1
|
Arrue A, Olivas O, Erkoreka L, Alvarez FJ, Arnaiz A, Varela N, Bilbao A, Rodríguez JJ, Moreno-Calle MT, Gordo E, Marín E, Garcia-Cano J, Saez E, Gonzalez-Torres MÁ, Zumárraga M, Basterreche N. Multilocus Genetic Profile Reflecting Low Dopaminergic Signaling Is Directly Associated with Obesity and Cardiometabolic Disorders Due to Antipsychotic Treatment. Pharmaceutics 2023; 15:2134. [PMID: 37631349 PMCID: PMC10459305 DOI: 10.3390/pharmaceutics15082134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Treatment with second-generation antipsychotics (SGAs) can cause obesity and other cardiometabolic disorders linked to D2 receptor (DRD2) and to genotypes affecting dopaminergic (DA) activity, within reward circuits. We explored the relationship of cardiometabolic alterations with single genetic polymorphisms DRD2 rs1799732 (NG_008841.1:g.4750dup -> C), DRD2 rs6277 (NG_008841.1:g.67543C>T), COMT rs4680 (NG_011526.1:g.27009G>A), and VNTR in both DRD4 NC_000011.10 (637269-640706) and DAT1 NC_000005.10 (1392794-1445440), as well as with a multilocus genetic profile score (MLGP). A total of 285 psychiatric patients treated with SGAs for at least three months were selected. Cardiometabolic parameters were classified according to ATP-III and WHO criteria. Blood samples were taken for routinely biochemical assays and PCR genotyping. Obesity (BMI, waist (W)), high diastolic blood pressure (DBP), and hypertriglyceridemia (HTG) were present in those genetic variants related to low dopaminergic activity: InsIns genotype in rs1799732 (BMI: OR: 2.91 [1.42-5.94]), DRD4-VNTR-L allele (W: OR: 1.73 [1.04-2.87]) and 9R9R variant in DAT1-VNTR (W: OR: 2.73 [1.16-6.40]; high DBP: OR: 3.33 [1.54-7.31]; HTG: OR: 4.38 [1.85-10.36]). A low MLGP score indicated a higher risk of suffering cardiometabolic disorders (BMI: OR: 1.23 [1.05-1.45]; W: OR: 1.18 [1.03-1.34]; high DBP: OR: 1.22 [1.06-1.41]; HTG: OR: 1.20 [1.04-1.39]). The MLGP score was more sensitive for detecting the risk of suffering these alterations. Low dopaminergic system function would contribute to increased obesity, BDP, and HTG following long-term SGA treatment.
Collapse
Affiliation(s)
- Aurora Arrue
- Mental Health Network Group, BioCruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.O.); (L.E.)
- Neurochemical Research Unit, Bizkaia Mental Health Network, Osakidetza Basque Health Service, 48903 Barakaldo, Spain
| | - Olga Olivas
- Mental Health Network Group, BioCruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.O.); (L.E.)
- Bizkaia Mental Health Network, Zaldibar Hospital, Osakidetza Basque Health Service, 48250 Zaldibar, Spain
| | - Leire Erkoreka
- Mental Health Network Group, BioCruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.O.); (L.E.)
- Department of Psychiatry, Galdakao-Usánsolo University Hospital, Osakidetza Basque Health Service, 48960 Galdakao, Spain
- Department of Neurosciences, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Francisco Jose Alvarez
- Research Unit, Cruces University Hospital, Osakidetza Basque Health Service, 48903 Barakaldo, Spain
| | - Ainara Arnaiz
- Mental Health Network Group, BioCruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.O.); (L.E.)
- Erandio Mental Health Center, Bizkaia Mental Health Network, Osakidetza Basque Health Service, 48950 Erandio, Spain
| | - Noemi Varela
- Mental Health Network Group, BioCruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.O.); (L.E.)
- Uribe Mental Health Center, Bizkaia Mental Health Network, Osakidetza Basque Health Service, 48990 Getxo, Spain
| | - Ainhoa Bilbao
- Animal Research Facility, BioCruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Jose-Julio Rodríguez
- Department of Neurosciences, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Functional Neuroanatomy, BioCruces Bizkaia Health Research Institute, Ikerbasque Basque Foundation for Science, 48903 Barakaldo, Spain
| | - María Teresa Moreno-Calle
- Mental Health Network Group, BioCruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.O.); (L.E.)
