1
|
Nohesara S, Mostafavi Abdolmaleky H, Thiagalingam S. Substance-Induced Psychiatric Disorders, Epigenetic and Microbiome Alterations, and Potential for Therapeutic Interventions. Brain Sci 2024; 14:769. [PMID: 39199463 PMCID: PMC11352452 DOI: 10.3390/brainsci14080769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Substance use disorders (SUDs) are complex biopsychosocial diseases that cause neurocognitive deficits and neurological impairments by altering the gene expression in reward-related brain areas. Repeated drug use gives rise to alterations in DNA methylation, histone modifications, and the expression of microRNAs in several brain areas that may be associated with the development of psychotic symptoms. The first section of this review discusses how substance use contributes to the development of psychotic symptoms via epigenetic alterations. Then, we present more evidence about the link between SUDs and brain epigenetic alterations. The next section presents associations between paternal and maternal exposure to substances and epigenetic alterations in the brains of offspring and the role of maternal diet in preventing substance-induced neurological impairments. Then, we introduce potential therapeutic agents/approaches such as methyl-rich diets to modify epigenetic alterations for alleviating psychotic symptoms or depression in SUDs. Next, we discuss how substance use-gut microbiome interactions contribute to the development of neurological impairments through epigenetic alterations and how gut microbiome-derived metabolites may become new therapeutics for normalizing epigenetic aberrations. Finally, we address possible challenges and future perspectives for alleviating psychotic symptoms and depression in patients with SUDs by modulating diets, the epigenome, and gut microbiome.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Mental Health Research Center, Psychosocial Health Research Institute, Department of Psychiatry, School of Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Nutrition/Metabolism Laboratory, Department of Surgery, BIDMC, Harvard Medical School, Boston, MA 02215, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Pathology & Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
2
|
Chang TM, Lin HL, Tzang CC, Liang JA, Hsu TC, Tzang BS. Unraveling the Role of miR-200b-3p in Attention-Deficit/Hyperactivity Disorder (ADHD) and Its Therapeutic Potential in Spontaneously Hypertensive Rats (SHR). Biomedicines 2024; 12:144. [PMID: 38255250 PMCID: PMC10813109 DOI: 10.3390/biomedicines12010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/02/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder in children with unknown etiology. Impaired learning ability was commonly reported in ADHD patients and has been associated with dopamine uptake in the striatum of an animal model. Another evidence also indicated that micro-RNA (miR)-200b-3p is associated with learning ability in various animal models. However, the association between miR-200b-3p and ADHD-related symptoms remains unclear. Therefore, the current study investigated the role of miR-200b-3p in ADHD-related symptoms such as inattention and striatal inflammatory cytokines. To verify the influence of miR-200b-3p in ADHD-related symptoms, striatal stereotaxic injection of miR-200b-3p antagomir (AT) was performed on spontaneously hypertensive rats (SHR). The antioxidant activity and expressions of miR-200b-3p, slit guidance ligand 2 (Slit2), and inflammatory cytokines in the striatum of SHR were measured using quantitative real-time polymerase chain reaction (RT-qPCR), immunohistochemistry (IHC), immunoblotting, and enzyme-linked immunosorbent assay (ELISA). The spontaneous alternation of SHR was tested using a three-arm Y-shaped maze. The administration of miR-200b-3p AT or taurine significantly decreased striatal tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in SHR, along with increased super-oxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities and significantly higher spontaneous alternation. In this paper, we show that miR-200b-3p AT and taurine alleviates ADHD-related symptoms in SHR. These findings provide insights into ADHD's molecular basis and suggest miR-200b-3p as a potential therapeutic target. Concurrently, this study also suggests broad implications for treating neurodevelopmental disorders affecting learning activity such as ADHD.
Collapse
Affiliation(s)
- Tung-Ming Chang
- Pediatric Neurology, Changhua Christian Children’s Hospital, Changhua Christian Hospital, Changhua 500, Taiwan;
| | - Hsiu-Ling Lin
- Cardiac Function Examination Room, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
| | - Chih-Chen Tzang
- School of Medicine, College of Medicine, National Taiwan University, Taipei City 100, Taiwan;
| | - Ju-An Liang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
| | - Tsai-Ching Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
- Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Bor-Show Tzang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
- Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| |
Collapse
|
3
|
Muenstermann C, Clemens KJ. Epigenetic mechanisms of nicotine dependence. Neurosci Biobehav Rev 2024; 156:105505. [PMID: 38070842 DOI: 10.1016/j.neubiorev.2023.105505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023]
Abstract
Smoking continues to be a leading cause of preventable disease and death worldwide. Nicotine dependence generates a lifelong propensity towards cravings and relapse, presenting an ongoing challenge for the development of treatments. Accumulating evidence supports a role for epigenetics in the development and maintenance of addiction to many drugs of abuse, however, the involvement of epigenetics in nicotine dependence is less clear. Here we review evidence that nicotine interacts with epigenetic mechanisms to enable the maintenance of nicotine-seeking across time. Research across species suggests that nicotine increases permissive histone acetylation, decreases repressive histone methylation, and modulates levels of DNA methylation and noncoding RNA expression throughout the brain. These changes are linked to the promoter regions of genes critical for learning and memory, reward processing and addiction. Pharmacological manipulation of enzymes that catalyze core epigenetic modifications regulate nicotine reward and associative learning, demonstrating a functional role of epigenetic modifications in nicotine dependence. These findings are consistent with nicotine promoting an overall permissive chromatin state at genes important for learning, memory and reward. By exploring these links through next-generation sequencing technologies, epigenetics provides a promising avenue for future interventions to treat nicotine dependence.
Collapse
Affiliation(s)
| | - Kelly J Clemens
- School of Psychology, University of New South Wales, Sydney, Australia.
| |
Collapse
|
4
|
Occhipinti C, La Russa R, Iacoponi N, Lazzari J, Costantino A, Di Fazio N, Del Duca F, Maiese A, Fineschi V. miRNAs and Substances Abuse: Clinical and Forensic Pathological Implications: A Systematic Review. Int J Mol Sci 2023; 24:17122. [PMID: 38069445 PMCID: PMC10707252 DOI: 10.3390/ijms242317122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Substance addiction is a chronic and relapsing brain disorder characterized by compulsive seeking and continued substance use, despite adverse consequences. The high prevalence and social burden of addiction are indisputable; however, the available intervention is insufficient. The modulation of gene expression and aberrant adaptation of neural networks are attributed to the changes in brain functions under repeated exposure to addictive substances. Considerable studies have demonstrated that miRNAs are strong modulators of post-transcriptional gene expression in substance addiction. The emerging role of microRNA (miRNA) provides new insights into many biological and pathological processes in the central nervous system: their variable expression in different regions of the brain and tissues may play a key role in regulating the pathophysiological events of addiction. This work provides an overview of the current literature on miRNAs involved in addiction, evaluating their impaired expression and regulatory role in neuroadaptation and synaptic plasticity. Clinical implications of such modulatory capacities will be estimated. Specifically, it will evaluate the potential diagnostic role of miRNAs in the various stages of drug and substance addiction. Future perspectives about miRNAs as potential novel therapeutic targets for substance addiction and abuse will also be provided.
Collapse
Affiliation(s)
- Carla Occhipinti
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (C.O.); (N.I.); (J.L.); (A.C.)
| | - Raffaele La Russa
- Department of Clinical Medicine, Public Health, Life Sciences, and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Naomi Iacoponi
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (C.O.); (N.I.); (J.L.); (A.C.)
| | - Julia Lazzari
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (C.O.); (N.I.); (J.L.); (A.C.)
| | - Andrea Costantino
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (C.O.); (N.I.); (J.L.); (A.C.)
| | - Nicola Di Fazio
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; (N.D.F.); (F.D.D.); (V.F.)
| | - Fabio Del Duca
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; (N.D.F.); (F.D.D.); (V.F.)
| | - Aniello Maiese
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (C.O.); (N.I.); (J.L.); (A.C.)
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; (N.D.F.); (F.D.D.); (V.F.)
| |
Collapse
|
5
|
Rezayof A, Ghasemzadeh Z, Sahafi OH. Addictive drugs modify neurogenesis, synaptogenesis and synaptic plasticity to impair memory formation through neurotransmitter imbalances and signaling dysfunction. Neurochem Int 2023; 169:105572. [PMID: 37423274 DOI: 10.1016/j.neuint.2023.105572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
Drug abuse changes neurophysiological functions at multiple cellular and molecular levels in the addicted brain. Well-supported scientific evidence suggests that drugs negatively affect memory formation, decision-making and inhibition, and emotional and cognitive behaviors. The mesocorticolimbic brain regions are involved in reward-related learning and habitual drug-seeking/taking behaviors to develop physiological and psychological dependence on the drugs. This review highlights the importance of specific drug-induced chemical imbalances resulting in memory impairment through various neurotransmitter receptor-mediated signaling pathways. The mesocorticolimbic modifications in the expression levels of brain-derived neurotrophic factor (BDNF) and the cAMP-response element binding protein (CREB) impair reward-related memory formation following drug abuse. The contributions of protein kinases and microRNAs (miRNAs), along with the transcriptional and epigenetic regulation have also been considered in memory impairment underlying drug addiction. Overall, we integrate the research on various types of drug-induced memory impairment in distinguished brain regions and provide a comprehensive review with clinical implications addressing the upcoming studies.
