy for patients with non-minor acute ischemic stroke (AIS), it only benefits a minority of patients. Previous studies have reported the positive effects of Panax notoginseng saponins (PNS) (Xueshuantong lyophilized powder) on AIS, however, there have been no rigorous trials. This study aims to assess the efficacy and safety of PNS therapy for patients with AIS. Methods: The Evaluation of Xueshuantong in Patients with acutE ischemiC sTroke (EXPECT) trial is a multicenter, randomized, placebo-controlled, double-blind study aiming to enroll 480 patients in China. Eligible patients with AIS within 72 h of symptom onset will randomly receive either PNS or PNS placebo for 10 days and subsequently be followed up to 90 days. The primary outcome will be a change in the National Institute of Health Stroke Scale (NIHSS) score from baseline to 10 post-randomization days. The secondary outcomes include early neurological improvement (proportion of patients with NIHSS score 0–1), and Patient-Reported Outcomes Scale for Stroke score at 10 post-randomization days, the proportion of patients with life independence (modified Rankin Scale score of 0–1), the proportion of patients with a favorable outcome (Barthel Index ≥90), and Stroke-Specific Quality of Life score at 90 days. Adverse events or clinically significant changes in vital signs and laboratory parameters, regardless of the severity, will be recorded during the trial to assess the safety of PNS. Conclusions: To our knowledge, this study is the first double-blind trial to assess the efficacy and safety of PNS in patients with AIS. Findings of the EXPECT trial will be valuable in improving evidence regarding the clinical application of PNS therapy in patients with AIS ineligible for revascularization treatment in the reperfusion era.
Collapse
Affiliation(s)
- Luda Feng
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China.,Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Fang Han
- Office of Academic Research, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Li Zhou
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shengxian Wu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Office of State Drug Clinical Trial Institution, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yawei Du
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dandan Zhang
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Chi Zhang
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China.,Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Gao
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China.,Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
20
|
Lin J, Liang P, Huang Q, Jian C, Huang J, Tang X, Li X, Liao Y, Huang X, Huang W, Su L, Meng L. Using mRNA deep sequencing to analyze differentially expressed genes during Panax notoginseng saponin treatment of ischemic stroke. Mol Med Rep 2020; 22:4743-4753. [PMID: 33173991 PMCID: PMC7646891 DOI: 10.3892/mmr.2020.11550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 08/10/2020] [Indexed: 01/08/2023] Open
Abstract
Treatment with Panax notoginseng saponin (PNS) can prevent neurological damage in middle cerebral artery occlusion model rats to promote recovery after a stroke. However, the exact molecular mechanisms are unknown and require further study. In the present study, mRNA sequencing was employed to investigate differential gene expression between model and sham groups, and between model and PNS‑treated groups. Enrichment of gene data was performed using Gene Ontology analysis and the Kyoto Encyclopedia of Genes and Genomes database. Hub genes were identified and networks were constructed using Cytoscape that were further verified by reverse transcription‑quantitative PCR. A total of 1,104 genes of interest were found, which included 690 upregulated and 414 downregulated genes that were identified when the model was compared with the sham group. Additionally, 817 genes of interest, which included 390 upregulated and 427 downregulated genes, were identified when the PNS‑treated group was compared with the model group. There were 303 overlapping genes of interest between the analysis of model to sham groups, and the analysis of model to PNS‑treated groups. The top 10 genes from the 303 aberrantly expressed genes of interest included ubiquitin conjugating enzyme E2 variant 2, small ubiquitin‑related modifier 1, small RNA binding exonuclease protection factor La, Finkel‑Biskis‑Reilly murine sarcoma virus (FBR‑MuSV) ubiquitously expressed, centrosomal protein 290 kDa, DNA‑directed RNA polymerase II subunit K, cullin‑4B, matrin‑3 and vascular endothelial growth factor receptor 2. In conclusion, these genes may be important in the underlying mechanism of PNS treatment in ischemic stroke. Additionally, the present data provided novel insight into the pathogenesis of ischemic stroke.
