1
|
Strydom JP, Brand L, Viljoen FP, Wolmarans DW. Differential impact of pegfilgrastim, a recombinant human granulocyte colony stimulating factor, on the neutrophil count of male and female deer mice (Peromyscus maniculatus bairdii). BMC Pharmacol Toxicol 2024; 25:52. [PMID: 39160640 PMCID: PMC11331688 DOI: 10.1186/s40360-024-00778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND An increasing body of research implicates inflammatory processes, including alterations in the neutrophil-lymphocyte ratio (NLR), in the pathophysiology of psychiatric illness. The deer mouse (Peromyscus maniculatus bairdii) is commonly studied for its naturalistic expression of compulsive-like behaviour. Towards future efforts to gain an understanding of how innate and adaptive immune processes might be involved in this model, we aimed to study the effects of pegfilgrastim, a pegylated recombinant human granulocyte colony-stimulating factor (g-CSF) analogue, on the NLR of both male and female deer mice. METHODS Briefly, 54 deer mice (equally distributed between sexes) were exposed to a single injection with either control or pegfilgrastim (0.1 or 1 mg/kg) (n = 18 per group). Six mice of each group (three per sex) were euthanized on days two, four and seven post-administration, their blood collected and the NLR calculated. Data were analysed by means of ordinary three-way ANOVA, followed by Bonferroni post-hoc testing. RESULTS Irrespective of dose, pegfilgrastim resulted in higher NLR values in mice of both sexes at days four and seven of testing. However, female mice exposed to the higher dose, presented with significantly higher NLR values irrespective of time, compared to male mice exposed to the same. CONCLUSION The data generated from this work highlight important dose- and sex-specific aspects of pegfilgrastim with female mice showing heighted elevation of the NLR in response to high-dose pegfilgrastim administration only. Since the innate immune components of male and female deer mice is differentially sensitive to g-CSF stimulation, our results provide a useful basis for further study of sex-specific immunological processes in deer mice.
Collapse
Affiliation(s)
- J P Strydom
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, Faculty of Health Sciences, North-West University, Building G23, Office 315, 11 Hoffman Street, Potchefstroom, 2531, South Africa
| | - Linda Brand
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, Faculty of Health Sciences, North-West University, Building G23, Office 315, 11 Hoffman Street, Potchefstroom, 2531, South Africa
| | - Francois P Viljoen
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, Faculty of Health Sciences, North-West University, Building G23, Office 315, 11 Hoffman Street, Potchefstroom, 2531, South Africa
| | - De Wet Wolmarans
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, Faculty of Health Sciences, North-West University, Building G23, Office 315, 11 Hoffman Street, Potchefstroom, 2531, South Africa.
| |
Collapse
|
2
|
Zhang YD, Shi DD, Wang Z. Neurobiology of Obsessive-Compulsive Disorder from Genes to Circuits: Insights from Animal Models. Neurosci Bull 2024:10.1007/s12264-024-01252-9. [PMID: 38982026 DOI: 10.1007/s12264-024-01252-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/27/2024] [Indexed: 07/11/2024] Open
Abstract
Obsessive-compulsive disorder (OCD) is a chronic, severe psychiatric disorder that has been ranked by the World Health Organization as one of the leading causes of illness-related disability, and first-line interventions are limited in efficacy and have side-effect issues. However, the exact pathophysiology underlying this complex, heterogeneous disorder remains unknown. This scenario is now rapidly changing due to the advancement of powerful technologies that can be used to verify the function of the specific gene and dissect the neural circuits underlying the neurobiology of OCD in rodents. Genetic and circuit-specific manipulation in rodents has provided important insights into the neurobiology of OCD by identifying the molecular, cellular, and circuit events that induce OCD-like behaviors. This review will highlight recent progress specifically toward classic genetic animal models and advanced neural circuit findings, which provide theoretical evidence for targeted intervention on specific molecular, cellular, and neural circuit events.
Collapse
Affiliation(s)
- Ying-Dan Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Dong-Dong Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 201108, China.
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 201108, China.
- Shanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center, Shanghai, 200030, China.
| |
Collapse
|
3
|
Tonna M, Borrelli DF, Aguglia E, Bucci P, Carpiniello B, Dell’Osso L, Fagiolini A, Meneguzzo P, Monteleone P, Pompili M, Roncone R, Rossi R, Zeppegno P, Marchesi C, Maj M. The relationship between obsessive-compulsive symptoms and real-life functioning in schizophrenia: New insights from the multicenter study of the Italian Network for Research on Psychoses. Eur Psychiatry 2024; 67:e37. [PMID: 38682575 PMCID: PMC11094474 DOI: 10.1192/j.eurpsy.2024.1747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/01/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Although obsessive-compulsive disorder (OCD) is highly prevalent in schizophrenia, its relationship with patients' real-life functioning is still controversial. METHODS The present study aims at investigating the prevalence of OCD in a large cohort of non-preselected schizophrenia patients living in the community and verifying the relationship of OCD, as well as of other psychopathological symptoms, with real-life functioning along a continuum of OCD severity and after controlling for demographic variables. RESULTS A sample of 327 outpatients with schizophrenia was enrolled in the study and collapsed into three subgroups according to OCD severity (subclinical, mild-moderate, severe). A series of structural equation modeling (SEM) was performed to analyze in each subgroup the association of obsessive-compulsive symptoms with real-life functioning, assessed through the Specific Levels of Functioning Scale and the UCSD Performance-Based Skills Assessment. Moreover, latent profile analysis (LPA) was performed to infer latent subpopulations. In the subclinical OCD group, obsessive-compulsive symptoms (OCS) were not associated with functioning, whereas in the mild-moderate OCD group, they showed a positive relationship, particularly in the domains of work and everyday life skills. The paucity of patients with severe OCD did not allow performing SEM analysis in this group. Finally, LPA confirmed a subgroup with mild-moderate OCS and more preserved levels of functioning. CONCLUSIONS These findings hint at a positive association between mild-moderate OCD and real-life functioning in individuals with schizophrenia and encourage a careful assessment of OCD in personalized programs to sustain daily life activities.
