1
|
Zhang X, He N, Zhang L, Dai T, Sun Z, Shi Y, Li S, Yu N. Application of high intensity focused ultrasound combined with nanomaterials in anti-tumor therapy. Drug Deliv 2024; 31:2342844. [PMID: 38659328 PMCID: PMC11047217 DOI: 10.1080/10717544.2024.2342844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
High intensity focused ultrasound (HIFU) has demonstrated its safety, efficacy and noninvasiveness in the ablation of solid tumor. However, its further application is limited by its inherent deficiencies, such as postoperative recurrence caused by incomplete ablation and excessive intensity affecting surrounding healthy tissues. Recent research has indicated that the integration of nanomaterials with HIFU exhibits a promising synergistic effect in tumor ablation. The concurrent utilization of nanomaterials with HIFU can help overcome the limitations of HIFU by improving targeting and ablation efficiency, expanding operation area, increasing operation accuracy, enhancing stability and bio-safety during the process. It also provides a platform for multi-therapy and multi-mode imaging guidance. The present review comprehensively expounds upon the synergistic mechanism between nanomaterials and HIFU, summarizes the research progress of nanomaterials as cavitation nuclei and drug carriers in combination with HIFU for tumor ablation. Furthermore, this review highlights the potential for further exploration in the development of novel nanomaterials that enhance the synergistic effect with HIFU on tumor ablation.
Collapse
Affiliation(s)
- Xuehui Zhang
- Department of Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Liang Zhang
- Department of Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tong Dai
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zihan Sun
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yuqing Shi
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Ning Yu
- Department of Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Tong Y, Liu B, Yu Y, Wang Y, Yan Q, Huang D, Zhu Y, Xiang Y. Construction of Cyclodextrin-Based Covalent Organic Frameworks for Efficient Encapsulation of Menthol. Chemistry 2024; 30:e202402500. [PMID: 39269248 DOI: 10.1002/chem.202402500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
The application of flavoring ingredients like menthol in the food industry is hindered by their high volatility and poor thermal stability, which lead to significant losses during processing and storage. Encapsulation of flavors into porous materials to obtain inclusion complexes (ICs) has proved to be an efficient strategy. In the present study, we synthesized a series of relatively food-safe three-dimensional anionic cyclodextrin-based covalent organic frameworks (CD-COFs) with spiroborate linkages using a facile microwave-assisted method. The high surface area and newly formed cavities of COFs significantly enhanced the encapsulation efficiency of menthol compared to native CD materials. Our findings revealed that γ-CD-COF-Li, with Li+ as the counterion, achieved superior encapsulation efficiency of 25.9 %, outperforming γ-CD-COF-Na, γ-CD-COF-K and α-CD-COF-Li under the same conditions. Thermal stability measurements show that the menthol/γ-CD-COF-Li-ICs effectively stabilize menthol against heat evaporation at elevated temperatures due to the strengthened interaction between menthol and γ-CD-COF-Li. The promising results of this research suggest that rapid advancements in COF technology will provide new opportunities for enhancing the stability of flavoring ingredients in the food industry.
Collapse
Affiliation(s)
- Yuxing Tong
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, 430040, PR China
- Hubei Xinye Reconstituted Tobacco Development Co., Ltd., Wuhan, 430056, PR China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory, Wuhan, 430040, China
| | - Ben Liu
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, 430040, PR China
- Hubei Xinye Reconstituted Tobacco Development Co., Ltd., Wuhan, 430056, PR China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory, Wuhan, 430040, China
| | - Yang Yu
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, 430040, PR China
- Hubei Xinye Reconstituted Tobacco Development Co., Ltd., Wuhan, 430056, PR China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory, Wuhan, 430040, China
| | - Yixin Wang
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, 430040, PR China
- Hubei Xinye Reconstituted Tobacco Development Co., Ltd., Wuhan, 430056, PR China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory, Wuhan, 430040, China
| | - Qunshan Yan
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, 430040, PR China
- Hubei Xinye Reconstituted Tobacco Development Co., Ltd., Wuhan, 430056, PR China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory, Wuhan, 430040, China
| | - Dekang Huang
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yanqiu Zhu
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yonggang Xiang
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, PR China
| |
Collapse
|
3
|
Khan AAS, Yousaf MA, Azhar J, Maqbool MF, Bibi R. Repurposing FDA approved drugs against monkeypox virus DNA dependent RNA polymerase: virtual screening, normal mode analysis and molecular dynamics simulation studies. Virusdisease 2024; 35:260-270. [PMID: 39071866 PMCID: PMC11269544 DOI: 10.1007/s13337-024-00869-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/11/2024] [Indexed: 07/30/2024] Open
Abstract
Zoonotic monkeypox disease, caused by the double-stranded DNA monkeypox virus, has become a global concern. Due to the absence of a specific small molecule drug for the disease, this report aims to identify potential inhibitor drugs for monkeypox. This study explores a drug repurposing strategy using virtual screening to evaluate 1615 FDA approved drugs against the monkeypox virus DNA dependent RNA polymerase subunit A6R. Normal mode analysis and molecular dynamics simulation assessed the flexibility and stability of the target protein in complex with the top screened drugs. The analysis identified Nilotinib (ZINC000006716957), Conivaptan (ZINC000012503187), and Ponatinib (ZINC000036701290) as the most potential RNA polymerase inhibitors with binding energies of - 7.5 kcal/mol. These drugs mainly established hydrogen bonds and hydrophobic interactions with the protein active sites, including LEU95, LEU90, PRO96, MET110, and VAL113, and residues nearby. Normal mode analysis and molecular dynamics simulation confirmed the stability of interactions between the top drugs and the protein. In conclusion, we have discovered promising drugs that can potentially control the monkeypox virus and should be further explored through experimental assays and clinical trials to assess their actual activity against the disease. The findings of this study could lay the foundation for screening repurposed compounds as possible antiviral treatments against various highly pathogenic viruses.