Collapse
Affiliation(s)
- Jun Lin
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Ping Liang
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Qing Huang
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Chongdong Jian
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Jianmin Huang
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Xionglin Tang
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Xuebin Li
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Yanling Liao
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Xiaohua Huang
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Wenhua Huang
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Li Su
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Lanqing Meng
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| |
Collapse
|
21
|
Genes Induced by Panax Notoginseng in a Rodent Model of Ischemia-Reperfusion Injury. J Immunol Res 2020; 2020:8873261. [PMID: 33294469 PMCID: PMC7714582 DOI: 10.1155/2020/8873261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
Stroke is a cerebrovascular disease that results in decreased blood flow. Although Panax notoginseng (PN), a Chinese herbal medicine, has been proven to promote stroke recovery, its molecular mechanism remains unclear. In this study, middle cerebral artery occlusion (MCAO) was induced in rats with thrombi generated by thread and subsequently treated with PN. After that, staining with 2,3,5-triphenyltetrazolium chloride was employed to evaluate the infarcted area, and electron microscopy was used to assess ultrastructural changes of the neurovascular unit. RNA-Seq was performed to determine the differential expressed genes (DEGs) which were then verified by qPCR. In total, 817 DEGs were identified to be related to the therapeutic effect of PN on stroke recovery. Further analysis by Gene Oncology analysis and Kyoto Encyclopedia of Genes and Genomes revealed that most of these genes were involved in the biological function of nerves and blood vessels through the regulation of neuroactive live receptor interactions of PI3K-Akt, Rap1, cAMP, and cGMP-PKG signaling, which included in the 18 pathways identified in our research, of which, 9 were reported firstly that related to PN's neuroprotective effect. This research sheds light on the potential molecular mechanisms underlying the effects of PN on stroke recovery.
Collapse
|
22
|
Qu J, Xu N, Zhang J, Geng X, Zhang R. Panax notoginseng saponins and their applications in nervous system disorders: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1525. [PMID: 33313270 PMCID: PMC7729308 DOI: 10.21037/atm-20-6909] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Panax notoginseng saponins (PNS), also called "sanqi" in Chinese, are the main active ingredients which are extracted from the root of Panax notoginseng (Burk.) F. H. Chen., and they have been traditionally used as a medicine in China for hundreds of years with magical medicinal value. PNS have varied biological functions, such as anti-inflammatory effects, anti-cancer effects, anti-neurotoxicity, and the prevention of diabetes. Nervous system disorders, a spectrum of diseases originating from the nervous system, have a significant impact on all aspects of patients' lives. Due to the dramatic gains in global life expectancy, the prevalence of nervous system disorders is growing gradually. Even if the mechanism of these diseases is still not clear, they are mainly characterized by neuronal dysfunction and neuronal death. Consequently, it is essential to find measures to slow down or prevent the onset of these diseases. At present, traditional Chinese medicines, as well as their active components, have gained widespread popularity in preventing and treating these diseases because of their merits, especially PNS. In this review, we predominantly address the recent advances in PNS researches and their biological functions, and highlight their applications in nervous system disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), and stroke.
Collapse
Affiliation(s)
- Jing Qu
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Na Xu
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Jianliang Zhang
- Department of Neurobiology, Beijing Institute of Brain Disorders, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repairing, Beijing Key Laboratory of Brain Major Disorders-State Key Lab Incubation Base, Beijing Neuroscience Disciplines, Beijing, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Ruihua Zhang
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Liu H, Lu X, Hu Y, Fan X. Chemical constituents of Panax ginseng and Panax notoginseng explain why they differ in therapeutic efficacy. Pharmacol Res 2020; 161:105263. [PMID: 33127555 DOI: 10.1016/j.phrs.2020.105263] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
Panax ginseng (Meyer) and Panax notoginseng (Burkill), belonging to the family Araliaceae, are used worldwide as medicinal and functional herbs. Numerous publications over the past decades have revealed that both P. notoginseng and P. ginseng contain important bioactive ingredients such as ginsenosides and exert multiple pharmacological effects on nervous system and immune diseases. However, based on traditional Chinese medicine (TCM) theory, their applications clearly differ as ginseng reinforces vital energy and notoginseng promotes blood circulation. In this article, we review the similarities and differences between ginseng and notoginseng in terms of their chemical composition and pharmacological effects. Their chemical comparisons indicate that ginseng contains more polysaccharides and amino acids, while notoginseng has more saponins, volatile oil, and polyacetylenes. Regarding pharmacological effects, ginseng exhibits better protective effects on cardiovascular disease, nerve disease, cancer, and diabetes mellitus, whereas notoginseng displays a superior protective effect on cerebrovascular disease. The evidence presented in this review facilitates further research and clinical applications of these two herbs, and exploration of the relationship between the chemical components and disease efficacy may be the critical next step.