Collapse
Affiliation(s)
- Matteo Tonna
- Department of Medicine and Surgery, Psychiatric Unit, University of Parma, Parma, Italy
| | | | - Eugenio Aguglia
- Department of Clinical and Molecular Biomedicine, Psychiatric Unit, University of Catania, Catania, Italy
| | - Paola Bucci
- Department of Psychiatry, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Bernardo Carpiniello
- Section of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
| | - Liliana Dell’Osso
- Section of Psychiatry, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andrea Fagiolini
- Department of Molecular and Developmental Medicine, Division of Psychiatry, University of Siena, Siena, Italy
| | - Paolo Meneguzzo
- Department of Neuroscience, Psychiatric Clinic, University of Padua, Padua, Italy
| | - Palmiero Monteleone
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana” Section of Neuroscience, University of Salerno, Salerno, Italy
| | - Maurizio Pompili
- Department of Neurosciences, Mental Health and Sensory Organs, S. Andrea Hospital, University of Rome La Sapienza, Rome, Italy
| | - Rita Roncone
- Unit of Psychiatry, Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Rodolfo Rossi
- Section of Psychiatry, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Patrizia Zeppegno
- Department of Translational Medicine, Psychiatric Unit, University of Eastern Piedmont, Novara, Italy
| | - Carlo Marchesi
- Department of Medicine and Surgery, Psychiatric Unit, University of Parma, Parma, Italy
| | - Mario Maj
- Department of Psychiatry, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
4
|
Marx H, Krahe TE, Wolmarans DW. Large nesting expression in deer mice remains stable under conditions of visual deprivation despite heightened limbic involvement: Perspectives on compulsive-like behavior. J Neurosci Res 2024; 102:e25320. [PMID: 38509778 DOI: 10.1002/jnr.25320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/25/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Visual stimuli and limbic activation varyingly influence obsessive-compulsive symptom expression and so impact treatment outcomes. Some symptom phenotypes, for example, covert repugnant thoughts, are likely less sensitive to sensory stimuli compared to symptoms with an extrinsic focus, that is, symptoms related to contamination, safety, and "just-right-perceptions." Toward an improved understanding of the neurocognitive underpinnings of obsessive-compulsive psychobiology, work in naturalistic animal model systems is useful. Here, we explored the impact of visual feedback and limbic processes on 24 normal (NNB) and large (LNB) nesting deer mice, respectively (as far as possible, equally distributed between sexes). Briefly, after behavioral classification into either the NNB or LNB cohorts, mice of each cohort were separated into two groups each and assessed for nesting expression under either standard light conditions or conditions of complete visual deprivation (VD). Nesting outcomes were assessed in terms of size and neatness. After nesting assessment completion, mice were euthanized, and samples of frontal-cortical and hippocampal tissues were collected to determine serotonin and noradrenaline concentrations. Our results show that LNB, as opposed to NNB, represents an inflexible and excessive behavioral phenotype that is not dependent on visually guided action-outcome processing, and that it associates with increased frontal-cortical and hippocampal noradrenaline concentrations, irrespective of lighting condition. Collectively, the current results are informing of the neurocognitive underpinnings of nesting behavior. It also provides a valuable foundation for continued investigations into the noradrenergic mechanisms that may influence the development and promulgation of excessive, rigid, and inflexible behaviors.
Collapse
Affiliation(s)
- Harry Marx
- Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Thomas E Krahe
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
| | - De Wet Wolmarans
- Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
5
|
Stoppel H, Harvey BH, Wolmarans DW. Higher offspring mortality in deer mice (Peromyscus maniculatus bairdii) that spontaneously present with large nest building behaviour. Behav Processes 2024; 216:105004. [PMID: 38360379 DOI: 10.1016/j.beproc.2024.105004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/17/2024]
Abstract
Nesting is a normal, evolutionary conserved rodent behavioural phenotype that is expressed for purposes of breeding, safety, and thermal regulation. Further, nesting is commonly assessed as marker of overall rodent health and wellbeing, with poorer nesting performance generally proposed to resemble a worse state of health. Deer mice can be bidirectionally separated with 30 % of mice presenting with excessively large nesting behaviour (LNB). All laboratory-housed deer mice are exposed to identical environmental conditions. Thus, the functional purpose of LNB remains unknown. Considering the evolutionary functions of nesting, we hypothesized that LNB will be related to an inflated drive to breed and nurse offspring. After breeding two generations of offspring from six 'normal' nesting (NNB) and seven LNB expressing pairs, our data showed that while as fertile as NNB expressing pairs, offspring survival of LNB mice were notably worse (67.9 % vs. 98.3 %). In conclusion, variance in nesting behaviour should be considered when animal health and wellbeing is considered, since it may point to underlying biobehavioural perturbations.
Collapse
Affiliation(s)
- Heike Stoppel
- Centre of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom 2520, South Africa
| | - Brian H Harvey
- Centre of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom 2520, South Africa; South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Rondebosch 7700, South Africa; IMPACT: The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University and Barwon Health, Geelong, Australia
| | - De Wet Wolmarans
- Centre of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom 2520, South Africa.