Collapse
Affiliation(s)
- Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Zahra Ghasemzadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Oveis Hosseinzadeh Sahafi
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
6
|
Jiang MJ, Li J, Luo CH, Zhu C, Chen ZJ, Bai W, Hu TY, Feng CH, Li C, Mo ZX. Rhynchophylline inhibits methamphetamine dependence via modulating the miR-181a-5p/GABRA1 axis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116635. [PMID: 37182675 DOI: 10.1016/j.jep.2023.116635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Uncaria rhynchophylla (Miq.) Miq. ex Havil. is a plant species that is routinely devoted in traditional Chinese medicine to treat central nervous system disorders. Rhynchophylline (Rhy), a predominant alkaloid isolated from Uncaria rhynchophylla (Miq.) Miq. ex Havil., has been demonstrated to reverse methamphetamine-induced (METH-induced) conditioned place preference (CPP) effects in mice, rats and zebrafish. The precise mechanism is still poorly understood, thus further research is necessary. AIM OF STUDY This study aimed to investigate the role of miRNAs in the inhibitory effect of Rhy on METH dependence. MATERIALS AND METHODS A rat CPP paradigm and a PC12 cell addiction model were established. Microarray assays were used to screen and identify the candidate miRNA. Behavioral assessment, real-time PCR, dual-luciferase reporter assay, western blotting, stereotaxic injection of antagomir/agomir and cell transfection experiments were performed to elucidate the effect of the candidate miRNA and intervention mechanism of Rhy on METH dependence. RESULTS Rhy successfully reversed METH-induced CPP effect and the upregulated miR-181a-5p expression in METH-dependent rat hippocampus and PC12 cells. Moreover, suppression of miR-181a-5p by antagomir 181a reversed METH-induced CPP effect. Meanwhile, overexpression of miR-181a-5p by agomir 181a in combination with low-dose METH (0.5 mg/kg) elicited a significant CPP effect, which was blocked by Rhy through inhibiting miR-181a-5p. Finally, the result demonstrated that miR-181a-5p exerted its regulatory role by targeting γ-aminobutyric acid A receptor α1 (GABRA1) both in vivo and in vitro. CONCLUSION This finding reveals that Rhy inhibits METH dependence via modulating the miR-181a-5p/GABRA1 axis, which may be a promising target for treatment of METH dependence.
Collapse
Affiliation(s)
- Ming-Jin Jiang
- Jiangxi Provincial Institute of Translational Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Jing Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Chao-Hua Luo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Chen Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Zhi-Jie Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Wei Bai
- Jiangxi Provincial Institute of Translational Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Tian-Yu Hu
- Jiangxi Provincial Institute of Translational Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Chuan-Hua Feng
- Jiangxi Provincial Institute of Translational Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Chan Li
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
| | - Zhi-Xian Mo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
7
|
Seyednejad SA, Sartor GC. Noncoding RNA therapeutics for substance use disorder. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2:10807. [PMID: 36601439 PMCID: PMC9808746 DOI: 10.3389/adar.2022.10807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although noncoding RNAs (ncRNAs) have been shown to regulate maladaptive neuroadaptations that drive compulsive drug use, ncRNA-targeting therapeutics for substance use disorder (SUD) have yet to be clinically tested. Recent advances in RNA-based drugs have improved many therapeutic issues related to immune response, specificity, and delivery, leading to multiple successful clinical trials for other diseases. As the need for safe and effective treatments for SUD continues to grow, novel nucleic acid-based therapeutics represent an appealing approach to target ncRNA mechanisms in SUD. Here, we review ncRNA processes implicated in SUD, discuss recent therapeutic approaches for targeting ncRNAs, and highlight potential opportunities and challenges of ncRNA-targeting therapeutics for SUD.
Collapse
Affiliation(s)
- Seyed Afshin Seyednejad
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
- Connecticut Institute for the Brain and Cognitive Sciences (CT IBACS), Storrs, CT, United States
| | - Gregory C. Sartor
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
- Connecticut Institute for the Brain and Cognitive Sciences (CT IBACS), Storrs, CT, United States
| |
Collapse
|
8
|
Song SH, Jang WJ, Jang EY, Kim OH, Kim H, Son T, Choi DY, Lee S, Jeong CH. Striatal miR-183-5p inhibits methamphetamine-induced locomotion by regulating glucocorticoid receptor signaling. Front Pharmacol 2022; 13:997701. [PMID: 36225577 PMCID: PMC9549132 DOI: 10.3389/fphar.2022.997701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
MicroRNA (miRNA)-mediated striatal gene regulation may play an important role in methamphetamine (METH) addiction. This study aimed to identify changes in novel miRNAs and their target genes during METH self-administration and investigate their roles in METH-induced locomotion. RNA sequencing analysis revealed that mir-183-5p was upregulated in the striatum of METH self-administered rats, and target gene prediction revealed that the glucocorticoid receptor (GR) gene, Nr3c1, was a potential target gene for mir-183-5p. We confirmed that single and repeated METH administrations increased METH-induced locomotion and plasma corticosterone levels in rats. Additionally, increased miR-185-5p expression and decreased GR gene expression were observed only in the repeated-METH-injection group but not in the single-injection group. We then investigated the effects of miR-183-5p on METH-induced locomotion using a miR-183-5p mimic and inhibitor. Injection of a mir-183-5p mimic in the striatum of rats attenuated METH-induced locomotion, whereas injection of a miR-183-5p inhibitor enhanced the locomotor activity in METH-administered rats. Furthermore, the miR-183-5p mimic reduced the phosphorylation of tyrosine hydroxylase (TH) whereas the inhibitor increased it. Taken together, these results indicate that repeated METH injections increase striatal miR-183-5p expression and regulate METH-induced locomotion by regulating GR expression in rats, thereby suggesting a potential role of miR-183-5p as a novel regulator of METH-induced locomotion.
Collapse
Affiliation(s)
- Sang-Hoon Song
- College of Pharmacy, Keimyung University, Daegu, South Korea
| | - Won-Jun Jang
- College of Pharmacy, Keimyung University, Daegu, South Korea
| | - Eun Young Jang
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, Daejeon, South Korea
| | - Oc-Hee Kim
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, Daejeon, South Korea
| | - Haesoo Kim
- College of Pharmacy, Keimyung University, Daegu, South Korea
| | - Taekwon Son
- Korea Brain Bank, Korea Brain Research Institute, Daegu, South Korea
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu, South Korea
- *Correspondence: Sooyeun Lee, ; Chul-Ho Jeong,
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, Daegu, South Korea
- *Correspondence: Sooyeun Lee, ; Chul-Ho Jeong,
| |
Collapse
|
9
|
Cabana-Domínguez J, Soler Artigas M, Arribas L, Alemany S, Vilar-Ribó L, Llonga N, Fadeuilhe C, Corrales M, Richarte V, Ramos-Quiroga JA, Ribasés M. Comprehensive analysis of omics data identifies relevant gene networks for Attention-Deficit/Hyperactivity Disorder (ADHD). Transl Psychiatry 2022; 12:409. [PMID: 36153331 PMCID: PMC9509350 DOI: 10.1038/s41398-022-02182-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder that results from the interaction of both genetic and environmental risk factors. Genome-wide association studies have started to identify multiple genetic risk loci associated with ADHD, however, the exact causal genes and biological mechanisms remain largely unknown. We performed a multi-step analysis to identify and characterize modules of co-expressed genes associated with ADHD using data from peripheral blood mononuclear cells of 270 ADHD cases and 279 controls. We identified seven ADHD-associated modules of co-expressed genes, some of them enriched in both genetic and epigenetic signatures for ADHD and in biological pathways relevant for psychiatric disorders, such as the regulation of gene expression, epigenetics and immune system. In addition, for some of the modules, we found evidence of potential regulatory mechanisms, including microRNAs and common genetic variants. In conclusion, our results point to promising genes and pathways for ADHD, supporting the use of peripheral blood to assess gene expression signatures in psychiatric disorders. Furthermore, they highlight that the combination of multi-omics signals provides deeper and broader insights into the biological mechanisms underlying ADHD.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain.
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Lorena Arribas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Silvia Alemany
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Laura Vilar-Ribó
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Natalia Llonga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Christian Fadeuilhe
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montse Corrales
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vanesa Richarte
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Antoni Ramos-Quiroga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain.
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
10
|
Shang Q, Wang J, Xi Z, Gao B, Qian H, An R, Shao G, Liu H, Li T, Liu X. Mechanisms underlying microRNA-222-3p modulation of methamphetamine-induced conditioned place preference in the nucleus accumbens in mice. Psychopharmacology (Berl) 2022; 239:2997-3008. [PMID: 35881147 DOI: 10.1007/s00213-022-06183-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022]
Abstract
RATIONALE MicroRNA (miRNA) control of post-transcription gene expression in the nucleus accumbens (NAc) has been implicated in methamphetamine (METH) dependence. Conditioned place preference (CPP) is a classical animal procedure that reflects the rewarding effects of addictive drugs. miR-222-3p has been reported to play a key role in various neurological diseases and is strongly associated with alcohol dependence. Nevertheless, the role of miR-222-3p in METH dependence remains unclear. OBJECTIVE To explore the molecular mechanisms underlying the role of miR-222-3p in the NAc in METH-induced CPP. METHODS miR-222-3p expression in the NAc of METH-induced CPP mice was detected by quantitative real-time (qPCR). Following adeno-associated virus (AAV)-mediated overexpression or knockdown of miR-222-3p in the NAc, mice were subjected to CPP to investigate the effects of miR-222-3p on METH-induced CPP. Target genes of mir-222-3p were predicted using bioinformatics analysis. Candidate target genes for METH-induced CPP were validated by qPCR. RESULTS miR-222-3p expression in the NAc was decreased in CPP mice. Overexpression of miR-222-3p in the NAc blunted METH-induced CPP. Ppp3r1, Cdkn1c, Fmr1, and PPARGC1A were identified as target gene transcripts potentially mediating the effects of miR-222-3p on METH-induced CPP. CONCLUSION Our results highlight miR-222-3p as a key epigenetic regulator in METH-induced CPP and suggest a potential role for miR-222-3p in the regulation of METH-induced reward-related changes in the brain.