Collapse
Affiliation(s)
- Hanbing Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Hu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohui Fan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
24
|
Yang F, Ma Q, Matsabisa MG, Chabalala H, Braga FC, Tang M. Panax notoginseng for Cerebral Ischemia: A Systematic Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1331-1351. [PMID: 32907361 DOI: 10.1142/s0192415x20500652] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Panax notoginseng is the most widely used Chinese medicinal herb for the prevention and treatment of ischemic diseases. Its main active ingredients are saponins, including ginsenoside Rb1, ginsenoside Rg1, and notoginsenoside R1, among others. This review provides an up-to-date overview on the pharmacological roles of P. notoginseng constituents in cerebral ischemia. The saponins of P. notoginseng induce a variety of pharmacological effects in the multiscale mechanisms of cerebral ischemic pathophysiology, including anti-inflammatory activity, reduction of oxidative stress, anti-apoptosis, inhibition of amino acid excitotoxicity, reduction of intracellular calcium overload, protection of mitochondria, repairing the blood-brain barrier, and facilitation of cell regeneration. Regarding cell regeneration, P. notoginseng not only promotes the proliferation and differentiation of neural stem cells, but also protects neurons, endothelial cells and astrocytes in cerebral ischemia. In conclusion, P. notoginseng may treat cerebrovascular diseases through multiple pharmacological effects, and the most critical ones need further investigation.
Collapse
Affiliation(s)
- Fei Yang
- Tongchuan People's Hospital, Tongchuan, Shaanxi Province, P. R. China
| | - Qing Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Motlalepula G Matsabisa
- Department of Pharmacology, School of Medicines Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Hlupheka Chabalala
- IK-Based Technology Innovations Department of Science and Technology Brummeria, Pretoria 0001, South Africa
| | - Fernão Castro Braga
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Minke Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| |
Collapse
|
25
|
Electroacupuncture Attenuates Inflammation after Ischemic Stroke by Inhibiting NF- κB-Mediated Activation of Microglia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8163052. [PMID: 32922507 PMCID: PMC7453260 DOI: 10.1155/2020/8163052] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 01/07/2023]
Abstract
Microglial activation and microglia-mediated inflammation play an important role in the occurrence, development, and outcome of stroke. Brain injury induces the activation and release of proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin- (IL-) 1β, and IL-6. Many studies have confirmed that acupuncture is effective in treating ischemic stroke. However, its protective mechanism against ischemic brain injury is complex and multifactorial. In this study, we observed the effects of electroacupuncture at Baihui (GV20) and Dazhui (GV14) on microglial activation and inflammation in the cortical ischemic penumbra (IP) of permanent middle cerebral artery occlusion (pMCAO) rats. It was found that electroacupuncture inhibited the degeneration and necrosis of microglia in the cortical IP and ameliorated mitochondrial damage. Immunofluorescence and western blot analysis showed that microglia were in a resting state or weakly activated in the normal brain. After cerebral ischemia, the expression of microglial markers (Iba-1 and CD11b) increased, and NF-κB p65, IL-1β, and TNF-α expression gradually increased. The dynamic changes were generally temporally consistent. Electroacupuncture downregulated the expressions of Iba-1 and CD11b. Additionally, it inhibited the expression of NF-κB p65, IL-1β, and TNF-α and reduced the conversion of microglia to the M1 phenotype after ischemia. Electroacupuncture regulated the activation of microglia and microglia-mediated inflammation after cerebral ischemia, confirming the relevant theories regarding the effect of acupuncture treatment on cerebral ischemia and guiding clinical practice.