| |
Collapse
|
6
|
Tonna M, Ottoni R, Pellegrini C, Mora L, Gambolo L, Di Donna A, Parmigiani S, Marchesi C. The motor profile of obsessive-compulsive rituals: psychopathological and evolutionary implications. CNS Spectr 2023; 28:441-449. [PMID: 35184763 DOI: 10.1017/s1092852922000165] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Studies investigating obsessive-compulsive disorder from an ethological approach have highlighted a specific motor pattern of compulsive rituals with respect to corresponding ordinary behaviors. Particularly, compulsive motor profile is built through the repetition of acts, with prevalence of nonfunctional ones and redirection of attention to its basic structural units. These formal features would characterize ritual behavior throughout evolution, from nonhuman animals to human cultures. However, no study to date has investigated a possible relationship between such motor profile and underlying psychopathology. Therefore, the first objective of the study was to confirm previous findings on a larger sample size of obsessive patients; the second objective was to elucidate whether motor profile might be associated with obsessive-compulsive psychopathology and/or prepsychotic symptoms of schizophrenia. METHODS Twenty-one obsessive-compulsive outpatients provided a videotape of their rituals. An equal number of healthy controls, matched for sex and age, were registered for corresponding ordinary acts. Obsessive patients were administered the Yale-Brown Obsessive-Compulsive Scale, the Brown Assessment of Beliefs Scale, the Hamilton Rating Scale for Depression, and the Frankfurt Complaint Questionnaire. RESULTS The results of the present study confirm that ritual compulsions present a specific motor structure characterized by repetition of both functional and nonfunctional acts and their longer duration. Such a motor pattern is independent from obsessive-compulsive psychopathology, whereas it results specifically associated with prepsychotic symptoms of schizophrenia. CONCLUSIONS We argue that this association may reflect the adaptive significance of ritual behavior across evolution, that is, its homeostatic function in conditions of unpredictability.
Collapse
Affiliation(s)
- Matteo Tonna
- Department of Mental Health, Local Health Service, Parma, Italy
- Department of Medicine and Surgery, Psychiatric Unit, University of Parma, Parma, Italy
| | - Rebecca Ottoni
- Department of Mental Health, Local Health Service, Parma, Italy
| | | | - Lorenzo Mora
- Department of Medicine and Surgery, Psychiatric Unit, University of Parma, Parma, Italy
| | - Luca Gambolo
- Department of Medicine and Surgery, Psychiatric Unit, University of Parma, Parma, Italy
| | - Anna Di Donna
- Department of Medicine and Surgery, Psychiatric Unit, University of Parma, Parma, Italy
| | - Stefano Parmigiani
- Department of Chemistry, Life Sciences and Environmental Sustainability, Unit of Behavioral Biology, University of Parma, Parma, Italy
| | - Carlo Marchesi
- Department of Mental Health, Local Health Service, Parma, Italy
- Department of Medicine and Surgery, Psychiatric Unit, University of Parma, Parma, Italy
| |
Collapse
|
7
|
Hurter B, Gourley SL, Wolmarans DW. Associations between nesting, stereotypy, and working memory in deer mice: response to levetiracetam. Pharmacol Rep 2023; 75:647-656. [PMID: 37055664 PMCID: PMC10227124 DOI: 10.1007/s43440-023-00484-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND Some deer mice (Peromyscus maniculatus bairdii) exhibit various phenotypes of persistent behaviors. It remains unknown if and how said phenotypes associate with early-life and adult cognitive perturbations, and whether potentially cognitive enhancing drugs might modify such associations. Here, we explored the longitudinal relationship between early-life behavioral flexibility and the expression of persistent behavior in adulthood. We also investigated how said phenotypes might associate with working memory in adulthood, and how this association might respond to chronic exposure to the putative cognitive enhancer, levetiracetam (LEV). METHODS 76 juvenile deer mice were assessed for habit-proneness in the Barnes maze (BM) and divided into two exposure groups (n = 37-39 per group), i.e., control and LEV (75 mg/kg/day). After 56 days of uninterrupted exposure, mice were screened for nesting and stereotypical behavior, and then assessed for working memory in the T-maze. RESULTS Juvenile deer mice overwhelmingly utilize habit-like response strategies, regardless of LNB and HS behavior in adulthood. Further, LNB and HS are unrelated in terms of their expression, while LEV reduces the expression of LNB, but bolsters CR (but not VA). Last, an increased level of control over high stereotypical expression may facilitate improved working memory performance. CONCLUSION LNB, VA and CR, are divergent in terms of their neurocognitive underpinnings. Chronic LEV administration throughout the entire rearing period may be of benefit to some phenotypes, e.g., LNB, but not others (CR). We also show that an increased level of control over the expression of stereotypy may facilitate improved working memory performance.
Collapse
Affiliation(s)
- Bianca Hurter
- Department of Pharmacology, Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Shannon L Gourley
- Departments of Pediatrics and Psychiatry, Emory School of Medicine, Atlanta, USA
- Children's Healthcare of Atlanta, Atlanta, USA
- Emory National Primate Research Center, Emory University, Atlanta, USA
| | - De Wet Wolmarans
- Department of Pharmacology, Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa.
| |
Collapse
|
8
|
Davis SW, Kiaris H, Kaza V, Felder MR. Genetic Analysis of the Stereotypic Phenotype in Peromyscus maniculatus (deer mice). Behav Genet 2023; 53:53-62. [PMID: 36422733 DOI: 10.1007/s10519-022-10124-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/20/2022] [Indexed: 11/26/2022]
Abstract
Peromyscus maniculatus, including the laboratory stock BW, have been used as a model organism for autism spectrum disorder and obsessive-compulsive disorder because of the high occurrence of stereotypy. Several studies have identified neurological and environmental components of the phenotype; however, the heritability of the phenotype has not been examined. This study characterizes the incidence and heritability of vertical jumping stereotypy (VS) and backflipping (BF) behavior in the BW stock of the Peromyscus Genetic Stock Center, which are indicative of autism spectrum disorders. In addition, interspecies crosses between P. maniculatus and P. polionotus were also performed to further dissect genetically stereotypic behavior. The inheritance pattern of VS suggests that multiple genes result in a quantitative trait with low VS being dominant over high VS. The inheritance pattern of BF suggests that fewer genes are involved, with one allele causing BF in a dominant fashion. An association analysis in BW could reveal the underlying genetic loci associated with stereotypy in P. maniculatus, especially for the BF behavior.