- Department of Psychiatry, Galdakao-Usánsolo University Hospital, Osakidetza Basque Health Service, 48960 Galdakao, Spain
| | - Estibaliz Gordo
- Bizkaia Mental Health Network, Zamudio Hospital, Osakidetza Basque Health Service, 48170 Zamudio, Spain
| | - Elena Marín
- Mental Health Network Group, BioCruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.O.); (L.E.)
- Bizkaia Mental Health Network, Bermeo Hospital, Osakidetza Basque Health Service, 48370 Bermeo, Spain
| | - Javier Garcia-Cano
- Alternatives to Hospitalization in Bilbao, Bizkaia Mental Health Network, Osakidetza Basque Health Service, 48903 Bilbao, Spain
| | - Estela Saez
- Mental Health Network Group, BioCruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.O.); (L.E.)
- Department of Psychiatry, Galdakao-Usánsolo University Hospital, Osakidetza Basque Health Service, 48960 Galdakao, Spain
| | - Miguel Ángel Gonzalez-Torres
- Department of Neurosciences, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Integrative Research Group in Mental Health, BioCruces Bizkaia Health Research Institute, 48013 Bilbao, Spain
- Department of Psychiatry, Basurto University Hospital, Osakidetza Basque Health Service, 48013 Bilbao, Spain
| | - Mercedes Zumárraga
- Mental Health Network Group, BioCruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.O.); (L.E.)
- Neurochemical Research Unit, Bizkaia Mental Health Network, Osakidetza Basque Health Service, 48903 Barakaldo, Spain
| | - Nieves Basterreche
- Functional Neuroanatomy, BioCruces Bizkaia Health Research Institute, Ikerbasque Basque Foundation for Science, 48903 Barakaldo, Spain
- Integrative Research Group in Mental Health, BioCruces Bizkaia Health Research Institute, 48013 Bilbao, Spain
| |
Collapse
|
2
|
Ambroselli D, Masciulli F, Romano E, Catanzaro G, Besharat ZM, Massari MC, Ferretti E, Migliaccio S, Izzo L, Ritieni A, Grosso M, Formichi C, Dotta F, Frigerio F, Barbiera E, Giusti AM, Ingallina C, Mannina L. New Advances in Metabolic Syndrome, from Prevention to Treatment: The Role of Diet and Food. Nutrients 2023; 15:640. [PMID: 36771347 PMCID: PMC9921449 DOI: 10.3390/nu15030640] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The definition of metabolic syndrome (MetS) has undergone several changes over the years due to the difficulty in establishing universal criteria for it. Underlying the disorders related to MetS is almost invariably a pro-inflammatory state related to altered glucose metabolism, which could lead to elevated cardiovascular risk. Indeed, the complications closely related to MetS are cardiovascular diseases (CVDs) and type 2 diabetes (T2D). It has been observed that the predisposition to metabolic syndrome is modulated by complex interactions between human microbiota, genetic factors, and diet. This review provides a summary of the last decade of literature related to three principal aspects of MetS: (i) the syndrome's definition and classification, pathophysiology, and treatment approaches; (ii) prediction and diagnosis underlying the biomarkers identified by means of advanced methodologies (NMR, LC/GC-MS, and LC, LC-MS); and (iii) the role of foods and food components in prevention and/or treatment of MetS, demonstrating a possible role of specific foods intake in the development of MetS.