Collapse
|
26
|
Wu S, Yang T, Cen K, Zou Y, Shi X, Zhou D, Gao Y, Chai L, Zhao Y, Sun Y, Zhu L. In Vitro Evaluation of the Neuroprotective Effect of Panax notoginseng Saponins by Activating the EGFR/PI3K/AKT Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:1403572. [PMID: 32802113 PMCID: PMC7415117 DOI: 10.1155/2020/1403572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/27/2020] [Accepted: 05/08/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE This study investigated whether Panax notoginseng saponins (PNS) extracted from Panax notoginseng (Bruk.) F. H. Chen played a neuroprotective role by affecting the EGFR/PI3K/AKT pathway in oxygen-glucose deprived (OGD) SH-SY5Y cells. MATERIALS AND METHODS Different groups of OGD SH-SY5Y cells were treated with varying doses of PNS, PNS + AG1478 (a specific inhibitor of EGFR), or AG1478 for 16 hours. CCK8, Annexin V-FITC/PI apoptosis analysis, and LDH release analysis were used to determine cell viability, apoptosis rate, and amounts of LDH. Quantitative real-time PCR (q-RT-PCR) and western blotting were used to measure mRNA and proteins levels of p-EGFR/EGFR, p-PI3K/PI3K, and p-AKT/AKT in SH-SY5Y cells subjected to OGD. RESULTS PNS significantly enhanced cell viability, reduced apoptosis, and weakened cytotoxicity by inhibiting the release of LDH. The mRNA expression profiles of EGFR, PI3K, and AKT showed no difference between model and other groups. Additionally, ratios of p-EGFR, p-PI3K, and p-AKT to EGFR, PI3K, and AKT proteins expression, respectively, all increased significantly. CONCLUSIONS These findings indicate that PNS enhanced neuroprotective effects by activating the EGFR/PI3K/AKT pathway and elevating phosphorylation levels in OGD SH-SY5Y cells.
Collapse
Affiliation(s)
- Shuang Wu
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tiantian Yang
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kai Cen
- Department of Stomatology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yihuai Zou
- Department of Neurology and Stroke Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaowei Shi
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Dongrui Zhou
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Limin Chai
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yizhou Zhao
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yikun Sun
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lingqun Zhu
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
27
|
Li F, Zhao H, Han Z, Wang R, Tao Z, Fan Z, Zhang S, Li G, Chen Z, Luo Y. Xuesaitong May Protect Against Ischemic Stroke by Modulating Microglial Phenotypes and Inhibiting Neuronal Cell Apoptosis via the STAT3 Signaling Pathway. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:115-123. [PMID: 30426907 DOI: 10.2174/1871527317666181114140340] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/20/2018] [Accepted: 11/11/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Xuesaitong mainly comprises Panax notoginseng saponins and has shown a promising feature in an acute ischemic stroke model; however, its effect on long-term recovery following stroke, and the related mechanisms, are unknown. METHODS The objective of this study was to investigate the long-term protective effects of xuesaitong against ischemic stroke and its effect on microglial polarization. Experimental cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) for 45 min, and C57BL/6 mice were immediately injected with xuesaitong or vehicle through the caudal vein at the onset of cerebral reperfusion consecutively for 14 days. The animals were randomly divided into three groups: a sham-operated group, vehicle-treated group and xuesaitong-treated group at a dose of 15μg/g. Subsequently, 2,3,5-triphenyltetrazolium chloride staining was used to assess infarct volume, and adhesive removal tests and balance beam tests were used to evaluate neurological deficits at days 1, 3, 7 and 14 following ischemia. Reverse-transcriptase polymerase chain reaction and immunofluorescence staining for M1 markers (CD16, iNOS) and M2 markers (CD206, arginase-1) were performed to characterize phenotypic changes in microglia. Elisa was used to determine the release of pro-inflammatory and anti-inflammatory cytokines. TUNEL staining was conducted to detect neuronal cell apoptosis, and western blots were used to determine the activation of signal transducer and activator of transcription 3 (STAT3). RESULTS