1
|
Zhu L, Guo M, Li K, Guo C, He K. The Association and Prognostic Implications of Long Non-Coding RNAs in Major Psychiatric Disorders, Alzheimer's Diseases and Parkinson's Diseases: A Systematic Review. Int J Mol Sci 2024; 25:10995. [PMID: 39456775 PMCID: PMC11507000 DOI: 10.3390/ijms252010995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The prevalence of psychiatric disorders and neurodegenerative diseases is steadily increasing, placing a significant burden on both society and individuals. Given the intricate and multifaceted nature of these diseases, the precise underlying mechanisms remain elusive. Consequently, there is an increasing imperative to investigate the mechanisms, identify specific target sites for effective treatment, and provide for accurate diagnosis of patients with these diseases. Numerous studies have revealed significant alterations in the expression of long non-coding RNAs (lncRNAs) in psychiatric disorders and neurodegenerative diseases, suggesting their potential to increase the probability of these diseases. Moreover, these findings propose that lncRNAs could be used as highly valuable biomarkers in diagnosing and treating these diseases, thereby offering novel insights for future clinical interventions. The review presents a comprehensive summary of the origin, biological functions, and action mechanisms of lncRNAs, while exploring their implications in the pathogenesis of psychiatric disorders and neurodegenerative diseases and their potential utility as biomarkers.
Collapse
Affiliation(s)
- Lin Zhu
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao 028000, China; (L.Z.); (K.L.); (C.G.)
| | - Meng Guo
- Finance Office, Inner Mongolia Minzu University, Tongliao 028000, China;
| | - Ke Li
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao 028000, China; (L.Z.); (K.L.); (C.G.)
| | - Chuang Guo
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao 028000, China; (L.Z.); (K.L.); (C.G.)
| | - Kuanjun He
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao 028000, China; (L.Z.); (K.L.); (C.G.)
| |
Collapse
|
2
|
Ge T, Brickner JH. Inheritance of epigenetic transcriptional memory. Curr Opin Genet Dev 2024; 85:102174. [PMID: 38430840 PMCID: PMC10947848 DOI: 10.1016/j.gde.2024.102174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Epigenetic memory allows organisms to stably alter their transcriptional program in response to developmental or environmental stimuli. Such transcriptional programs are mediated by heritable regulation of the function of enhancers and promoters. Memory involves read-write systems that enable self-propagation and mitotic inheritance of cis-acting epigenetic marks to induce stable changes in transcription. Also, in response to environmental cues, cells can induce epigenetic transcriptional memory to poise inducible genes for faster induction in the future. Here, we discuss modes of epigenetic inheritance and the molecular basis of epigenetic transcriptional memory.
Collapse
Affiliation(s)
- Tiffany Ge
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
3
|
Meccariello R, Bellenchi GC, Pulcrano S, D’Addario SL, Tafuri D, Mercuri NB, Guatteo E. Neuronal dysfunction and gene modulation by non-coding RNA in Parkinson's disease and synucleinopathies. Front Cell Neurosci 2024; 17:1328269. [PMID: 38249528 PMCID: PMC10796818 DOI: 10.3389/fncel.2023.1328269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
Over the last few decades, emerging evidence suggests that non-coding RNAs (ncRNAs) including long-non-coding RNA (lncRNA), microRNA (miRNA) and circular-RNA (circRNA) contribute to the molecular events underlying progressive neuronal degeneration, and a plethora of ncRNAs have been identified significantly misregulated in many neurodegenerative diseases, including Parkinson's disease and synucleinopathy. Although a direct link between neuropathology and causative candidates has not been clearly established in many cases, the contribution of ncRNAs to the molecular processes leading to cellular dysfunction observed in neurodegenerative diseases has been addressed, suggesting that they may play a role in the pathophysiology of these diseases. Aim of the present Review is to overview and discuss recent literature focused on the role of RNA-based mechanisms involved in different aspects of neuronal pathology in Parkinson's disease and synucleinopathy models.