Collapse
Affiliation(s)
- Donatella Ambroselli
- Laboratory of Food Chemistry, Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, 00185 Rome, Italy
| | - Fabrizio Masciulli
- Laboratory of Food Chemistry, Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, 00185 Rome, Italy
| | - Enrico Romano
- Laboratory of Food Chemistry, Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, 00185 Rome, Italy
| | - Giuseppina Catanzaro
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | | | - Maria Chiara Massari
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Silvia Migliaccio
- Department of Movement, Human and Health Sciences, Health Sciences Section, University “Foro Italico”, 00135 Rome, Italy
| | - Luana Izzo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
- UNESCO, Health Education and Sustainable Development, University of Naples Federico II, 80131 Naples, Italy
| | - Michela Grosso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Caterina Formichi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Francesco Frigerio
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Eleonora Barbiera
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Anna Maria Giusti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Cinzia Ingallina
- Laboratory of Food Chemistry, Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, 00185 Rome, Italy
| | - Luisa Mannina
- Laboratory of Food Chemistry, Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
3
|
She J, Gu T, Pang X, Liu Y, Tang L, Zhou X. Natural Products Targeting Liver X Receptors or Farnesoid X Receptor. Front Pharmacol 2022; 12:772435. [PMID: 35069197 PMCID: PMC8766425 DOI: 10.3389/fphar.2021.772435] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022] Open
Abstract
Nuclear receptors (NRs) are a superfamily of transcription factors induced by ligands and also function as integrators of hormonal and nutritional signals. Among NRs, the liver X receptors (LXRs) and farnesoid X receptor (FXR) have been of significance as targets for the treatment of metabolic syndrome-related diseases. In recent years, natural products targeting LXRs and FXR have received remarkable interests as a valuable source of novel ligands encompassing diverse chemical structures and bioactive properties. This review aims to survey natural products, originating from terrestrial plants and microorganisms, marine organisms, and marine-derived microorganisms, which could influence LXRs and FXR. In the recent two decades (2000-2020), 261 natural products were discovered from natural resources such as LXRs/FXR modulators, 109 agonists and 38 antagonists targeting LXRs, and 72 agonists and 55 antagonists targeting FXR. The docking evaluation of desired natural products targeted LXRs/FXR is finally discussed. This comprehensive overview will provide a reference for future study of novel LXRs and FXR agonists and antagonists to target human diseases, and attract an increasing number of professional scholars majoring in pharmacy and biology with more in-depth discussion.
Collapse
Affiliation(s)
- Jianglian She
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tanwei Gu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Lan Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
4
|
D’Errico S, Russa RL, Maiese A, Santurro A, Scopetti M, Romano S, Zanon M, Frati P, Fineschi V. Atypical antipsychotics and oxidative cardiotoxicity: review of literature and future perspectives to prevent sudden cardiac death. J Geriatr Cardiol 2021; 18:663-685. [PMID: 34527032 PMCID: PMC8390928 DOI: 10.11909/j.issn.1671-5411.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oxidative stress is considered the principal mediator of myocardial injury under pathological conditions. It is well known that reactive oxygen (ROS) or nitrogen species (RNS) are involved in myocardial injury and repair at the same time and that cellular damage is generally due to an unbalance between generation and elimination of the free radicals due to an inadequate mechanism of antioxidant defense or to an increase in ROS and RNS. Major adverse cardiovascular events are often associated with drugs with associated findings such as fibrosis or inflammation of the myocardium. Despite efforts in the preclinical phase of the development of drugs, cardiotoxicity still remains a great concern. Cardiac toxicity due to second-generation antipsychotics (clozapine, olanzapine, quetiapine) has been observed in preclinical studies and described in patients affected with mental disorders. A role of oxidative stress has been hypothesized but more evidence is needed to confirm a causal relationship. A better knowledge of cardiotoxicity mechanisms should address in the future to establish the right dose and length of treatment without impacting the physical health of the patients.
Collapse
Affiliation(s)
- Stefano D’Errico
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Raffaele La Russa
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- IRCSS Neuromed Mediterranean Neurological Institute, Pozzilli, Italy
| | - Aniello Maiese
- IRCSS Neuromed Mediterranean Neurological Institute, Pozzilli, Italy
- Department of Surgical Pathology, Medical, Molecular and Critical Area, University of Pisa, Pisa, Italy
| | - Alessandro Santurro
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Matteo Scopetti
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Silvia Romano
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Martina Zanon
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Paola Frati
- IRCSS Neuromed Mediterranean Neurological Institute, Pozzilli, Italy
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Vittorio Fineschi
- IRCSS Neuromed Mediterranean Neurological Institute, Pozzilli, Italy
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Molina JD, Avila S, Rubio G, López-Muñoz F. Metabolomic connections between schizophrenia, antipsychotic drugs and metabolic syndrome: A variety of players. Curr Pharm Des 2021; 27:4049-4061. [PMID: 34348619 DOI: 10.2174/1381612827666210804110139] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/02/2021] [Indexed: 12/08/2022]
Abstract
BACKGROUND Diagnosis of schizophrenia lacks of reliable medical diagnostic tests and robust biomarkers applied to clinical practice. Schizophrenic patients undergoing treatment with antipsychotics suffer a reduced life expectancy due to metabolic disarrangements that co-exist with their mental illness and predispose them to develop metabolic syndrome, also exacerbated by medication. Metabolomics is an emerging and potent technology able to accelerate this biomedical research. <P> Aim: This review focus on a detailed vision of the molecular mechanisms involved both in schizophrenia and antipsychotic-induced metabolic syndrome, based on innovative metabolites that consistently change in nascent metabolic syndrome, drug-naïve, first episode psychosis and/or schizophrenic patients compared to healthy subjects. <P> Main lines: Supported by metabolomic approaches, although not exclusively, noteworthy variations are reported mainly through serum samples of patients and controls in several scenes: 1) alterations in fatty acids, inflammatory response indicators, amino acids and biogenic amines, biometals and gut microbiota metabolites (schizophrenia); 2) alterations in metabolites involved in carbohydrate and gut microbiota metabolism, inflammation and oxidative stress (metabolic syndrome), some of them shared with the schizophrenia scene; 3) alterations of cytokines secreted by adipose tissue, phosphatidylcholines, acylcarnitines, Sirtuin 1, orexin-A and changes in microbiota composition (antipsychotic-induced metabolic syndrome). <P> Conclusion: Novel insights into the pathogenesis of schizophrenia and metabolic side-effects associated to its antipsychotic treatment, represent an urgent request for scientifics and clinicians. Leptin, carnitines, adiponectin, insulin or interleukin-6 represent some examples of candidate biomarkers. Cutting-edge technologies like metabolomics have the power of strengthen research for achieving preventive, diagnostic and therapeutical solutions for schizophrenia.