Our results revealed that xuesaitong treatment, compared with vehicle treatment, significantly reduced cerebral infarct volume 1 and 3 days after MCAO and resulted in significant improvements in long-term neurological outcomes. Furthermore, xuesaitong treatment, compared with vehicle treatment, significantly reduced M1 markers and elevated M2 markers 7 and 14 days after MCAO at both the mRNA and protein level in ipsilateral brain tissue. This finding was also accompanied by a reduction in neuronal cell apoptosis and p-STAT3 transcription factor levels in the xuesaitong-treated group compared with the vehicle-treated group. CONCLUSION We demonstrated that xuesaitong has long-term neuroprotective effects against ischemic stroke, possibly by promoting the polarization of microglia to an M2 phenotype and by inhibiting neuronal cell death via down-regulation of the STAT3 signaling pathway, providing new evidence that xuesaitong might be a promising therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Fangfang Li
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Haiping Zhao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Ziping Han
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Rongliang Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Zhen Tao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Zhibin Fan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Sijia Zhang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Guangwen Li
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Zhigang Chen
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
28
|
Xu C, Wang W, Wang B, Zhang T, Cui X, Pu Y, Li N. Analytical methods and biological activities of Panax notoginseng saponins: Recent trends. JOURNAL OF ETHNOPHARMACOLOGY 2019; 236:443-465. [PMID: 30802611 DOI: 10.1016/j.jep.2019.02.035] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 02/02/2019] [Accepted: 02/19/2019] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng (Burk.) F. H. Chen, also called Sanqi, is a widely used traditional Chinese medicine, which has long history used as herbal medicines. It is currently an important medicinal material in China, holding the first place in the sale volume of the whole patent medicines market in China, and the market size of the single species has exceeded 10 billion yuan. In addition, P. notoginseng is an important constituent part of many famous Chinese patent medicines, such as Compound Danshen Dripping Pills and Yunnan Baiyao. P. notoginseng saponins (PNSs), which are the major active components of P. notoginseng, are a kind of chemical mixture containing different dammarane-type saponins. Many studies show that PNSs have been extensively used in medical research or applications, such as atherosclerosis, diabetes, acute lung injury, cancer, and cardiovascular diseases. In addition, various PNS preparations, such as injections and capsules, have been made commercially available and are widely applied in clinical practice. AIM OF THE REVIEW Since the safety and efficacy of compounds are related to their qualitative and quantitative analyses, this review briefly summarizes the analytic approaches for PNSs and their biological effects developed in the last decade. METHODOLOGY This review conducted a systematic search in electronic databases, such as Pubmed, Google Scholar, SciFinder, ISI Web of Science, and CNKI, since 2009. The information provided in this review is based on peer-reviewed papers and patents in either English or Chinese. RESULTS At present, the chromatographic technique remains the most extensively used approach for the identification or quantitation of PNSs, coupled with different detectors, among which the difference mainly lies in their sensitivity and specificity for analyzing various compounds. It is well-known that PNSs have traditionally strong activity on cardiovascular diseases, such as atherosclerosis, intracerebral hemorrhage, or brain injury. The recent studies showed that PNSs also responded to osteoporosis, cancers, diabetes, and drug toxicity. However, some other studies also showed that some PNSs injections and special PNS components might lead to some biological toxicity under certain dosages. CONCLUSION This review may be used as a basis for further research in the field of quantitative and qualitative analyses, and is expected to provide updated and valuable insights into the potential medicinal applications of PNSs.