Collapse
Affiliation(s)
- Rosaria Meccariello
- Department of Medical and Movement Sciences and Wellness, University of Naples Parthenope, Naples, Italy
| | - Gian Carlo Bellenchi
- Institute of Genetics and Biophysics, CNR, Naples, Italy
- Experimental Neurology Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy
| | | | - Sebastian Luca D’Addario
- Experimental Neurology Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, CNR, Rome, Italy
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Domenico Tafuri
- Department of Medical and Movement Sciences and Wellness, University of Naples Parthenope, Naples, Italy
| | - Nicola B. Mercuri
- Experimental Neurology Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ezia Guatteo
- Department of Medical and Movement Sciences and Wellness, University of Naples Parthenope, Naples, Italy
- Experimental Neurology Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| |
Collapse
|
4
|
Geng X, Zou Y, Li J, Li S, Qi R, Yu H, Zhong L. BDNF alleviates Parkinson's disease by promoting STAT3 phosphorylation and regulating neuronal autophagy. Cell Tissue Res 2023; 393:455-470. [PMID: 37450039 PMCID: PMC10485099 DOI: 10.1007/s00441-023-03806-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the gradual death of dopaminergic neurons. Brain-derived neurotrophic factor (BDNF) and its receptors are widely distributed throughout the central nervous system, which can promote the survival and growth of neurons and protect neurons. This study revealed that BDNF promotes STAT3 phosphorylation and regulates autophagy in neurons. The PD mouse model was established by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Moreover, SH-SY5Y cells were treated with 1-methyl-4-phenyl-pyridinium (MPP+) to establish a PD cell model. The level of BDNF was low in PD model mice and SH-SY5Y cells treated with MPP+. BDNF enhanced the levels of p-TrkB, P-STAT3, PINK1, and DJ-1. BDNF promoted autophagy, inhibited the level of p-α-syn (Ser129) and enhanced cell proliferation. The autophagy inhibitor 3-Methyladenine (3-methyladenine, 3-MA) reversed the protective effects of BDNF on neurons. BiFC assay results showed that there was a direct physical interaction between BDNF and STAT3, and coimmunoprecipitation experiments indicated an interaction between STAT3 and PI3K. The PI3K agonist Recilisib activated the PI3K/AKT/mTOR pathway, promoted autophagy, and alleviated neuronal cell damage. BDNF alleviates PD pathology by promoting STAT3 phosphorylation and regulating neuronal autophagy in SH-SY5Y cells and cultured primary neurons. Finally, BDNF has neuroprotective effects on PD model mice.
Collapse
Affiliation(s)
- Xin Geng
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Provincial Clinical Research Center for Neurological Disease, No. 295 Xichang Road, Kunming, Yunnan, 650032, China
| | - Yanghong Zou
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Provincial Clinical Research Center for Neurological Disease, No. 295 Xichang Road, Kunming, Yunnan, 650032, China
| | - Jinghui Li
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Provincial Clinical Research Center for Neurological Disease, No. 295 Xichang Road, Kunming, Yunnan, 650032, China
| | - Shipeng Li
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Provincial Clinical Research Center for Neurological Disease, No. 295 Xichang Road, Kunming, Yunnan, 650032, China
| | - Renli Qi
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Provincial Clinical Research Center for Neurological Disease, No. 295 Xichang Road, Kunming, Yunnan, 650032, China
| | - Hualin Yu
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Provincial Clinical Research Center for Neurological Disease, No. 295 Xichang Road, Kunming, Yunnan, 650032, China.
| | - Lianmei Zhong
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Provincial Clinical Research Center for Neurological Disease, No. 295 Xichang Road, Kunming, Yunnan, 650032, China.