Collapse
Affiliation(s)
- Juan D Molina
- Clinical Management Area of Psychiatry and Mental Health, Psychiatric Service, 12 de Octubre University Hospital, Madrid. Spain
| | - Sonia Avila
- Department of Psychiatry, Faculty of Medicine, Complutense University of Madrid. Spain
| | - Gabriel Rubio
- Clinical Management Area of Psychiatry and Mental Health, Psychiatric Service, 12 de Octubre University Hospital, Madrid. Spain
| | | |
Collapse
|
6
|
Todorović Vukotić N, Đorđević J, Pejić S, Đorđević N, Pajović SB. Antidepressants- and antipsychotics-induced hepatotoxicity. Arch Toxicol 2021; 95:767-789. [PMID: 33398419 PMCID: PMC7781826 DOI: 10.1007/s00204-020-02963-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Drug-induced liver injury (DILI) is a serious health burden. It has diverse clinical presentations that can escalate to acute liver failure. The worldwide increase in the use of psychotropic drugs, their long-term use on a daily basis, common comorbidities of psychiatric and metabolic disorders, and polypharmacy in psychiatric patients increase the incidence of psychotropics-induced DILI. During the last 2 decades, hepatotoxicity of various antidepressants (ADs) and antipsychotics (APs) received much attention. Comprehensive review and discussion of accumulated literature data concerning this issue are performed in this study, as hepatotoxic effects of most commonly prescribed ADs and APs are classified, described, and discussed. The review focuses on ADs and APs characterized by the risk of causing liver damage and highlights the ones found to cause life-threatening or severe DILI cases. In parallel, an overview of hepatic oxidative stress, inflammation, and steatosis underlying DILI is provided, followed by extensive review and discussion of the pathophysiology of AD- and AP-induced DILI revealed in case reports, and animal and in vitro studies. The consequences of some ADs and APs ability to affect drug-metabolizing enzymes and therefore provoke drug–drug interactions are also addressed. Continuous collecting of data on drugs, mechanisms, and risk factors for DILI, as well as critical data reviewing, is crucial for easier DILI diagnosis and more efficient risk assessment of AD- and AP-induced DILI. Higher awareness of ADs and APs hepatotoxicity is the prerequisite for their safe use and optimal dosing.
Collapse
Affiliation(s)
- Nevena Todorović Vukotić
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 12-14 Mike Petrovića Alasa, P.O. Box 522-090, 11000, Belgrade, Serbia.