Collapse
Affiliation(s)
- Congcong Xu
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weiwei Wang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bing Wang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiuming Cui
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Yiqiong Pu
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ning Li
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Research Institute of KPC Pharmaceuticals, Inc., Kunming 650100, China.
| |
Collapse
|
29
|
Wu T, Jia Z, Dong S, Han B, Zhang R, Liang Y, Zhang S, Sun J. Panax notoginseng Saponins Ameliorate Leukocyte Adherence and Cerebrovascular Endothelial Barrier Breakdown upon Ischemia-Reperfusion in Mice. J Vasc Res 2019; 56:1-10. [DOI: 10.1159/000494935] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/29/2018] [Indexed: 11/19/2022] Open
|
30
|
Meng L, Lin J, Huang Q, Liang P, Huang J, Jian C, Lin C, Li X. Panax notoginseng Saponins Attenuate Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury in Human SH-SY5Y Cells by Regulating the Expression of Inflammatory Factors through miR-155. Biol Pharm Bull 2018; 42:462-467. [PMID: 30587668 DOI: 10.1248/bpb.b18-00799] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Panax notoginseng saponins (PNS) have been widely used in China to treat stroke. Accumulating evidence has found that microRNA (miR)-155 plays critical roles in the pathology of ischemic stroke. Here we investigated whether PNS plays a protective effect against oxygen-glucose deprivation/reoxygenation (OGD/R)-induced focal inflammation and injury in SH-SY5Y cells by regulating miR-155 expression. Treatment with PNS at a concentration less than 160 µg/mL had no effect on the proliferation of SH-SY5Y cell. In OGD/R-induced SH-SY5Y cells, 160 µg/mL PNS treatment promoted cell proliferation and cell cycle progression, as well as decreased inhibited apoptosis and miR-155 expression. However, overexpression of miR-155 attenuated the promotion effects of PNS on cell proliferation and cell cycle, apoptosis inhibition in OGD/R-induced SH-SY5Y cells. Moreover, 160 µg/mL PNS treatment decreased the levels of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) in OGD/R-induced SH-SY5Y cells, whereas overexpression of miR-155 reversed PNS-induced decreases in the levels of IL-1β, IL-6, and TNF-α in OGD/R-treated SH-SY5Y cells. In conclusion, PNS attenuated OGD/R-induced injury in human undifferentiated SH-SY5Y cells by regulating the expression of inflammatory factors through miR-155.
Collapse
Affiliation(s)
- Lanqing Meng
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities
| | - Jun Lin
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities
| | - Qing Huang
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities
| | - Ping Liang
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities
| | - Jianmin Huang
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities
| | - Chongdong Jian
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities
| | - Chong Lin
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities
| | - Xuebin Li
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities
| |
Collapse
|
31
|
Wang FJ, Sun ZY, Li RL, Hu LM, Chai LJ, Wang SX, Guo H, Zhang Y. Protection of Salvianolate Lyophilized Injection combined with Xueshuantong Injection (Lyophilized) against focal cerebral ischemia/reperfusion injury in rats through suppression of inflammatory response. CHINESE HERBAL MEDICINES 2018. [DOI: 10.1016/j.chmed.2017.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
32
|
Chen MY, Shao L, Zhang W, Wang CZ, Zhou HH, Huang WH, Yuan CS. Metabolic analysis of Panax notoginseng saponins with gut microbiota-mediated biotransformation by HPLC-DAD-Q-TOF-MS/MS. J Pharm Biomed Anal 2017; 150:199-207. [PMID: 29245089 DOI: 10.1016/j.jpba.2017.12.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/06/2017] [Accepted: 12/06/2017] [Indexed: 12/21/2022]
Abstract
Saponins such as notoginsenosides and ginsenosides from Panax notoginseng are responsible for the herb's clinical applications. Unfortunately, there is poor oral bioavailability of saponins. However, gut microbiota can transform saponins to yield the metabolites that are potential bioactive substances. In this study, we aimed to characterize the metabolic profiles of P. notoginseng saponins (PNS) by incubating them with human gut microbiota. The notoginsenosides, ginsenosides and related metabolites were separated and identified using a highly sensitive and selective high-performance liquid chromatography coupled with diode array detection/quadrupole tandem time-of-flight mass spectrometry (HPLC-DAD-Q-TOF-MS/MS). The results showed that the most abundant metabolites, ginsenoside F1, protopanaxatriol (PPT), ginsenoside Rh2, ginsenoside compound K (GCK) and protopanaxadiol (PPD), were reported to possess stronger related pharmacological activities when compared with parent ginsenosides. These metabolites were identified among a total of 45 other metabolites. Furthermore, it was elucidated that deglycosylation is the main metabolic pathway which saponins are split off from glycosyl moieties by the enzymes secreted from gut microbiota. The gut microbiota may play a significant role in mediating the bioactivities of PNS.