Collapse
Affiliation(s)
- Shannon W Davis
- Department of Biological Sciences, University of South Carolina, Columbia, USA.,University of South Carolina, Columbia, SC, 29208, USA
| | - Hippokratis Kiaris
- Department of Drug Discovery and Biomedical Science, University of South Carolina, Columbia, USA.,University of South Carolina, Columbia, SC, 29208, USA
| | - Vimala Kaza
- Department of Drug Discovery and Biomedical Science, University of South Carolina, Columbia, USA.,University of South Carolina, Columbia, SC, 29208, USA
| | - Michael R Felder
- Department of Biological Sciences, University of South Carolina, Columbia, USA. .,University of South Carolina, Columbia, SC, 29208, USA. .,Department of Biological Sciences, University of South Carolina, 715 Sumter St, CLS Room 401, Columbia, SC, 29208, USA.
| |
Collapse
|
9
|
Burke JT, Mograbi DC, Wolmarans DW. Behavioral restriction, lorazepam, and escitalopram uniquely influence the expression of naturalistic stereotypy in deer mice: perspectives on anxiety- and compulsive-like behavior. Front Behav Neurosci 2022; 16:1071157. [PMID: 36600991 PMCID: PMC9806336 DOI: 10.3389/fnbeh.2022.1071157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction: Stereotypical expression in laboratory-housed rodents can be explained by different motivational, coping, and motor dysfunction theories. Here, we aimed to explore the neurocognitive underpinnings of high stereotypical (HS) expression in deer mice (Peromyscus maniculatus bairdii), previously proposed as a model system of compulsive-like behavioral persistence. Specifically, we aimed to establish whether HS behavior is related to an underlying escape-related trigger. Methods: One-hundred and sixteen deer mice were classified as either non-stereotypical (NS) or HS. Mice of each cohort were further subdivided and exposed to either sub-acute (3-day) or chronic (25-day) behavioral restriction (R), and high-dose escitalopram (ESC), lorazepam (LOR), alone and in combination with R (ESC+R and LOR+R, respectively). Mice were reassessed for stereotypical behavior at both time points. Results: Our results indicate that HS behavior is likely not temporally and functionally related to an anxiogenic trigger, i.e., R, but rather that HS is associated with parallel changes in anxiogenic feedback processing. We also show that chronic R alone significantly decreased the time spent in expressing HS behavior in animals of the HS, but not NS phenotype. Discussion: This points to the possibility that HS-expressing mice represent a subgroup of P. maniculatus bairdii in which unique interactions between neurobiology and processes of gradual behavioral organization, may contribute to the expression of the typical behaviors observed in this cohort. Collectively, our findings highlight the value of the deer mouse model system to investigate the potential neurocognitive mechanisms that may underlie the development of persistent phenotypes that can likely not be explained entirely by current theories.
Collapse
Affiliation(s)
- Johann T. Burke
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa
| | - Daniel C. Mograbi
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil,Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - De Wet Wolmarans
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa,*Correspondence: De Wet Wolmarans
| |
Collapse
|
10
|
Spontaneous alternation and stereotypical behaviour in deer mice: response to escitalopram and levetiracetam. Behav Pharmacol 2022; 33:282-290. [PMID: 35621170 DOI: 10.1097/fbp.0000000000000678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Obsessive-compulsive disorder is varyingly associated with cognitive impairment, that is, deficits in spatial working memory, although it seems unlikely that this is generalised across all domains of functioning. Further, it is unclear whether symptoms will respond to potentially novel, non-serotonergic drugs that have shown promise as so-called cognitive enhancers. Here, we studied low (Norm-N; n = 31) and compulsive-like high (Comp-H; n = 34) stereotypical deer mice (Peromyscus maniculatus bairdii) to establish (1) whether there is a relationship between stereotypical intensity and working memory ability as measured by spontaneous T-maze arm alternation and (2) if and how stereotypy and its association with changes in working memory, would respond to the known anti-compulsive agent, escitalopram, and the proposed cognitive enhancer, levetiracetam. After assessing the stereotypical and alternation behaviour of all animals at baseline, they were divided into three socially housed drug exposure groups, that is, water control (n = 11 per phenotype), escitalopram 50 mg/kg/d (n = 11 per phenotype) and levetiracetam 75 mg/kg/d (Norm-N: n = 9; Comp-H: n = 12). Drugs were administered for 28 days before stereotypy and alternation assessment were repeated. The present data indicate a weak negative relationship between stereotypical intensity and spontaneous alternation. While levetiracetam increased the time spent engaging in normal rodent activity by Comp-H, but not Norm-N animals, neither of the interventions affected the expression of Comp-H behaviour or the alternation behaviour of deer mice. In conclusion, this work points to some degree of cognitive involvement in Comp-H expression, which should be explored to further our understanding of compulsive-like stereotypy.
Collapse
|
11
|
Hoffman KL, Cano-Ramírez H. Pediatric neuropsychiatric syndromes associated with infection and microbiome alterations: clinical findings, possible role of the mucosal epithelium, and strategies for the development of new animal models. Expert Opin Drug Discov 2022; 17:717-731. [PMID: 35543072 DOI: 10.1080/17460441.2022.2074396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Subsets of pediatric obsessive-compulsive disorder (OCD) and autism spectrum disorder (ASD) respectively have been associated with respiratory tract infections and alterations in the intestinal microbiome. Pediatric Acute-onset Neuropsychiatric Syndromes (PANS) refers to the sudden onset of neuropsychiatric symptoms that are triggered by several different infectious and non-infectious factors. Clinical studies and animal modeling are consistent with the proposal that inflammation plays an important etiological role in PANS, as well as in ASD associated with gut dysbiosis. AREAS COVERED The authors provide an overview of clinical studies of PANS and ASD associated with gastrointestinal symptoms, as well as the current strategies for studying these syndromes in rodent models. Finally, the authors highlight similarities between these syndromes that may provide clues to common etiological mechanisms. EXPERT OPINION Although data from existing animal models are consistent with an important role for anti-neuronal antibodies in PANS triggered by GAS infection, we lack models for identifying pathophysiological mechanisms of PANS associated with other infectious and non-infectious triggers. The authors propose a strategy for developing such models that incorporates known vulnerability and triggering factors for PANS into the modeling process. This novel strategy should expand our understanding of the pathophysiology of PANS, as well as facilitate the development of new pharmacological treatments for PANS and related syndromes.