| | - Jelena Đorđević
- Institute of Physiology and Biochemistry "Ivan Đaja", Faculty of Biology, University of Belgrade, 16 Studentski Trg, 11000, Belgrade, Serbia
| | - Snežana Pejić
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 12-14 Mike Petrovića Alasa, P.O. Box 522-090, 11000, Belgrade, Serbia
| | - Neda Đorđević
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 12-14 Mike Petrovića Alasa, P.O. Box 522-090, 11000, Belgrade, Serbia
| | - Snežana B Pajović
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 12-14 Mike Petrovića Alasa, P.O. Box 522-090, 11000, Belgrade, Serbia.,Faculty of Medicine, University of Niš, 81 Blvd. Dr. Zorana Đinđića, 18000, Niš, Serbia
| |
Collapse
|
7
|
Doménech-Matamoros P. Influence of the use of atypical antipsychotics in metabolic syndrome. REVISTA ESPANOLA DE SANIDAD PENITENCIARIA 2020; 22:80-86. [PMID: 32697278 PMCID: PMC7537359 DOI: 10.18176/resp.00014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To describe the possible relationship between the use of antipsychotic drugs and the presence of metabolic syndrome. Other objectives are to list the main side effects of antipsychotic treatment, and to determine if there is any pharmacological treatment that can contribute towards counteracting metabolic syndrome. MATERIAL AND METHOD A narrative bibliographic review was carried out of the following databases: PubMed, Cochrane, CINAHL, IBECS, LILACS and HealthCare. Preference in the selection process was given to clinical trials and systematic review articles or review articles and some articles that were considered relevant because of their content. The time period was limited to between January 2014 and November 2019. The languages were English and Spanish. Repeated articles and those that were not related to the objectives were rejected. The search criteria were: "antipsychotic AND metabolic syndrome"; "schizophrenia AND metabolic syndrome"; "bipolar disorder AND metabolic syndrome"; "metabolic syndrome AND suicide NOT disorder"; "metabolic syndrome AND prisons"; "metabolic syndrome AND prolactin". RESULTS 24 articles were selected out of the 510 that were consulted. The relationship between atypical antipsychotics and metabolic syndrome was evident. Other anticholinergic, antidopaminergic effects, extrapyramidal syndromes, neuroleptic malignant syndrome, hypotension, arrhythmias, sedation, hypovitaminosis D, increased prolactin, sexual dysfunction, sleep disturbances, etc. are also highlighted. Pharmacological associations with other drugs were also found. DISCUSSION There is a relationship between the use of atypical antipsychotics and weight gain, lipid disorders, glucose and high blood pressure. There are some associated drugs that decrease some symptoms (ranitidine, topiramate, metformin, melatonin, modafinil). Patients taking this type of medication should be monitored and encouraged to lead healthy lifestyles.
Collapse
|
8
|
Beauchemin M, Geguchadze R, Guntur AR, Nevola K, Le PT, Barlow D, Rue M, Vary CPH, Lary CW, Motyl KJ, Houseknecht KL. Exploring mechanisms of increased cardiovascular disease risk with antipsychotic medications: Risperidone alters the cardiac proteomic signature in mice. Pharmacol Res 2019; 152:104589. [PMID: 31874253 DOI: 10.1016/j.phrs.2019.104589] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/29/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Atypical antipsychotic (AA) medications including risperidone (RIS) and olanzapine (OLAN) are FDA approved for the treatment of psychiatric disorders including schizophrenia, bipolar disorder and depression. Clinical side effects of AA medications include obesity, insulin resistance, dyslipidemia, hypertension and increased cardiovascular disease risk. Despite the known pharmacology of these AA medications, the mechanisms contributing to adverse metabolic side-effects are not well understood. To evaluate drug-associated effects on the heart, we assessed changes in the cardiac proteomic signature in mice administered for 4 weeks with clinically relevant exposure of RIS or OLAN. Using proteomic and gene enrichment analysis, we identified differentially expressed (DE) proteins in both RIS- and OLAN-treated mouse hearts (p < 0.05), including proteins comprising mitochondrial respiratory complex I and pathways involved in mitochondrial function and oxidative phosphorylation. A subset of DE proteins identified were further validated by both western blotting and quantitative real-time PCR. Histological evaluation of hearts indicated that AA-associated aberrant cardiac gene expression occurs prior to the onset of gross pathomorphological changes. Additionally, RIS treatment altered cardiac mitochondrial oxygen consumption and whole body energy expenditure. Our study provides insight into the mechanisms underlying increased patient risk for adverse cardiac outcomes with chronic treatment of AA medications.
Collapse
Affiliation(s)
- Megan Beauchemin
- College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| | - Ramaz Geguchadze
- College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| | - Anyonya R Guntur
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, United States
| | - Kathleen Nevola
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, United States; Sackler School for Graduate Biomedical Research, Tufts University, Boston, MA, United States; Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME, United States
| | - Phuong T Le
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, United States
| | - Deborah Barlow
- College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| | - Megan Rue
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, United States
| | - Calvin P H Vary
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, United States
| | - Christine W Lary
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME, United States
| | - Katherine J Motyl
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, United States
| | - Karen L Houseknecht
- College of Osteopathic Medicine, University of New England, Biddeford, ME, United States.
| |
Collapse
|