Collapse
Affiliation(s)
- Man-Yun Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China
| | - Li Shao
- Department of Pharmacognosy, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410128, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, The Pritzker School of Medicine, University of Chicago, 5841 South Maryland Avenue, MC 4028, Chicago, IL 60637, USA
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China
| | - Wei-Hua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China; Tang Center for Herbal Medicine Research, The Pritzker School of Medicine, University of Chicago, 5841 South Maryland Avenue, MC 4028, Chicago, IL 60637, USA.
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, The Pritzker School of Medicine, University of Chicago, 5841 South Maryland Avenue, MC 4028, Chicago, IL 60637, USA
| |
Collapse
|
33
|
Song H, Wang P, Liu J, Wang C. Panax notoginsengPreparations for Unstable Angina Pectoris: A Systematic Review and Meta-Analysis. Phytother Res 2017. [PMID: 28634988 DOI: 10.1002/ptr.5848] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Haiying Song
- Center for Cardiovascular Diseases, Department of Cardiology, Xiyuan Hospital; China Academy of Chinese Medical Sciences; Beijing 100091 China
| | - Peili Wang
- Center for Cardiovascular Diseases, Department of Cardiology, Xiyuan Hospital; China Academy of Chinese Medical Sciences; Beijing 100091 China
| | - Jiangang Liu
- Center for Cardiovascular Diseases, Department of Cardiology, Xiyuan Hospital; China Academy of Chinese Medical Sciences; Beijing 100091 China
| | - Chenglong Wang
- Center for Cardiovascular Diseases, Department of Cardiology, Xiyuan Hospital; China Academy of Chinese Medical Sciences; Beijing 100091 China
| |
Collapse
|
34
|
Bonaventura A, Liberale L, Vecchié A, Casula M, Carbone F, Dallegri F, Montecucco F. Update on Inflammatory Biomarkers and Treatments in Ischemic Stroke. Int J Mol Sci 2016; 17:1967. [PMID: 27898011 PMCID: PMC5187767 DOI: 10.3390/ijms17121967] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/08/2016] [Accepted: 11/17/2016] [Indexed: 12/26/2022] Open
Abstract
After an acute ischemic stroke (AIS), inflammatory processes are able to concomitantly induce both beneficial and detrimental effects. In this narrative review, we updated evidence on the inflammatory pathways and mediators that are investigated as promising therapeutic targets. We searched for papers on PubMed and MEDLINE up to August 2016. The terms searched alone or in combination were: ischemic stroke, inflammation, oxidative stress, ischemia reperfusion, innate immunity, adaptive immunity, autoimmunity. Inflammation in AIS is characterized by a storm of cytokines, chemokines, and Damage-Associated Molecular Patterns (DAMPs) released by several cells contributing to exacerbate the tissue injury both in the acute and reparative phases. Interestingly, many biomarkers have been studied, but none of these reflected the complexity of systemic immune response. Reperfusion therapies showed a good efficacy in the recovery after an AIS. New therapies appear promising both in pre-clinical and clinical studies, but still need more detailed studies to be translated in the ordinary clinical practice. In spite of clinical progresses, no beneficial long-term interventions targeting inflammation are currently available. Our knowledge about cells, biomarkers, and inflammatory markers is growing and is hoped to better evaluate the impact of new treatments, such as monoclonal antibodies and cell-based therapies.
Collapse
Affiliation(s)
- Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
| | - Alessandra Vecchié
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
| | - Matteo Casula
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
- IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genova, 10 Largo Benzi, 16132 Genoa, Italy.
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
- IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genova, 10 Largo Benzi, 16132 Genoa, Italy.
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 viale Benedetto XV, 16132 Genoa, Italy.
| |
Collapse
|