Collapse
Affiliation(s)
- Qing Shang
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Jing Wang
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Zhijia Xi
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Baoyao Gao
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Hongyan Qian
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Ran An
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Gaojie Shao
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Hua Liu
- Key Laboratory of Forensic Toxicology, Ministry of Public Security, Beijing, People's Republic of China
| | - Tao Li
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China. .,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Xinshe Liu
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China. .,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
11
|
Zhao Y, Qin F, Han S, Li S, Zhao Y, Wang H, Tian J, Cen X. MicroRNAs in drug addiction: Current status and future perspectives. Pharmacol Ther 2022; 236:108215. [DOI: 10.1016/j.pharmthera.2022.108215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 12/21/2022]
|
12
|
Rezai Moradali S, Soltanzadeh H, Montazam H, Asadi Z, Fathi S. MicroRNA-127 and MicroRNA-132 Expression in Patients with Methamphetamine Abuse in East Azerbaijan, Iran: A Case-Control Study. ADDICTION & HEALTH 2022; 14:214-217. [PMID: 36544981 PMCID: PMC9743824 DOI: 10.34172/ahj.2022.1298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 01/15/2022] [Indexed: 11/29/2022]
Abstract
Background Addiction is a personal and social problem worldwide, and has physical and psychological effects on consumers' health. Recently, miRNAs have been described as noninvasive biomarkers. Currently, methamphetamine abuse (MA) is mainly diagnosed by chromatography. This study aimed to investigate the expression and diagnostic value of miR-127 and miR-132 in blood samples of patients with MA and non-user healthy controls. Methods A total of 60 patients with MA (case group) and 60 non-user healthy individuals (control group) were selected from Tabriz, East Azerbaijan, Iran. Peripheral blood was obtained and total RNA was extracted. Then, cDNA synthesis was performed and miR-127 and miR-132 expression was evaluated using real time polymerase chain reaction (PCR) method. Findings The results of this study demonstrated that miR-127 was significantly lower (0.042-fold change) in patients with MA than in the control group (P<0.05). However, miR-132 was significantly higher (7.1-fold change) in patients with MA than in the control group (P<0.05). Conclusion In general, expression of miR-127 and miR-132 may alter in patients with MA. Further studies are needed to identify underlying molecular mechanisms in patients with MA.
Collapse
Affiliation(s)
| | - Hossein Soltanzadeh
- Department of Genetics, Bonab Branch, Islamic Azad University, Bonab, Iran,Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran,Corresponding Author: Hossein Soltanzadeh,
| | - Hassan Montazam
- Department of Genetics, Bonab Branch, Islamic Azad University, Bonab, Iran
| | - Zahra Asadi
- Department of Genetics, Bonab Branch, Islamic Azad University, Bonab, Iran
| | - Shima Fathi
- Department of Genetics, Bonab Branch, Islamic Azad University, Bonab, Iran
| |
Collapse
|
13
|
Deng B, Zhang Z, Zhou H, Zhang X, Niu S, Yan X, Yan J. MicroRNAs in Methamphetamine-Induced Neurotoxicity and Addiction. Front Pharmacol 2022; 13:875666. [PMID: 35496314 PMCID: PMC9046672 DOI: 10.3389/fphar.2022.875666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/31/2022] [Indexed: 12/21/2022] Open
Abstract
Methamphetamine (METH) abuse remains a significant public health concern globally owing to its strong addictive properties. Prolonged abuse of the drug causes irreversible damage to the central nervous system. To date, no efficient pharmacological interventions are available, primarily due to the unclear mechanisms underlying METH action in the brain. Recently, microRNAs (miRNAs) have been identified to play critical roles in various cellular processes. The expression levels of some miRNAs are altered after METH administration, which may influence the transcription of target genes to regulate METH toxicity or addiction. This review summarizes the miRNAs in the context of METH use, discussing their role in the reward effect and neurotoxic sequelae. Better understanding of the molecular mechanisms involved in METH would be helpful for the development of new therapeutic strategies in reducing the harm of the drug.
Collapse
Affiliation(s)
- Bi Deng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhirui Zhang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Huixuan Zhou
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xinran Zhang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Shuliang Niu
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Xisheng Yan
- Department of Cardiovascular Medicine, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
- *Correspondence: Jie Yan,
| |
Collapse
|
14
|
Fathi S, Soltanzadeh H, Tanomand A, Asadi Z, Rezai Moradali S. Investigation of miR-222 as a potential biomarker in diagnosis of patients with methamphetamine abuse disorder. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00281-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Methamphetamine abuse disorder is an important social and health problem worldwide. Diagnosis and confirmation of patients with methamphetamine abuse using serum are important in many fields. MicroRNAs (miRNAs) are small non-coding oligonucleotides and recently suggested as a biomarker for earlier diagnosis of several human disorders. Therefore, in this study, we investigated miR-222 and miR-212 expressions in blood of patients with methamphetamine abuse disorder comparison with healthy control subjects.
Results
The results revealed that the expression of blood miR-222 is significantly increased (12.9-fold change) in patients with methamphetamine abuse disorders compared to healthy controls (p < 0.05). However, expression of miR-212 is at the same levels in both patients and healthy controls (p > 0.05).
Conclusions
In general, we suggested that the miR-222 may play a potentially important role in pathogenesis of methamphetamine abuse disorder and can be considered as an applied tool for identifying individuals with methamphetamine abuse disorder.
Collapse
|
15
|
Philyaw TJ, Rothenfluh A, Titos I. The Use of Drosophila to Understand Psychostimulant Responses. Biomedicines 2022; 10:119. [PMID: 35052798 PMCID: PMC8773124 DOI: 10.3390/biomedicines10010119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 01/27/2023] Open
Abstract
The addictive properties of psychostimulants such as cocaine, amphetamine, methamphetamine, and methylphenidate are based on their ability to increase dopaminergic neurotransmission in the reward system. While cocaine and methamphetamine are predominately used recreationally, amphetamine and methylphenidate also work as effective therapeutics to treat symptoms of disorders including attention deficit and hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). Although both the addictive properties of psychostimulant drugs and their therapeutic efficacy are influenced by genetic variation, very few genes that regulate these processes in humans have been identified. This is largely due to population heterogeneity which entails a requirement for large samples. Drosophila melanogaster exhibits similar psychostimulant responses to humans, a high degree of gene conservation, and allow performance of behavioral assays in a large population. Additionally, amphetamine and methylphenidate reduce impairments in fly models of ADHD-like behavior. Therefore, Drosophila represents an ideal translational model organism to tackle the genetic components underlying the effects of psychostimulants. Here, we break down the many assays that reliably quantify the effects of cocaine, amphetamine, methamphetamine, and methylphenidate in Drosophila. We also discuss how Drosophila is an efficient and cost-effective model organism for identifying novel candidate genes and molecular mechanisms involved in the behavioral responses to psychostimulant drugs.
Collapse
Affiliation(s)
- Travis James Philyaw
- Molecular Biology Graduate Program, University of Utah, Salt Lake City, UT 84112, USA;
| | - Adrian Rothenfluh
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT 84108, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84132, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Iris Titos
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
16
|
Li X, Xie B, Lu Y, Yang H, Wang J, Yu F, Zhang L, Cong B, Wen D, Ma C. Transcriptomic Analysis of Long Non-coding RNA-MicroRNA-mRNA Interactions in the Nucleus Accumbens Related to Morphine Addiction in Mice. Front Psychiatry 2022; 13:915398. [PMID: 35722589 PMCID: PMC9201067 DOI: 10.3389/fpsyt.2022.915398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Recent research suggest that some non-coding RNAs (ncRNAs) are important regulators of chromatin dynamics and gene expression in nervous system development and neurological diseases. Nevertheless, the molecular mechanisms of long non-coding RNAs (lncRNAs), acting as competing endogenous RNAs (ceRNAs), underlying morphine addiction are still unknown. In this research, RNA sequencing (RNA-seq) was used to examine the expression profiles of lncRNAs, miRNAs and mRNAs on the nucleus accumbens (NAc) tissues of mice trained with morphine or saline conditioned place preference (CPP), with differential expression of 31 lncRNAs, 393 miRNAs, and 371 mRNAs found. A ceRNA network was established for reciprocal interactions for 9 differentially expressed lncRNAs (DElncRNAs), 10 differentially expressed miRNAs (DEmiRNAs) and 12 differentially expressed mRNAs (DEmRNAs) based on predicted miRNAs shared by lncRNAs and mRNAs. KEGG pathway enrichment analyses were conducted to explore the potential functions of DEmRNAs interacting with lncRNAs in the ceRNA network. These DEmRNAs were enriched in synaptic plasticity-related pathways, including pyrimidine metabolism, ECM-receptor interaction, and focal adhesion. The correlation between the relative expression of lncRNAs, miRNAs and mRNAs was analyzed to further validate predicted ceRNA networks, and the Lnc15qD3-miR-139-3p-Lrp2 ceRNA regulatory interaction was determined. These results suggest that the comprehensive network represents a new insight into the lncRNA-mediated ceRNA regulatory mechanisms underlying morphine addiction and provide new potential diagnostic and prognostic biomarkers for morphine addiction.