Collapse
Affiliation(s)
- Kurt Leroy Hoffman
- Centro de Investigación en Reproducción Animal Dr. Carlos Beyer Flores (CIRA), Universidad Autónoma de Tlaxcala - Centro de Investigación de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN)
| | - Hugo Cano-Ramírez
- Centro de Investigación en Reproducción Animal Dr. Carlos Beyer Flores (CIRA), Universidad Autónoma de Tlaxcala - Centro de Investigación de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN)
| |
Collapse
|
12
|
Mitra S, Bult-Ito A. Bidirectional Behavioral Selection in Mice: A Novel Pre-clinical Approach to Examining Compulsivity. Front Psychiatry 2021; 12:716619. [PMID: 34566718 PMCID: PMC8458042 DOI: 10.3389/fpsyt.2021.716619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) and related disorders (OCRD) is one of the most prevalent neuropsychiatric disorders with no definitive etiology. The pathophysiological attributes of OCD are driven by a multitude of factors that involve polygenic mechanisms, gender, neurochemistry, physiological status, environmental exposures and complex interactions among these factors. Such complex intertwining of contributing factors imparts clinical heterogeneity to the disorder making it challenging for therapeutic intervention. Mouse strains selected for excessive levels of nest- building behavior exhibit a spontaneous, stable and predictable compulsive-like behavioral phenotype. These compulsive-like mice exhibit heterogeneity in expression of compulsive-like and other adjunct behaviors that might serve as a valuable animal equivalent for examining the interactions of genetics, sex and environmental factors in influencing the pathophysiology of OCD. The current review summarizes the existing findings on the compulsive-like mice that bolster their face, construct and predictive validity for studying various dimensions of compulsive and associated behaviors often reported in clinical OCD and OCRD.
Collapse
Affiliation(s)
- Swarup Mitra
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Abel Bult-Ito
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, United States
- OCRD Biomed LLC, Fairbanks, AK, United States
| |
Collapse
|
13
|
de Brouwer G, Engelbrecht J, Mograbi DC, Legoabe L, Steyn SF, Wolmarans DW. Stereotypy and spontaneous alternation in deer mice and its response to anti-adenosinergic intervention. J Neurosci Res 2021; 99:2706-2720. [PMID: 34115897 DOI: 10.1002/jnr.24867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022]
Abstract
Repetitive behavioral phenotypes are a trait of several neuropsychiatric disorders, including obsessive-compulsive disorder (OCD). Such behaviors are typified by complex interactions between cognitive and neurobiological processes which most likely contribute to the suboptimal treatment responses often observed. To this end, exploration of the adenosinergic system may be useful, since adenosine-receptor modulation has previously shown promise to restore control over voluntary behavior and improve cognition in patients presenting with motor repetition. Here, we employed the deer mouse (Peromyscus maniculatus bairdii) model of compulsive-like behavioral persistence, seeking to investigate possible associations between stereotypic motor behavior and cognitive flexibility as measured in the T-maze continuous alternation task (T-CAT). The effect of istradefylline, a selective adenosine A2A receptor antagonist at two doses (10 and 20 mg kg-1 day-1 ) on the expression of stereotypy and T-CAT performance in high (H) and non-(N) stereotypical animals, was investigated in comparison to a control intervention (six groups; n = 8 or 9 per group). No correlation between H behavior and T-CAT performance was found. However, H but not N animals presented with istradefylline-sensitive spontaneous alternation and stereotypy, in that istradefylline at both doses significantly improved the spontaneous alternation scores and attenuated the stereotypical expression of H animals. Thus, evidence is presented that anti-adenosinergic drug action improves repetitive behavior and spontaneous alternation in stereotypical deer mice, putatively pointing to a shared psychobiological construct underlying naturalistic stereotypy and alterations in cognitive flexibility in deer mice.
Collapse
Affiliation(s)
- Geoffrey de Brouwer
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Jaco Engelbrecht
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Daniel C Mograbi
- Department of Psychology, Pontifícia Universidade Católica - Rio (PUC-Rio), Rio de Janeiro, Brazil.,Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Lesetja Legoabe
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Stephan F Steyn
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - De Wet Wolmarans
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
14
|
Szechtman H, Harvey BH, Woody EZ, Hoffman KL. The Psychopharmacology of Obsessive-Compulsive Disorder: A Preclinical Roadmap. Pharmacol Rev 2020; 72:80-151. [PMID: 31826934 DOI: 10.1124/pr.119.017772] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review evaluates current knowledge about obsessive-compulsive disorder (OCD), with the goal of providing a roadmap for future directions in research on the psychopharmacology of the disorder. It first addresses issues in the description and diagnosis of OCD, including the structure, measurement, and appropriate description of the disorder and issues of differential diagnosis. Current pharmacotherapies for OCD are then reviewed, including monotherapy with serotonin reuptake inhibitors and augmentation with antipsychotic medication and with psychologic treatment. Neuromodulatory therapies for OCD are also described, including psychosurgery, deep brain stimulation, and noninvasive brain stimulation. Psychotherapies for OCD are then reviewed, focusing on behavior therapy, including exposure and response prevention and cognitive therapy, and the efficacy of these interventions is discussed, touching on issues such as the timing of sessions, the adjunctive role of pharmacotherapy, and the underlying mechanisms. Next, current research on the neurobiology of OCD is examined, including work probing the role of various neurotransmitters and other endogenous processes and etiology as clues to the neurobiological fault that may underlie OCD. A new perspective on preclinical research is advanced, using the Research Domain Criteria to propose an adaptationist viewpoint that regards OCD as the dysfunction of a normal motivational system. A systems-design approach introduces the security motivation system (SMS) theory of OCD as a framework for research. Finally, a new perspective on psychopharmacological research for OCD is advanced, exploring three approaches: boosting infrastructure facilities of the brain, facilitating psychotherapeutic relearning, and targeting specific pathways of the SMS network to fix deficient SMS shut-down processes. SIGNIFICANCE STATEMENT: A significant proportion of patients with obsessive-compulsive disorder (OCD) do not achieve remission with current treatments, indicating the need for innovations in psychopharmacology for the disorder. OCD may be conceptualized as the dysfunction of a normal, special motivation system that evolved to manage the prospect of potential danger. This perspective, together with a wide-ranging review of the literature, suggests novel directions for psychopharmacological research, including boosting support systems of the brain, facilitating relearning that occurs in psychotherapy, and targeting specific pathways in the brain that provide deficient stopping processes in OCD.