| |
Collapse
|
5
|
Na C, Wen-Wen C, Li W, Ao-Jia Z, Ting W. Significant Role of Long Non-coding RNAs in Parkinson's Disease. Curr Pharm Des 2022; 28:3085-3094. [PMID: 36154598 DOI: 10.2174/1381612828666220922110551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/27/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease in the world, with clinical manifestations of resting tremor, akinesia (or bradykinesia), rigidity, and postural instability. However, the molecular pathogenesis of PD is still unclear, and its effective treatments are limited. Substantial evidence demonstrates that long non-coding RNAs (lncRNAs) have important functions in various human diseases, such as cancer, cardiovascular disease, and neurodegenerative diseases. Therefore, the main purpose of this study is to review the role of lncRNAs in the pathogenesis of PD. METHODS The role of lncRNAs in the pathogenesis of PD is summarized by reviewing Pubmed. RESULTS Thirty different lncRNAs are aberrantly expressed in PD and promote or inhibit PD by mediating ubiquitin-proteasome system, autophagy-lysosomal pathway, dopamine (DA) neuronal apoptosis, mitochondrial function, oxidative stress, and neuroinflammation. CONCLUSION In this direction, lncRNA may contribute to the treatment of PD as a diagnostic and therapeutic target for PD.
Collapse
Affiliation(s)
- Chen Na
- Department of Pharmacy, Institute of Advanced Pharmaceutical Technology, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Chen Wen-Wen
- Department of Pharmacy, Institute of Advanced Pharmaceutical Technology, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wang Li
- Department of Pharmacy, Institute of Advanced Pharmaceutical Technology, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhou Ao-Jia
- Department of Pharmacy, Institute of Advanced Pharmaceutical Technology, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wang Ting
- Department of Pharmacy, Institute of Advanced Pharmaceutical Technology, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.,Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
6
|
Peng KL, Vasudevan HN, Lockney DT, Baum R, Hendrickson RC, Raleigh DR, Schmitt AM. Miat and interacting protein Metadherin maintain a stem-like niche to promote medulloblastoma tumorigenesis and treatment resistance. Proc Natl Acad Sci U S A 2022; 119:e2203738119. [PMID: 36067288 PMCID: PMC9478675 DOI: 10.1073/pnas.2203738119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play essential roles in the development and progression of many cancers. However, the contributions of lncRNAs to medulloblastoma (MB) remain poorly understood. Here, we identify Miat as an lncRNA enriched in the sonic hedgehog group of MB that is required for maintenance of a treatment-resistant stem-like phenotype in the disease. Loss of Miat results in the differentiation of tumor-initiating, stem-like MB cells and enforces the differentiation of tumorigenic stem-like MB cells into a nontumorigenic state. Miat expression in stem-like MB cells also facilitates treatment resistance by down-regulating p53 signaling and impairing radiation-induced cell death, which can be reversed by therapeutic inhibition of Miat using antisense oligonucleotides. Mechanistically, the RNA binding protein Metadherin (Mtdh), previously linked to resistance to cytotoxic therapy in cancer, binds to Miat in stem-like MB cells. Like the loss of Miat, the loss of Mtdh reduces tumorigenicity and increases sensitivity to radiation-induced death in stem-like MB cells. Moreover, Miat and Mtdh function to regulate the biogenesis of several microRNAs and facilitate tumorigenesis and treatment resistance. Taken together, these data reveal an essential role for the lncRNA Miat in sustaining a treatment-resistant pool of tumorigenic stem-like MB cells.