Collapse
Affiliation(s)
- Xiaojie Li
- Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, China
| | - Bing Xie
- Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, China
| | - Yun Lu
- Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, China
| | - Hongyu Yang
- Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, China
| | - Jian Wang
- Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, China
| | - Feng Yu
- Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, China
| | - Ludi Zhang
- Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, China
| | - Bin Cong
- Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, China
| | - Di Wen
- Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, China
| | - Chunling Ma
- Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
17
|
Wang H, Liu L, Chen X, Zhou C, Rao X, Li W, Li W, Liu Y, Fang L, Zhang H, Song J, Ji P, Xie P. MicroRNA-Messenger RNA Regulatory Network Mediates Disrupted TH17 Cell Differentiation in Depression. Front Psychiatry 2022; 13:824209. [PMID: 35449567 PMCID: PMC9017773 DOI: 10.3389/fpsyt.2022.824209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/21/2022] [Indexed: 02/02/2023] Open
Abstract
Accumulating evidence indicates an important role for microRNA (miRNA)-messenger RNA (mRNA) regulatory networks in human depression. However, the mechanisms by which these networks act are complex and remain poorly understood. We used data mining to identify differentially expressed miRNAs from GSE81152 and GSE152267 datasets, and differentially expressed mRNAs were identified from the Netherlands Study of Depression and Anxiety, the GlaxoSmithKline-High-Throughput Disease-specific target Identification Program, and the Janssen-Brain Resource Company study. We constructed a miRNA-mRNA regulatory network based on differentially expressed mRNAs that intersected with target genes of differentially expressed miRNAs, and then performed bioinformatics analysis of the network. The key candidate genes were assessed in the prefrontal cortex of chronic social defeat stress (CSDS) depression mice by quantitative real-time polymerase chain reaction (qRT-PCR). Three differentially expressed miRNAs were commonly identified across the two datasets, and 119 intersecting differentially expressed mRNAs were identified. A miRNA-mRNA regulatory network including these three key differentially expressed miRNAs and 119 intersecting differentially expressed mRNAs was constructed. Functional analysis of the intersecting differentially expressed mRNAs revealed that an abnormal inflammatory response characterized by disturbed T-helper cell 17 (Th17) differentiation was the primary altered biological function. qRT-PCR validated the decreased expression of Th17 cell differentiation-related genes, including interleukin (IL)17A, IL21, IL22, and IL1β, and the increased expression of retinoic acid receptor-related orphan receptor gamma-t (RORγt) in CSDS mice, which showed significant depressive- and anxiety-like behaviors. This study indicates that an abnormal inflammatory response characterized by disturbed Th17 cell differentiation is the primary altered biological process in major depressive disorder. Our findings indicate possible biomarkers and treatment targets and provide novel clues to understand the pathogenesis of major depressive disorder.
Collapse
Affiliation(s)
- Haiyang Wang
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.,National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lanxiang Liu
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xueyi Chen
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Chanjuan Zhou
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuechen Rao
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenxia Li
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenwen Li
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yiyun Liu
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Fang
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Hongmei Zhang
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Jinlin Song
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Ping Ji
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Peng Xie
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.,National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
Wang Y, Wei T, Zhao W, Ren Z, Wang Y, Zhou Y, Song X, Zhou R, Zhang X, Jiao D. MicroRNA-181a Is Involved in Methamphetamine Addiction Through the ERAD Pathway. Front Mol Neurosci 2021; 14:667725. [PMID: 34025353 PMCID: PMC8137846 DOI: 10.3389/fnmol.2021.667725] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/13/2021] [Indexed: 12/16/2022] Open
Abstract
The regulation of microRNA (miRNA) is closely related to methamphetamine (METH) addiction. Past studies have reported that miR-181a is associated with METH addiction, but the mechanism pathways remain elusive. On the basis of our past studies, which reported the endoplasmic reticulum-associated protein degradation (ERAD) mediated ubiquitin protein degradation of GABAAα1, which was involved in METH addiction. The present study, using qRT-PCR and bioinformatics analysis, further revealed that miR-181a may be indirectly responsible for the METH addiction and downregulation of GABAAα1 through the regulation of ERAD.
Collapse
Affiliation(s)
- Yujing Wang
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Tao Wei
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Wei Zhao
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Zixuan Ren
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Yan Wang
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Yiding Zhou
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Xun Song
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Ruidong Zhou
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Xiaochu Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Dongliang Jiao
- School of Mental Health, Bengbu Medical College, Bengbu, China
| |
Collapse
|
19
|
Gowen AM, Odegaard KE, Hernandez J, Chand S, Koul S, Pendyala G, Yelamanchili SV. Role of microRNAs in the pathophysiology of addiction. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1637. [PMID: 33336550 PMCID: PMC8026578 DOI: 10.1002/wrna.1637] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023]
Abstract
Addiction is a chronic and relapsing brain disorder characterized by compulsive seeking despite adverse consequences. There are both heritable and epigenetic mechanisms underlying drug addiction. Emerging evidence suggests that non-coding RNAs (ncRNAs) such as microRNAs (miRNAs), long non-coding RNAs, and circular RNAs regulate synaptic plasticity and related behaviors caused by substances of abuse. These ncRNAs modify gene expression and may contribute to the behavioral phenotypes of addiction. Among the ncRNAs, the most widely researched and impactful are miRNAs. The goal in this systematic review is to provide a detailed account of recent research involving the role of miRNAs in addiction. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Austin M Gowen
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Katherine E Odegaard
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jordan Hernandez
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Subhash Chand
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sneh Koul
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sowmya V Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
20
|
Non-coding RNA: insights into the mechanism of methamphetamine neurotoxicity. Mol Cell Biochem 2021; 476:3319-3328. [PMID: 33895910 DOI: 10.1007/s11010-021-04160-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
Chronic exposure of the methamphetamine has been shown to lead to neurotoxicity in rodents and humans. The manifestations of methamphetamine neurotoxicity include methamphetamine use disorder, methamphetamine abuse, methamphetamine addiction and methamphetamine behavioral sensitization. Repeated use of methamphetamine can cause methamphetamine use disorder. The abuse and addiction of methamphetamine are growing epidemic worldwide. Repeated intermittent exposure to methamphetamine can cause behavioral sensitization. In addition, many studies have shown that changes in the expression of non-coding RNA in the ventral tegmental area and nucleus accumbens will affect the behavioral effects of methamphetamine. Non-coding RNA plays an important role in the behavioral effects of methamphetamine. Therefore, it is important to study the relationship between methamphetamine and non-coding RNA. The purpose of this review is to study the non-coding RNA associated with methamphetamine neurotoxicity to search for the possible therapeutic target of the methamphetamine neurotoxicity.
Collapse
|
21
|
Li J, Zhu L, Su H, Liu D, Yan Z, Ni T, Wei H, Goh EL, Chen T. Regulation of miR-128 in the nucleus accumbens affects methamphetamine-induced behavioral sensitization by modulating proteins involved in neuroplasticity. Addict Biol 2021; 26:e12881. [PMID: 32058631 DOI: 10.1111/adb.12881] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 12/12/2019] [Accepted: 01/17/2020] [Indexed: 01/09/2023]
Abstract
Methamphetamine (METH) -induced behavioral sensitization depends on long-term neuroplasticity in the mesolimbic dopamine system, especially in the nucleus accumbens (NAc). miR-128, a brain enriched miRNA, was found to have abilities in regulating neuronal excitability and formation of fear-extinction memory. Here, we aim to identify the role of miR-128 on METH-induced locomotor sensitization of male mice. We identified a significant increase of miR-128 in the NAc of mice upon repeated-intermittent METH exposure but not acute METH administration. Microinjection of adeno-associated virus (AAV)-miR-128 over-expression and inhibition constructs into the NAc of mice resulted in enhanced METH-induced locomotor sensitization and attenuated effects of METH respectively. Isobaric tags for relative and absolute quantification (iTRAQ) technology and ingenuity pathway analysis (IPA) were carried out to uncover the potential molecular mechanisms underlying miR-128-regulated METH sensitization. Differentially expressed proteins, including 25 potential targets for miR-128 were annotated in regulatory pathways that modulate dendritic spines, synaptic transmission and neuritogenesis. Of which, Arf6, Cpeb3 and Nlgn1, were found to be participating in miR-128-regulated METH sensitization. Consistently, METH-induced abnormal changes of Arf6, Cpeb3 and Nlgn1 in the NAc of mice were also detected by qPCR and validated by western blot analysis. Thus, miR-128 may contribute to METH sensitization through controlling neuroplasticity. Our study suggested miR-128 was an important regulator of METH- induced sensitization and also provided the potential molecular networks of miR-128 in regulating METH-induced sensitization.