Collapse
Affiliation(s)
- Henry Szechtman
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada (H.S.); SAMRC Unit on Risk Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University (Potchefstroom Campus), Potchefstroom, South Africa (B.H.H.); Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada (E.Z.W.); and Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico (K.L.H.)
| | - Brian H Harvey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada (H.S.); SAMRC Unit on Risk Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University (Potchefstroom Campus), Potchefstroom, South Africa (B.H.H.); Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada (E.Z.W.); and Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico (K.L.H.)
| | - Erik Z Woody
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada (H.S.); SAMRC Unit on Risk Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University (Potchefstroom Campus), Potchefstroom, South Africa (B.H.H.); Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada (E.Z.W.); and Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico (K.L.H.)
| | - Kurt Leroy Hoffman
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada (H.S.); SAMRC Unit on Risk Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University (Potchefstroom Campus), Potchefstroom, South Africa (B.H.H.); Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada (E.Z.W.); and Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico (K.L.H.)
| |
Collapse
|
15
|
Shang Z, Horovitz DJ, McKenzie RH, Keisler JL, Felder MR, Davis SW. Using genomic resources for linkage analysis in Peromyscus with an application for characterizing Dominant Spot. BMC Genomics 2020; 21:622. [PMID: 32912160 PMCID: PMC7488232 DOI: 10.1186/s12864-020-06969-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 08/03/2020] [Indexed: 11/16/2022] Open
Abstract
Background Peromyscus are the most common mammalian species in North America and are widely used in both laboratory and field studies. The deer mouse, P. maniculatus and the old-field mouse, P. polionotus, are closely related and can generate viable and fertile hybrid offspring. The ability to generate hybrid offspring, coupled with developing genomic resources, enables researchers to conduct linkage analysis studies to identify genomic loci associated with specific traits. Results We used available genomic data to identify DNA polymorphisms between P. maniculatus and P. polionotus and used the polymorphic data to identify the range of genetic complexity that underlies physiological and behavioral differences between the species, including cholesterol metabolism and genes associated with autism. In addition, we used the polymorphic data to conduct a candidate gene linkage analysis for the Dominant spot trait and determined that Dominant spot is linked to a region of chromosome 20 that contains a strong candidate gene, Sox10. During the linkage analysis, we found that the spot size varied quantitively in affected Peromyscus based on genetic background. Conclusions The expanding genomic resources for Peromyscus facilitate their use in linkage analysis studies, enabling the identification of loci associated with specific traits. More specifically, we have linked a coat color spotting phenotype, Dominant spot, with Sox10, a member the neural crest gene regulatory network, and that there are likely two genetic modifiers that interact with Dominant spot. These results establish Peromyscus as a model system for identifying new alleles of the neural crest gene regulatory network.
Collapse
Affiliation(s)
- Zhenhua Shang
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - David J Horovitz
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Ronald H McKenzie
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Jessica L Keisler
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Michael R Felder
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Shannon W Davis
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
16
|
de Brouwer G, Fick A, Lombaard A, Stein DJ, Harvey BH, Wolmarans DW. Large nest building and high marble-burying: Two compulsive-like phenotypes expressed by deer mice (Peromyscus maniculatus bairdii) and their unique response to serotoninergic and dopamine modulating intervention. Behav Brain Res 2020; 393:112794. [PMID: 32619566 DOI: 10.1016/j.bbr.2020.112794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 02/08/2023]
Abstract
This study aimed to further dissect the deer mouse (Peromyscus maniculatus bairdii) model of compulsive-like behavior with respect to two persistent-like behavioral phenotypes viz. large nest building (LNB) and high marble-burying (HMB), which may be relevant to understanding the neurobiology of different symptom dimensions in obsessive-compulsive and related disorders. Since LNB is sensitive to chronic, high dose escitalopram intervention but HMB is not, we assessed whether the two behaviors could be further distinguished based on their response to 4 weeks of uninterrupted serotoninergic intervention (i.e. escitalopram; ESC; 50 mg/kg/day), dopaminergic antagonism, i.e. flupentixol; FLU; 0.9 mg/kg/day), dopaminergic potentiation (i.e. rasagiline; RAS; 5 mg/kg/day), and their respective combinations with escitalopram (ESC/FLU and ESC/RAS). Here we show LNB to be equally responsive to chronic ESC and ESC/FLU. HMB was insensitive to either of these interventions but was responsive to ESC/RAS. Additionally, we report that scoring preoccupied interaction with marbles over several trials is an appropriate measure of compulsive-like behavioral persistence in addition to the standard marble burying test. Taken together, these data provide further evidence that LNB and HMB in deer mice have distinctive neurobiological underpinnings. Thus, the naturally occurring compulsive-like behaviors expressed by deer mice may be useful in providing a platform to test unique treatment targets for different symptom dimensions of OCD and related disorders.