Collapse
Affiliation(s)
- Kai-Lin Peng
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Harish N. Vasudevan
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
- Department of Radiation Oncology, University of California San Francisco, CA, 94143
| | - Dennis T. Lockney
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Rachel Baum
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Ronald C. Hendrickson
- Microchemistry and Proteomics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - David R. Raleigh
- Department of Radiation Oncology, University of California San Francisco, CA, 94143
- Department of Neurological Surgery, University of California San Francisco, CA, 94143
| | - Adam M. Schmitt
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| |
Collapse
|
7
|
The Role of Non-Coding RNAs in the Pathogenesis of Parkinson’s Disease: Recent Advancement. Pharmaceuticals (Basel) 2022; 15:ph15070811. [PMID: 35890110 PMCID: PMC9315906 DOI: 10.3390/ph15070811] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
Parkinson’s disease (PD) is a prevalent neurodegenerative aging disorder that manifests as motor and non-motor symptoms, and its etiopathogenesis is influenced by non-coding RNAs (ncRNAs). Signal pathway and gene sequence studies have proposed that alteration of ncRNAs is relevant to the occurrence and development of PD. Furthermore, many studies on brain tissues and body fluids from patients with PD indicate that variations in ncRNAs and their target genes could trigger or exacerbate neurodegenerative pathogenesis and serve as potential non-invasive biomarkers of PD. Numerous ncRNAs have been considered regulators of apoptosis, α-syn misfolding and aggregation, mitochondrial dysfunction, autophagy, and neuroinflammation in PD etiology, and evidence is mounting for the determination of the role of competing endogenous RNA (ceRNA) mechanisms in disease development. In this review, we discuss the current knowledge regarding the regulation and function of ncRNAs as well as ceRNA networks in PD pathogenesis, focusing on microRNAs, long ncRNAs, and circular RNAs to increase the understanding of the disease and propose potential target identification and treatment in the early stages of PD.
Collapse
|
8
|
Xia F, Zeng Q, Chen J. Circulating brain-derived neurotrophic factor dysregulation and its linkage with lipid level, stenosis degree, and inflammatory cytokines in coronary heart disease. J Clin Lab Anal 2022; 36:e24546. [PMID: 35666604 PMCID: PMC9279961 DOI: 10.1002/jcla.24546] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 11/07/2022] Open
Abstract
Background Brain‐derived neurotrophic factor (BDNF) regulates the lipid metabolism, atherosclerosis plaque formation, and inflammatory process, while the study about its clinical role in coronary heart disease (CHD) is few. The present study intended to explore the expression of BDNF and its relationship with stenosis, inflammation, and adhesion molecules in CHD patients. Methods After serum samples were obtained from 207 CHD patients, BDNF, tumor necrosis factor‐alpha (TNF‐α), interleukin (IL)‐1β, IL‐6, IL‐8, IL‐17A, vascular cell adhesion molecule‐1 (VCAM‐1), and intercellular adhesion molecule‐1 (ICAM‐1) levels were determined using ELISA. Then, the BDNF level was also examined in 40 disease controls (DCs) and 40 healthy controls (HCs), separately. Results BDNF was lower in CHD patients than in DCs and HCs (median (95% confidential interval) value: 5.6 (3.5–9.6) ng/mL vs. 10.7 (6.1–17.0) ng/mL and 12.6 (9.4–18.2) ng/mL, both p < 0.001). BDNF could well distinguish CHD patients from DCs (area under the curve [AUC]: 0.739) and HCs (AUC: 0.857). BDNF was negatively associated with triglyceride (p = 0.014), total cholesterol (p = 0.037), and low‐density lipoprotein cholesterol (p = 0.008). BDNF was negatively associated with CRP (p < 0.001), TNF‐α (p < 0.001), IL‐1β (p = 0.008), and IL‐8 (p < 0.001). BDNF was negatively related to VCAM‐1 (p < 0.001) and ICAM‐1 (p = 0.003). BDNF was negatively linked with the Gensini score (p < 0.001). Conclusion BDNF reflects the lipid dysregulation, inflammatory status, and stenosis degree in CHD patients.
Collapse
Affiliation(s)
- Feng Xia
- Department of Cardiology, Wuhan Asia General Hospital, Wuhan, China
| | - Qingrong Zeng
- Department of Cardiology, Wuhan Asia General Hospital, Wuhan, China
| | - Jing Chen
- Department of Critical Care Medicine, Wuhan Asia General Hospital, Wuhan, China
| |
Collapse
|