Collapse
Affiliation(s)
- Jiaqi Li
- College of Forensic Medicine Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
- The Key Laboratory of Health Ministry for Forensic Medicine, Xi'an Jiaotong University Shaanxi 710061 China
| | - Li Zhu
- College of Forensic Medicine Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
- The Key Laboratory of Health Ministry for Forensic Medicine, Xi'an Jiaotong University Shaanxi 710061 China
| | - Hang Su
- College of Forensic Medicine Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
- The Key Laboratory of Health Ministry for Forensic Medicine, Xi'an Jiaotong University Shaanxi 710061 China
| | - Dan Liu
- College of Forensic Medicine Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
- The Key Laboratory of Health Ministry for Forensic Medicine, Xi'an Jiaotong University Shaanxi 710061 China
| | - Zhilan Yan
- College of Forensic Medicine Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
- The Key Laboratory of Health Ministry for Forensic Medicine, Xi'an Jiaotong University Shaanxi 710061 China
| | - Tong Ni
- College of Forensic Medicine Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
- The Key Laboratory of Health Ministry for Forensic Medicine, Xi'an Jiaotong University Shaanxi 710061 China
| | - Han Wei
- College of Forensic Medicine Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
- The Key Laboratory of Health Ministry for Forensic Medicine, Xi'an Jiaotong University Shaanxi 710061 China
| | - Eyleen L.K. Goh
- Department of Research National Neuroscience Institute Singapore 308433
- Neuroscience and Mental Health Faculty, Lee Kong China School of Medicine Nanyang Technological University Singapore 308232
| | - Teng Chen
- College of Forensic Medicine Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
- The Key Laboratory of Health Ministry for Forensic Medicine, Xi'an Jiaotong University Shaanxi 710061 China
| |
Collapse
|
22
|
Differential expression of microRNAs in the hippocampi of male and female rodents after chronic alcohol administration. Biol Sex Differ 2020; 11:65. [PMID: 33228793 PMCID: PMC7684718 DOI: 10.1186/s13293-020-00342-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Background Women are more vulnerable than men to the neurotoxicity and severe brain damage caused by chronic heavy alcohol use. In addition, brain damage due to chronic heavy alcohol use may be associated with sex-dependent epigenetic modifications. This study aimed to identify microRNAs (miRNAs) and their target genes that are differentially expressed in the hippocampi of male and female animal models in response to alcohol. Methods After chronic alcohol administration (3~3.5 g/kg/day) in male (control, n = 10; alcohol, n = 12) or female (control, n = 10; alcohol, n = 12) Sprague-Dawley rats for 6 weeks, we measured body weights and doublecortin (DCX; a neurogenesis marker) concentrations and analyzed up- or downregulated miRNAs using GeneChip miRNA 4.0 arrays. The differentially expressed miRNAs and their putative target genes were validated by RT-qPCR. Results Alcohol attenuated body weight gain only in the male group. On the other hand, alcohol led to increased serum AST in female rats and decreased serum total cholesterol concentrations in male rats. The expression of DCX was significantly reduced in the hippocampi of male alcohol-treated rats. Nine miRNAs were significantly up- or downregulated in male alcohol-treated rats, including upregulation of miR-125a-3p, let-7a-5p, and miR-3541, and downregulation of their target genes (Prdm5, Suv39h1, Ptprz1, Mapk9, Ing4, Wt1, Nkx3-1, Dab2ip, Rnf152, Ripk1, Lin28a, Apbb3, Nras, and Acvr1c). On the other hand, 7 miRNAs were significantly up- or downregulated in alcohol-treated female rats, including downregulation of miR-881-3p and miR-504 and upregulation of their target genes (Naa50, Clock, Cbfb, Arih1, Ube2g1, and Gng7). Conclusions These results suggest that chronic heavy alcohol use produces sex-dependent effects on neurogenesis and miRNA expression in the hippocampus and that sex differences should be considered when developing miRNA biomarkers to diagnose or treat alcoholics. Supplementary Information The online version contains supplementary material available at 10.1186/s13293-020-00342-3.
Collapse
|
23
|
Chavoshi H, Boroujeni ME, Abdollahifar MA, Amini A, Tehrani AM, Moghaddam MH, Norozian M, Farahani RM, Aliaghaei A. From dysregulated microRNAs to structural alterations in the striatal region of METH-injected rats. J Chem Neuroanat 2020; 109:101854. [DOI: 10.1016/j.jchemneu.2020.101854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/05/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023]
|
24
|
Sandau US, Duggan E, Shi X, Smith SJ, Huckans M, Schutzer WE, Loftis JM, Janowsky A, Nolan JP, Saugstad JA. Methamphetamine use alters human plasma extracellular vesicles and their microRNA cargo: An exploratory study. J Extracell Vesicles 2020; 10:e12028. [PMID: 33613872 PMCID: PMC7890470 DOI: 10.1002/jev2.12028] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 01/27/2023] Open
Abstract
Methamphetamine (MA) is the largest drug threat across the globe, with health effects including neurotoxicity and cardiovascular disease. Recent studies have begun to link microRNAs (miRNAs) to the processes related to MA use and addiction. Our studies are the first to analyse plasma EVs and their miRNA cargo in humans actively using MA (MA-ACT) and control participants (CTL). In this cohort we also assessed the effects of tobacco use on plasma EVs. We used vesicle flow cytometry to show that the MA-ACT group had an increased abundance of EV tetraspanin markers (CD9, CD63, CD81), but not pro-coagulant, platelet-, and red blood cell-derived EVs. We also found that of the 169 plasma EV miRNAs, eight were of interest in MA-ACT based on multiple statistical criteria. In smokers, we identified 15 miRNAs of interest, two that overlapped with the eight MA-ACT miRNAs. Three of the MA-ACT miRNAs significantly correlated with clinical features of MA use and target prediction with these miRNAs identified pathways implicated in MA use, including cardiovascular disease and neuroinflammation. Together our findings indicate that MA use regulates EVs and their miRNA cargo, and support that further studies are warranted to investigate their mechanistic role in addiction, recovery, and recidivism.
Collapse
Affiliation(s)
- Ursula S. Sandau
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | | | - Xiao Shi
- VA Portland Health Care SystemPortlandOregonUSA
- Department of PsychiatryOregon Health & Science UniversityPortlandOregonUSA
- Methamphetamine Research CenterOregon Health & Science UniversityPortlandOregonUSA
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandOregonUSA
| | - Sierra J. Smith
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Marilyn Huckans
- VA Portland Health Care SystemPortlandOregonUSA
- Department of PsychiatryOregon Health & Science UniversityPortlandOregonUSA
- Methamphetamine Research CenterOregon Health & Science UniversityPortlandOregonUSA
- Clinical Psychology ProgramOregon Health & Science UniversityPortlandOregonUSA
| | - William E. Schutzer
- VA Portland Health Care SystemPortlandOregonUSA
- Department of PsychiatryOregon Health & Science UniversityPortlandOregonUSA
- Methamphetamine Research CenterOregon Health & Science UniversityPortlandOregonUSA
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandOregonUSA
| | - Jennifer M. Loftis
- VA Portland Health Care SystemPortlandOregonUSA
- Department of PsychiatryOregon Health & Science UniversityPortlandOregonUSA
- Methamphetamine Research CenterOregon Health & Science UniversityPortlandOregonUSA
- Clinical Psychology ProgramOregon Health & Science UniversityPortlandOregonUSA
| | - Aaron Janowsky
- VA Portland Health Care SystemPortlandOregonUSA
- Department of PsychiatryOregon Health & Science UniversityPortlandOregonUSA
- Methamphetamine Research CenterOregon Health & Science UniversityPortlandOregonUSA
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandOregonUSA
| | | | - Julie A. Saugstad
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| |
Collapse
|
25
|
Monaco AP. An epigenetic, transgenerational model of increased mental health disorders in children, adolescents and young adults. Eur J Hum Genet 2020; 29:387-395. [PMID: 32948849 PMCID: PMC7940651 DOI: 10.1038/s41431-020-00726-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Prevalence rates of mental health disorders in children and adolescents have increased two to threefold from the 1990s to 2016. Some increase in prevalence may stem from changing environmental conditions in the current generation which interact with genes and inherited genetic variants. Current measured genetic variant effects do not explain fully the familial clustering and high heritability estimates in the population. Another model considers environmental conditions shifting in the previous generation, which altered brain circuits epigenetically and were transmitted to offspring via non-DNA-based mechanisms (intergenerational and transgenerational effects). Parental substance use, poor diet and obesity are environmental factors with known epigenetic intergenerational and transgenerational effects, that regulate set points in brain pathways integrating sensory-motor, reward and feeding behaviors. Using summary statistics for eleven neuropsychiatric and three metabolic disorders from 128,989 families, an epigenetic effect explains more of the estimated heritability when a portion of parental environmental effects are transmitted to offspring alongside additive genetic variance.