Collapse
Affiliation(s)
- Geoffrey de Brouwer
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North West-University, Potchefstroom, South Africa
| | - Arina Fick
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North West-University, Potchefstroom, South Africa
| | - Ané Lombaard
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North West-University, Potchefstroom, South Africa
| | - Dan J Stein
- MRC Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa; Department of Psychiatry and Mental Health, University of Cape Town, South Africa
| | - Brian H Harvey
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North West-University, Potchefstroom, South Africa; MRC Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
| | - De Wet Wolmarans
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North West-University, Potchefstroom, South Africa.
| |
Collapse
|
17
|
Naturalistic operant responses in deer mice (Peromyscus maniculatus bairdii) and its response to outcome manipulation and serotonergic intervention. Behav Pharmacol 2020; 31:343-358. [DOI: 10.1097/fbp.0000000000000536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Demin KA, Lakstygal AM, Volgin AD, de Abreu MS, Genario R, Alpyshov ET, Serikuly N, Wang D, Wang J, Yan D, Wang M, Yang L, Hu G, Bytov M, Zabegalov KN, Zhdanov A, Harvey BH, Costa F, Rosemberg DB, Leonard BE, Fontana BD, Cleal M, Parker MO, Wang J, Song C, Amstislavskaya TG, Kalueff AV. Cross-species Analyses of Intra-species Behavioral Differences in Mammals and Fish. Neuroscience 2020; 429:33-45. [DOI: 10.1016/j.neuroscience.2019.12.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 12/28/2022]
|
19
|
Armstrong JL, Casey AB, Saraf TS, Mukherjee M, Booth RG, Canal CE. ( S)-5-(2'-Fluorophenyl)- N, N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine, a Serotonin Receptor Modulator, Possesses Anticonvulsant, Prosocial, and Anxiolytic-like Properties in an Fmr1 Knockout Mouse Model of Fragile X Syndrome and Autism Spectrum Disorder. ACS Pharmacol Transl Sci 2020; 3:509-523. [PMID: 32566916 DOI: 10.1021/acsptsci.9b00101] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Indexed: 12/12/2022]
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder characterized by intellectual disabilities and a plethora of neuropsychiatric symptoms. FXS is the leading monogenic cause of autism spectrum disorder (ASD), which is defined clinically by repetitive and/or restrictive patterns of behavior and social communication deficits. Epilepsy and anxiety are also common in FXS and ASD. Serotonergic neurons directly innervate and modulate the activity of neurobiological circuits altered in both disorders, providing a rationale for investigating serotonin receptors (5-HTRs) as targets for FXS and ASD drug discovery. Previously we unveiled an orally active aminotetralin, (S)-5-(2'-fluorophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine (FPT), that exhibits partial agonist activity at 5-HT1ARs, 5-HT2CRs, and 5-HT7Rs and that reduces repetitive behaviors and increases social approach behavior in wild-type mice. Here we report that in an Fmr1 knockout mouse model of FXS and ASD, FPT is prophylactic for audiogenic seizures. No FPT-treated mice displayed audiogenic seizures, compared to 73% of vehicle-treated mice. FPT also exhibits anxiolytic-like effects in several assays and increases social interactions in both Fmr1 knockout and wild-type mice. Furthermore, FPT increases c-Fos expression in the basolateral amygdala, which is a preclinical effect produced by anxiolytic medications. Receptor pharmacology assays show that FPT binds competitively and possesses rapid association and dissociation kinetics at 5-HT1ARs and 5-HT7Rs, yet has slow association and rapid dissociation kinetics at 5-HT2CRs. Finally, we reassessed and report FPT's affinity and function at 5-HT1ARs, 5-HT2CRs, and 5-HT7Rs. Collectively, these observations provide mounting support for further development of FPT as a pharmacotherapy for common neuropsychiatric symptoms in FXS and ASD.
Collapse
Affiliation(s)
- Jessica L Armstrong
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia 30341, United States
| | - Austen B Casey
- Center for Drug Discovery, Department of Pharmaceutical Sciences, and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02131, United States
| | - Tanishka S Saraf
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia 30341, United States
| | - Munmun Mukherjee
- Center for Drug Discovery, Department of Pharmaceutical Sciences, and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02131, United States
| | - Raymond G Booth
- Center for Drug Discovery, Department of Pharmaceutical Sciences, and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02131, United States
| | - Clinton E Canal
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia 30341, United States
| |
Collapse
|
20
|
Scheepers IM, Cryan JF, Bastiaanssen TFS, Rea K, Clarke G, Jaspan HB, Harvey BH, Hemmings SMJ, Santana L, van der Sluis R, Malan-Müller S, Wolmarans DW. Natural compulsive-like behaviour in the deer mouse (Peromyscus maniculatus bairdii) is associated with altered gut microbiota composition. Eur J Neurosci 2019; 51:1419-1427. [PMID: 31663195 DOI: 10.1111/ejn.14610] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022]
Abstract
Obsessive-compulsive disorder (OCD) is a psychiatric illness that significantly impacts affected patients and available treatments yield suboptimal therapeutic response. Recently, the role of the gut-brain axis (GBA) in psychiatric illness has emerged as a potential target for therapeutic exploration. However, studies concerning the role of the GBA in OCD are limited. To investigate whether a naturally occurring obsessive-compulsive-like phenotype in a rodent model, that is large nest building in deer mice, is associated with perturbations in the gut microbiome, we investigated and characterised the gut microbiota in specific-pathogen-free bred and housed large (LNB) and normal (NNB) nest-building deer mice of both sexes (n = 11 per group, including three males and eight females). Following baseline characterisation of nest-building behaviour, a single faecal sample was collected from each animal and the gut microbiota analysed. Our results reveal the overall microbial composition of LNB animals to be distinctly different compared to controls (PERMANOVA p < .05). While no genera were found to be significantly differentially abundant after correcting for multiple comparisons, the normal phenotype showed a higher loading of Prevotella and Anaeroplasma, while the OC phenotype demonstrated a higher loading of Desulfovermiculus, Aestuariispira, Peptococcus and Holdemanella (cut-off threshold for loading at 0.2 in either the first or second component of the PCA). These findings not only provide proof-of-concept for continued investigation of the GBA in OCD, but also highlight a potential underlying aetiological association between alterations in the gut microbiota and the natural development of obsessive-compulsive-like behaviours.