Collapse
Affiliation(s)
- Anthony P Monaco
- Office of the President, Ballou Hall, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
26
|
Pang Y, He L, Song Y, Song X, Lv J, Cheng Y, Yang X. Identification and Integrated Analysis of MicroRNA and mRNA Expression Profiles During Agonistic Behavior in Chinese Mitten Crab ( Eriocheir sinensis) Using a Deep Sequencing Approach. Front Genet 2020; 11:321. [PMID: 32391050 PMCID: PMC7191074 DOI: 10.3389/fgene.2020.00321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 03/18/2020] [Indexed: 12/20/2022] Open
Abstract
As a commercially important species, the Chinese mitten crab (Eriocheir sinensis) has been cultured for a long time in China. Agonistic behavior often causes limb disability and requires much energy, which is harmful to the growth and survival of crabs. In this paper, we divided crabs into a control group (control, no treatment) and an experimental group (fight, agonistic behavior after 1 h) and then collected the thoracic ganglia (TG) to extract RNA. Subsequently, we first used a deep sequencing approach to examine the transcripts of microRNAs (miRNAs) and messenger RNAs (mRNAs) in E. sinensis displaying agonistic behavior. According to the results, we found 29 significant differentially expressed miRNAs (DEMs) and 116 significant differentially expressed unigenes (DEGs). The DEMs esi-miR-199a-5p, esi-let-7d, esi-miR-200a, and esi-miR-200b might participate in the regulation of agonistic behavior by mediating neuroregulation and energy metabolism. Focusing on the transcripts of the mRNAs, the renin–angiotensin system (RAS) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway might be involved in the regulation of agonistic behavior through glucose metabolism as this pathway was significantly enriched with DEGs. Besides, an integrated analysis of the miRNA and mRNA profiles revealed that the retinoid X receptor (RXR) was also involved in visual signal transduction, which was important for agonistic behavior. In addition, four vital agonistic behavior-related metabolic pathways, including the cAMP signaling, MAPK, protein digestion and absorption, and fatty acid metabolism pathways, were significantly enriched with the predicted target unigenes. In conclusion, the findings of this study might provide important insight enhancing our understanding of the underlying molecular mechanisms of agonistic behavior in E. sinensis.
Collapse
Affiliation(s)
- Yangyang Pang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Long He
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yameng Song
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xiaozhe Song
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Jiahuan Lv
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yongxu Cheng
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xiaozhen Yang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
27
|
Gu WJ, Zhang C, Zhong Y, Luo J, Zhang CY, Zhang C, Wang C. Altered serum microRNA expression profile in subjects with heroin and methamphetamine use disorder. Biomed Pharmacother 2020; 125:109918. [PMID: 32036213 DOI: 10.1016/j.biopha.2020.109918] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/02/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Drug abuse is one of the most severe global social and public health problems, especially in China. However, objective blood biomarkers that are easy to detect are still in great need. This study was aim to explore the expression pattern of circulating microRNAs (miRNAs) in subjects with drug addiction and test the potential of altered serum miRNAs as noninvasive diagnostic tools for drug abuse. METHODS Serum samples were obtained from 42 heroin abusers, 42 methamphetamine (MA) abusers and 42 controls. Microarray-based miRNA analysis was first applied to screen unique serum miRNA profiles in drug abusers on a training set of serum samples from 12 heroin abusers, 12 MA abusers and 12 control subjects. The expression levels of selected candidate miRNAs were subsequently verified in individual samples of the training set and further confirmed independently in a validation set of samples from 30 heroin abusers, 30 MA abusers and 30 controls using real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS Microarray analysis identified 116 and 109 significantly altered miRNAs in heroin abusers and MA abusers, respectively. Three miRNAs, including let-7b-5p, miR-206 and miR-486-5p, were verified to be significantly and steadily increased in heroin abusers, and miR-9-3p was significantly increased in MA abusers compared with normal controls. The areas under the curve (AUCs) of the ROC curve of these miRNAs ranged from 0.718 to 0.867. CONCLUSIONS Our study raises the possibility that the altered serum miRNAs could potentially be used as an auxiliary tool to identify individuals in drug abuse and addiction.
Collapse
Affiliation(s)
- Wan-Jian Gu
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, 210002, China; Department of Clinical Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Cuiping Zhang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, 210002, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences, Nanjing University School of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, 210046, China
| | - Yujie Zhong
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, 210002, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences, Nanjing University School of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, 210046, China
| | - Jun Luo
- Central Laboratory of Jiangsu Health Vocational College, Nanjing, 210029, China
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences, Nanjing University School of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, 210046, China
| | - Chunni Zhang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, 210002, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences, Nanjing University School of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, 210046, China.
| | - Cheng Wang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, 210002, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences, Nanjing University School of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, 210046, China.
| |
Collapse
|
28
|
Sun Q, Zhao Y, Zhang K, Su H, Chen T, Jiang H, Du J, Zhong N, Yu S, Zhao M. An association study between methamphetamine use disorder with psychosis and polymorphisms in MiRNA. Neurosci Lett 2020; 717:134725. [PMID: 31881254 DOI: 10.1016/j.neulet.2019.134725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Methamphetamine (MA) is an addictive psychostimulant substance that mainly leads to schizophrenia-like psychotic symptoms. The expression of miRNAs in brain plays an important role in neurological disorders and may affect by genetic variant(s) in the target site (MiRSNPs). In this study, we investigated whether polymorphisms in miRNAs are associated with MA disorder with psychosis. METHODS We carried out a case-control association study in 400 MA users with psychotic characters and 448 controls. Six MiRSNPs with predicted functional relevance miRNAs (miR-181b, miR-181a, miR-15b, miR-let-7e and miRlet-7d) were selected for genotyping. Allele and genotype frequencies were compared between MA users and healthy individuals. The expression of five miRNAs were measured by quantitative real-time RT-PCR in 55 cases and 57 controls. We also explored an expression Quantitative Trait Loci (eQTL) analysis based on the miRNAs expression and SNP genotype. RESULTS The SNP rs10760371 within miR-181a was nominally associated with MA disorder (P = 0.046). For rs1099308, rs10760371 and rs10993081 in strong linkage disequilibrium (LD), no significant association had been detected from haplotype analysis. Discrepancy had been found between MA users and healthy individuals (P < 0.01) in terms of the expression of miR-181a, miR-15b, miR-let-7e and miR-let-7d. and no noticeable difference had been found from the eQTL analysis. CONCLUSION Our findings suggest that rs10760371 within miR-181a may relate to the development of MA dependence with psychosis. The miRNAs expression is unlikely to be regulated by the SNPs within it.
Collapse
Affiliation(s)
- Qianqian Sun
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wanping Rd., Shanghai 200030, China.
| | - Yan Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wanping Rd., Shanghai 200030, China
| | - Kai Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wanping Rd., Shanghai 200030, China
| | - Hang Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wanping Rd., Shanghai 200030, China
| | - Tianzhen Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wanping Rd., Shanghai 200030, China
| | - Haifeng Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wanping Rd., Shanghai 200030, China
| | - Jiang Du
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wanping Rd., Shanghai 200030, China
| | - Na Zhong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wanping Rd., Shanghai 200030, China
| | - Shunying Yu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wanping Rd., Shanghai 200030, China.
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wanping Rd., Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China; Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
29
|
Das A, Pagliaroli L, Vereczkei A, Kotyuk E, Langstieh B, Demetrovics Z, Barta C. Association of GDNF and CNTNAP2 gene variants with gambling. J Behav Addict 2019; 8:471-478. [PMID: 31446765 PMCID: PMC7044627 DOI: 10.1556/2006.8.2019.40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND AIMS Some form of gambling can be observed in nearly every society, as the gratification felt upon winning in uncertain conditions is universal. A culturally distinct form of gambling, associated with a traditional sporting event of archery known as "teer," is innate to the province of Meghalaya, India. The objective of this study was to find genetic variants underlying this unique form of behavioral addiction. To better understand game-based gambling, we studied genetic variants related to dopaminergic pathways and other genes previously linked to various psychological disorders. METHODS This study was carried out on a sample of 196 Indo-Aryan adults from Shillong, Meghalaya. Genotyping of glial cell line-derived neurotrophic factor (GDNF) polymorphisms was carried out using real-time PCR. We further investigated 32 single nucleotide polymorphisms located in the 3' UTR of additional genes of interest using an OpenArray® real-time PCR platform. RESULTS Case-control analysis revealed a significant association between GDNF variant rs2973033 (p = .00864, χ2 = 13.132, df = 2) and contactin-associated protein-like 2 (CNTNAP2) variant rs2530311 (p = .0448, χ2 = 13.132, df = 2) with gambling. DISCUSSION AND CONCLUSIONS Association of the GDNF gene with gambling could be attributed to its involvement in the development and survival of dopaminergic neurons. Our result is in good agreement with previous data indicating the role of GDNF in certain substance addictions. Several rare variants in the CNTNAP2 gene were also implicated in alcohol addiction in a previous study. This pilot study provides further support for the role of GDNF and CNTNAP2 in addiction behaviors.
Collapse
Affiliation(s)
- Arundhuti Das
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary,Department of Anthropology, Utkal University, Bhubaneswar, India,Indian Council of Medical Research, Regional Medical Research Center, Bhubaneswar, India
| | - Luca Pagliaroli
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Andrea Vereczkei
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Eszter Kotyuk
- MTA-ELTE Lendület Adaptation Research Group, Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Banrida Langstieh
- Department of Anthropology, North Eastern Hill University, Shillong, India
| | - Zsolt Demetrovics
- MTA-ELTE Lendület Adaptation Research Group, Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Csaba Barta
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary,Corresponding author: Csaba Barta, MD, PhD; Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, 37-47 Tuzolto Street, Budapest, 1094, PO Box 260, Hungary; Phone: +36 1 459 1500 ext. 60137; Fax: +36 1 266 7480; E-mail:
| |
Collapse
|
30
|
Regional Analysis of the Brain Transcriptome in Mice Bred for High and Low Methamphetamine Consumption. Brain Sci 2019; 9:brainsci9070155. [PMID: 31262025 PMCID: PMC6681006 DOI: 10.3390/brainsci9070155] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 01/08/2023] Open
Abstract
Transcriptome profiling can broadly characterize drug effects and risk for addiction in the absence of drug exposure. Modern large-scale molecular methods, including RNA-sequencing (RNA-Seq), have been extensively applied to alcohol-related disease traits, but rarely to risk for methamphetamine (MA) addiction. We used RNA-Seq data from selectively bred mice with high or low risk for voluntary MA intake to construct coexpression and cosplicing networks for differential risk. Three brain reward circuitry regions were explored, the nucleus accumbens (NAc), prefrontal cortex (PFC), and ventral midbrain (VMB). With respect to differential gene expression and wiring, the VMB was more strongly affected than either the PFC or NAc. Coexpression network connectivity was higher in the low MA drinking line than in the high MA drinking line in the VMB, oppositely affected in the NAc, and little impacted in the PFC. Gene modules protected from the effects of selection may help to eliminate certain mechanisms from significant involvement in risk for MA intake. One such module was enriched in genes with dopamine-associated annotations. Overall, the data suggest that mitochondrial function and glutamate-mediated synaptic plasticity have key roles in the outcomes of selective breeding for high versus low levels of MA intake.
Collapse
|
31
|
Liu D, Zhu L, Ni T, Guan F, Chen Y, Ma D, Goh EL, Chen T. Ago2 and Dicer1 are involved in METH-induced locomotor sensitization in mice via biogenesis of miRNA. Addict Biol 2019. [PMID: 29516602 DOI: 10.1111/adb.12616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
microRNA (miRNA) play important roles in drug addiction and act as a post-transcriptional regulator of gene expression. We previously reported extensive downregulation of miRNAs in the nucleus accumbens (NAc) of methamphetamine (METH)-sensitized mice. However, the regulatory mechanism of this METH-induced downregulation of miRNAs has yet to be elucidated. Thus, we examined METH-induced changes in the expression of miRNAs and their precursors, as well as the expression levels of mRNA and the proteins involved in miRNA biogenesis such as Dicer1 and Ago2, in the nucleus accumbens of METH-induced locomotor sensitized mice. miRNAs and Ago2 were significantly downregulated, while the expression of miRNA precursors remained unchanged or upregulated, which suggests that the downregulation of miRNAs was likely due to a reduction in Ago2-mediated splicing but unlikely to be regulated at the transcription level. Interestingly, the expression level of Dicer1, which is a potential target of METH-induced decreased miRNAs, such as miR-124, miR-212 and miR-29b, was significantly increased. In conclusion, this study indicates that miRNA biogenesis (such as Ago2 and Dicer1) and their miRNA products may have a role in the development of METH addiction.
Collapse
Affiliation(s)
- Dan Liu
- College of Forensic MedicineXi'an Jiaotong University Health Science Center China
- The Key Laboratory of Health Ministry for Forensic ScienceXi'an Jiaotong University China
| | - Li Zhu
- College of Forensic MedicineXi'an Jiaotong University Health Science Center China
- The Key Laboratory of Health Ministry for Forensic ScienceXi'an Jiaotong University China
| | - Tong Ni
- College of Forensic MedicineXi'an Jiaotong University Health Science Center China
- The Key Laboratory of Health Ministry for Forensic ScienceXi'an Jiaotong University China
| | - Fang‐lin Guan
- College of Forensic MedicineXi'an Jiaotong University Health Science Center China
- The Key Laboratory of Health Ministry for Forensic ScienceXi'an Jiaotong University China
| | - Yan‐jiong Chen
- Departments of Immunology and Pathogenic Biology, College of Basic MedicineXi'an Jiaotong University Health Science Center China
| | - Dong‐liang Ma
- Singhealth Duke‐NUS Neuroscience Academic Clinical Programme Singapore
| | - Eyleen L.K. Goh
- Singhealth Duke‐NUS Neuroscience Academic Clinical Programme Singapore
- National Neuroscience Institute Singapore
| | - Teng Chen
- College of Forensic MedicineXi'an Jiaotong University Health Science Center China
- The Key Laboratory of Health Ministry for Forensic ScienceXi'an Jiaotong University China
| |
Collapse
|
32
|
Su H, Zhu L, Li J, Wang R, Liu D, Han W, Cadet JL, Chen T. Regulation of microRNA-29c in the nucleus accumbens modulates methamphetamine -induced locomotor sensitization in mice. Neuropharmacology 2019; 148:160-168. [PMID: 30639389 DOI: 10.1016/j.neuropharm.2019.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 12/21/2022]
Abstract
Changes in microRNA (miRNA)-mediated gene expression in the nucleus accumbens (NAc) may play important roles in regulating drug addiction. MiR-29c is a highly expressed miRNA in the human and rodent nervous systems where it plays a broad regulatory role. As the first step towards investigating potential functions of miR-29c in methamphetamine (METH) addiction, we used C57BL/6 mice in a model of METH-induced locomotor sensitization. We measured miR-29c expression changes in the NAc of the mice after repeated-intermittent METH exposure and acute METH administration respectively by using quantitative real-time PCR (qPCR). We found that miR-29c expression was significantly down-regulated in the NAc of METH-sensitized mice but not in the acute METH-treated mice. Then, we tested the respective effects of miR-29c over-expression and inhibition in the NAc on METH-induced locomotor sensitization. To reach this goal, we constructed adeno-associated virus (AAV)-expressing miR-29c (AAV-miR-29c) and its corresponding inhibitor - tough decoy (AAV-anti-miR-29c TuD) to over-express and inhibit miR-29c, respectively. We found that AAV-miR-29c over-expression in the NAc enhanced METH-induced locomotor sensitization, whereas AAV inhibition of miR-29c expression in the NAc attenuated the effects of METH. Moreover, we observed the participation of Dnmt3a, Dnmt3b, and Meg3 in the effects of miR-29c on METH sensitization. Our results suggest that miR-29c is an important epigenetic regulator of METH-induced behavioural sensitization and changes in gene expression. These data further suggest a potential role of miR-29c in regulating long-term METH-induced adaptation in the brain.
Collapse
Affiliation(s)
- Hang Su
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Medicine, Xi'an Jiaotong University, Shaanxi, 710061, PR China
| | - Li Zhu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Medicine, Xi'an Jiaotong University, Shaanxi, 710061, PR China
| | - Jiaqi Li
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Medicine, Xi'an Jiaotong University, Shaanxi, 710061, PR China
| | - Rui Wang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Medicine, Xi'an Jiaotong University, Shaanxi, 710061, PR China
| | - Dan Liu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Medicine, Xi'an Jiaotong University, Shaanxi, 710061, PR China
| | - Wei Han
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Medicine, Xi'an Jiaotong University, Shaanxi, 710061, PR China
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse/NIH/DHHS, Bayview Boulevard, Maryland, 21224, USA
| | - Teng Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Medicine, Xi'an Jiaotong University, Shaanxi, 710061, PR China.
| |
Collapse
|
33
|
Xu X, Pan J, Li X, Cui Y, Mao Z, Wu B, Xu H, Zhou W, Liu Y. Inhibition of Methamphetamine Self-Administration and Reinstatement by Central Blockade of Angiotensin II Receptor in Rats. J Pharmacol Exp Ther 2019; 369:244-258. [PMID: 30867225 DOI: 10.1124/jpet.118.255729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
The molecular mechanism and treatment of methamphetamine (METH) use disorder remain unclear. The current study aimed to investigate the role of central angiotensin II receptor (ATR) in drug taking and seeking behavior associated with METH use disorder. The effect of an ATR type 1 (AT1R) antagonist, candesartan cilexetil, on the reinforcing and motivational effects of METH was first assessed using the animal model of METH self-administration (SA) and reinstatement. The levels of dopamine D2 receptor (D2R) and AT1R were subsequently examined. Furthermore, the present study determined the expression of microRNAs (miRNAs) by comparing METH SA, METH-yoked, and Saline-yoked groups. The target miRNAs were further overexpressed in the nucleus accumbens (NAc) via a lentivirus vector to investigate the effects of target miRNAs on METH SA maintained under a fixed ratio 1, progressive ratio, and cue/drug reinstatement of METH SA. The potential role of the AT1R-PLCβ-CREB signaling pathway was finally investigated. The results suggest that AT1R blockade effectively reduced METH SA and reinstatement, in conjunction with the counter-regulation of D2R and AT1R. A total of 17 miRNAs targeting Ang II in NAc were found to be associated with the voluntary intake of METH. Furthermore, overexpression of specific miR-219a-5p targeting AT1R-regulated METH SA and reinstatement. The AT1R-PLCβ-CREB signaling pathway was found to be associated with the effect of AT1R on the drug-taking and drug-seeking behavior involving METH use disorder.