Collapse
Affiliation(s)
- Isabella M Scheepers
- Centre of Excellence for Pharmaceutical Sciences, North West-University, Potchefstroom, South Africa
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Heather B Jaspan
- Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Seattle Children's Research Institute, University of Washington, Seattle, WA, USA
| | - Brian H Harvey
- Centre of Excellence for Pharmaceutical Sciences, North West-University, Potchefstroom, South Africa.,MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Sian M J Hemmings
- Department of Psychiatry, Stellenbosch University, Tygerberg, South Africa
| | - Leonard Santana
- Unit for Business Mathematics and Informatics, North-West University, Potchefstroom, South Africa
| | - Rencia van der Sluis
- Focus area for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | | | - De Wet Wolmarans
- Centre of Excellence for Pharmaceutical Sciences, North West-University, Potchefstroom, South Africa
| |
Collapse
|
21
|
Augustine F, Rajendran S, Singer HS. Cortical endogenous opioids and their role in facilitating repetitive behaviors in deer mice. Behav Brain Res 2019; 379:112317. [PMID: 31676208 DOI: 10.1016/j.bbr.2019.112317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022]
Abstract
Deer mice provide a non-pharmacologically induced model for the study of repetitive behaviors. In captivity, these animals develop frequent jumping and rearing that resemble clinical symptoms of obsessive-compulsive behavior (OCB), autism spectrum disorder (ASD), complex motor stereotypies (CMS), and Tourette's syndrome (TS). In this study, we pursue the mechanism of repetitive behaviors by performing stereological analyses and liquid chromatography/ mass spectrometry (LC-MS/MS) measurements of glutamate (Glut), GABA, 3,4-dihydroxyphenylacetic acid (DOPAC), dopamine (DA), leu-enkephalin (leu-enk), and dynorphin-A (dyn-A) in frontal cortex (FC), prefrontal cortex (PFC), and basal ganglia. The only significant stereological alteration was a negative correlation between repetitive behaviors and the cell count in the ventromedial striatum (VMS). Neurochemical analyses demonstrated a significant negative correlation between repetitive behaviors and endogenous opioids (leu-enk and dyn-A) in the FC - the site of origin of habitual behaviors and cortical projections to striatal MSNs participating in direct and indirect pathways. The precise neurochemical process by which endogenous opioids influence synaptic neurotransmission is unknown. One postulated cortical mechanism, supported by our findings, is an opioid effect on cortical interneuron GABA release and a consequent effect on glutamatergic cortical pyramidal cells. Anatomical changes in the VMS could have a role in repetitive behaviors, recognizing that this region influences goal-directed and habitual behaviors.
Collapse
Affiliation(s)
- Farhan Augustine
- Department of Neurology, Johns Hopkins University School of Medicine, USA
| | | | - Harvey S Singer
- Department of Neurology, Johns Hopkins University School of Medicine, USA.
| |
Collapse
|
22
|
Abnormal repetitive behaviors in zebrafish and their relevance to human brain disorders. Behav Brain Res 2019; 367:101-110. [PMID: 30926483 DOI: 10.1016/j.bbr.2019.03.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 02/01/2023]
Abstract
Abnormal repetitive behaviors (ARBs) are a prominent symptom of numerous human brain disorders and are commonly seen in rodent models as well. While rodent studies of ARBs continue to dominate the field, mounting evidence suggests that zebrafish (Danio rerio) also display ARB-like phenotypes and may therefore be a novel model organism for ARB research. In addition to clear practical research advantages as a model species, zebrafish share high genetic and physiological homology to humans and rodents, including multiple ARB-related genes and robust behaviors relevant to ARB. Here, we discuss a wide spectrum of stereotypic repetitive behaviors in zebrafish, data on their genetic and pharmacological modulation, and the overall translational relevance of fish ARBs to modeling human brain disorders. Overall, the zebrafish is rapidly emerging as a new promising model to study ARBs and their underlying mechanisms.
Collapse
|
23
|
Tonna M, Marchesi C, Parmigiani S. The biological origins of rituals: An interdisciplinary perspective. Neurosci Biobehav Rev 2019; 98:95-106. [DOI: 10.1016/j.neubiorev.2018.12.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/31/2018] [Accepted: 12/31/2018] [Indexed: 12/31/2022]
|
24
|
Abstract
This is the fourth yearly article in the Tourette Syndrome Research Highlights series, summarizing research from 2017 relevant to Tourette syndrome and other tic disorders. The authors briefly summarize reports they consider most important or interesting. The highlights from 2018 article is being drafted on the Authorea online authoring platform, and readers are encouraged to add references or give feedback on our selections using the comments feature on that page. After the calendar year ends, the article is submitted as the annual update for the Tics collection on F1000Research.
Collapse
Affiliation(s)
- Andreas Hartmann
- Sorbonne University, National Reference Centre for Tourette Disorder, Pitié-Salpêtrière Hospital, Paris, France
| | - Yulia Worbe
- Sorbonne University, National Reference Centre for Tourette Disorder, Pitié-Salpêtrière Hospital, Paris, France
- Department of Physiology, Saint-Antoine Hospital, Paris, France
| | - Kevin J. Black
- Psychiatry, Neurology, Radiology, and Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110-1093, USA
| |
Collapse
|