Collapse
Affiliation(s)
- Xing Xu
- Ningbo University School of Medicine, Ningbo, Zhejiang, People's Republic of China (X.X., J.P., Z.M., B.W., W.Z., Y.L.); Ningbo Kangning Hospital, Ningbo, Zhejiang, People's Republic of China (X.L.); Ningbo Public Security Bureau Ningbo Anti-drug Office, Zhejiang, People's Republic of China (Y.C., H.X.); and Ningbo Addiction Research and Treatment Center, Zhejiang, People's Republic of China (W.Z.)
| | - Jian Pan
- Ningbo University School of Medicine, Ningbo, Zhejiang, People's Republic of China (X.X., J.P., Z.M., B.W., W.Z., Y.L.); Ningbo Kangning Hospital, Ningbo, Zhejiang, People's Republic of China (X.L.); Ningbo Public Security Bureau Ningbo Anti-drug Office, Zhejiang, People's Republic of China (Y.C., H.X.); and Ningbo Addiction Research and Treatment Center, Zhejiang, People's Republic of China (W.Z.)
| | - Xingxing Li
- Ningbo University School of Medicine, Ningbo, Zhejiang, People's Republic of China (X.X., J.P., Z.M., B.W., W.Z., Y.L.); Ningbo Kangning Hospital, Ningbo, Zhejiang, People's Republic of China (X.L.); Ningbo Public Security Bureau Ningbo Anti-drug Office, Zhejiang, People's Republic of China (Y.C., H.X.); and Ningbo Addiction Research and Treatment Center, Zhejiang, People's Republic of China (W.Z.)
| | - Yan Cui
- Ningbo University School of Medicine, Ningbo, Zhejiang, People's Republic of China (X.X., J.P., Z.M., B.W., W.Z., Y.L.); Ningbo Kangning Hospital, Ningbo, Zhejiang, People's Republic of China (X.L.); Ningbo Public Security Bureau Ningbo Anti-drug Office, Zhejiang, People's Republic of China (Y.C., H.X.); and Ningbo Addiction Research and Treatment Center, Zhejiang, People's Republic of China (W.Z.)
| | - Zijuan Mao
- Ningbo University School of Medicine, Ningbo, Zhejiang, People's Republic of China (X.X., J.P., Z.M., B.W., W.Z., Y.L.); Ningbo Kangning Hospital, Ningbo, Zhejiang, People's Republic of China (X.L.); Ningbo Public Security Bureau Ningbo Anti-drug Office, Zhejiang, People's Republic of China (Y.C., H.X.); and Ningbo Addiction Research and Treatment Center, Zhejiang, People's Republic of China (W.Z.)
| | - Boliang Wu
- Ningbo University School of Medicine, Ningbo, Zhejiang, People's Republic of China (X.X., J.P., Z.M., B.W., W.Z., Y.L.); Ningbo Kangning Hospital, Ningbo, Zhejiang, People's Republic of China (X.L.); Ningbo Public Security Bureau Ningbo Anti-drug Office, Zhejiang, People's Republic of China (Y.C., H.X.); and Ningbo Addiction Research and Treatment Center, Zhejiang, People's Republic of China (W.Z.)
| | - Huachong Xu
- Ningbo University School of Medicine, Ningbo, Zhejiang, People's Republic of China (X.X., J.P., Z.M., B.W., W.Z., Y.L.); Ningbo Kangning Hospital, Ningbo, Zhejiang, People's Republic of China (X.L.); Ningbo Public Security Bureau Ningbo Anti-drug Office, Zhejiang, People's Republic of China (Y.C., H.X.); and Ningbo Addiction Research and Treatment Center, Zhejiang, People's Republic of China (W.Z.)
| | - Wenhua Zhou
- Ningbo University School of Medicine, Ningbo, Zhejiang, People's Republic of China (X.X., J.P., Z.M., B.W., W.Z., Y.L.); Ningbo Kangning Hospital, Ningbo, Zhejiang, People's Republic of China (X.L.); Ningbo Public Security Bureau Ningbo Anti-drug Office, Zhejiang, People's Republic of China (Y.C., H.X.); and Ningbo Addiction Research and Treatment Center, Zhejiang, People's Republic of China (W.Z.)
| | - Yu Liu
- Ningbo University School of Medicine, Ningbo, Zhejiang, People's Republic of China (X.X., J.P., Z.M., B.W., W.Z., Y.L.); Ningbo Kangning Hospital, Ningbo, Zhejiang, People's Republic of China (X.L.); Ningbo Public Security Bureau Ningbo Anti-drug Office, Zhejiang, People's Republic of China (Y.C., H.X.); and Ningbo Addiction Research and Treatment Center, Zhejiang, People's Republic of China (W.Z.)
| |
Collapse
|
34
|
Shahidi S, Komaki A, Sadeghian R, Asl SS. Different doses of methamphetamine alter long-term potentiation, level of BDNF and neuronal apoptosis in the hippocampus of reinstated rats. J Physiol Sci 2019; 69:409-419. [PMID: 30680641 PMCID: PMC10717877 DOI: 10.1007/s12576-019-00660-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/05/2019] [Indexed: 12/28/2022]
Abstract
Methamphetamine (METH) is a psychostimulant. The precise mechanisms of its effects remain unknown and current relapse treatments have low efficacy. However, brain-derived neurotrophic factor (BDNF) and neuronal plasticity are essential contributors, despite paradoxical reports and a lack of comprehensive studies. Therefore, we investigated the effects of different doses of METH on long-term potentiation (LTP), BDNF expression and neuronal apoptosis in the hippocampus of reinstated rats. Rats were injected intraperitoneally with METH (1, 5, or 10 mg/kg) or saline, and trained in a conditioned place preference paradigm. Following implementation of the reinstatement model, electrophysiology, western blotting and TUNEL assay were performed to assess behavior, LTP components, BDNF expression, and neuronal apoptosis, respectively. The results demonstrated that the preference scores, population spike amplitude and BDNF expression markedly decreased in the METH (10 mg/kg) group compared with the other groups. In contrast, METH (5 mg/kg) significantly increased these factors more than the control group. There was no change in variables between METH (1 mg/kg) and the control group. Also, apoptosis of the hippocampus was increased in the METH (10 mg/kg) group compared with the METH (5 mg/kg) group. These results suggest that alterations in synaptic plasticity, expression of BDNF and neuronal apoptosis in the hippocampus has a vital role in the context-induced reinstatement of METH seeking.
Collapse
Affiliation(s)
- Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reihaneh Sadeghian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Sara Soleimani Asl
- Anatomy Departments, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
35
|
D'Souza MS. Brain and Cognition for Addiction Medicine: From Prevention to Recovery Neural Substrates for Treatment of Psychostimulant-Induced Cognitive Deficits. Front Psychiatry 2019; 10:509. [PMID: 31396113 PMCID: PMC6667748 DOI: 10.3389/fpsyt.2019.00509] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/28/2019] [Indexed: 01/10/2023] Open
Abstract
Addiction to psychostimulants like cocaine, methamphetamine, and nicotine poses a continuing medical and social challenge both in the United States and all over the world. Despite a desire to quit drug use, return to drug use after a period of abstinence is a common problem among individuals dependent on psychostimulants. Recovery for psychostimulant drug-dependent individuals is particularly challenging because psychostimulant drugs induce significant changes in brain regions associated with cognitive functions leading to cognitive deficits. These cognitive deficits include impairments in learning/memory, poor decision making, and impaired control of behavioral output. Importantly, these drug-induced cognitive deficits often impact adherence to addiction treatment programs and predispose abstinent addicts to drug use relapse. Additionally, these cognitive deficits impact effective social and professional rehabilitation of abstinent addicts. The goal of this paper is to review neural substrates based on animal studies that could be pharmacologically targeted to reverse psychostimulant-induced cognitive deficits such as impulsivity and impairment in learning and memory. Further, the review will discuss neural substrates that could be used to facilitate extinction learning and thus reduce emotional and behavioral responses to drug-associated cues. Moreover, the review will discuss some non-pharmacological approaches that could be used either alone or in combination with pharmacological compounds to treat the above-mentioned cognitive deficits. Psychostimulant addiction treatment, which includes treatment for cognitive deficits, will help promote abstinence and allow for better rehabilitation and integration of abstinent individuals into society.
Collapse
Affiliation(s)
- Manoranjan S D'Souza
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, Ada, OH, United States
| |
Collapse
|
36
|
Zygmunt M, Piechota M, Rodriguez Parkitna J, Korostyński M. Decoding the transcriptional programs activated by psychotropic drugs in the brain. GENES BRAIN AND BEHAVIOR 2018; 18:e12511. [PMID: 30084543 DOI: 10.1111/gbb.12511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 07/25/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023]
Abstract
Analysis of drug-induced gene expression in the brain has long held the promise of revealing the molecular mechanisms of drug actions as well as predicting their long-term clinical efficacy. However, despite some successes, this promise has yet to be fulfilled. Here, we present an overview of the current state of understanding of drug-induced gene expression in the brain and consider the obstacles to achieving a robust prediction of the properties of psychoactive compounds based on gene expression profiles. We begin with a comprehensive overview of the mechanisms controlling drug-inducible transcription and the complexity resulting from expression of noncoding RNAs and alternative gene isoforms. Particular interest is placed on studies that examine the associations within drug classes with regard to the effects on gene transcription, alterations in cell signaling and neuropharmacological drug properties. While the ability of gene expression signatures to distinguish specific clinical classes of psychotropic and addictive drugs remains unclear, some reports show that under specific constraints, drug properties can be predicted based on gene expression. Such signatures offer a simple and effective way to classify psychotropic drugs and screen novel psychoactive compounds. Finally, we note that the amount of data regarding molecular programs activated in the brain by drug treatment has grown exponentially in recent years and that future advances may therefore come in large part from integrating the currently available high-throughput data sets.
Collapse
Affiliation(s)
- Magdalena Zygmunt
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences, Krakow, Poland
| | - Marcin Piechota
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences, Krakow, Poland
| | - Jan Rodriguez Parkitna
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences, Krakow, Poland
| | - Michał Korostyński
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|