Collapse
Affiliation(s)
| | - Muhammad Abrar Yousaf
- Section of Biology and Genetics, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Jahanzaib Azhar
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | | | - Ruqia Bibi
- Department of Biological Sciences, Virtual University of Pakistan, Lahore, Pakistan
| |
Collapse
|
4
|
Puig-Herreros C, Sanz JL, García-Bernal D, Rodríguez-Lozano FJ, Murcia L, Forner L, Ghilotti J, Oñate-Sánchez RE, López-García S. Comparative Cytotoxicity of Menthol and Eucalyptol: An In Vitro Study on Human Gingival Fibroblasts. Pharmaceutics 2024; 16:521. [PMID: 38675182 PMCID: PMC11054097 DOI: 10.3390/pharmaceutics16040521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was to assess the influence of eucalyptol and menthol on the cell viability, migration, and reactive oxygen species production of human gingival fibroblasts (GFs) in vitro. Three different concentrations of eucalyptol and menthol were prepared following ISO 10993-5 guidelines (1, 5, and 10 mM). GFs were isolated from extracted teeth from healthy donors. The following parameters were assessed: cell viability via MTT, Annexin-V-FITC and 7-AAD staining, and IC50 assays; cell migration via horizontal scratch wound assay; and cell oxidative stress via reactive oxygen species assay. Data were analyzed using one-way ANOVA and Tukey's post hoc test. Statistical significance was established at p < 0.05. Eucalyptol and Menthol exhibited high cytotoxicity on gingival fibroblasts, as evidenced by cytotoxicity assays. Eucalyptol showed lower levels of cytotoxicity than menthol, compared to the control group. The cytotoxicity of the tested substances increased in a concentration-dependent manner. The same occurred in a time-dependent manner, although even 10 min of exposure to the tested substances showed a high cytotoxicity to the GFs. Commercially available products for oral application with these substances in their composition should be tested for cytotoxicity before their use.
Collapse
Affiliation(s)
- Clara Puig-Herreros
- Speech Therapy University Clinic, Department of Basic Psychology, Universitat de València, 46010 Valencia, Spain
| | - José Luis Sanz
- Departament d’Estomatologia, Facultat de Medicina i Odontologia, Universitat de València, 46010 Valencia, Spain (S.L.-G.)
| | - David García-Bernal
- Department of Biochemistry, Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30120 Murcia, Spain;
- Biomedical Research Institute (IMIB), 30120 Murcia, Spain
| | - Francisco Javier Rodríguez-Lozano
- Biomedical Research Institute (IMIB), 30120 Murcia, Spain
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, 30008 Murcia, Spain
| | - Laura Murcia
- Department of Health Sciences, Catholic University San Antonio of Murcia, 30107 Murcia, Spain
| | - Leopoldo Forner
- Departament d’Estomatologia, Facultat de Medicina i Odontologia, Universitat de València, 46010 Valencia, Spain (S.L.-G.)
| | - James Ghilotti
- Departament d’Estomatologia, Facultat de Medicina i Odontologia, Universitat de València, 46010 Valencia, Spain (S.L.-G.)
| | - Ricardo E. Oñate-Sánchez
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, 30008 Murcia, Spain
| | - Sergio López-García
- Departament d’Estomatologia, Facultat de Medicina i Odontologia, Universitat de València, 46010 Valencia, Spain (S.L.-G.)
| |
Collapse
|
5
|
Kazemi A, Iraji A, Esmaealzadeh N, Salehi M, Hashempur MH. Peppermint and menthol: a review on their biochemistry, pharmacological activities, clinical applications, and safety considerations. Crit Rev Food Sci Nutr 2024:1-26. [PMID: 38168664 DOI: 10.1080/10408398.2023.2296991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In this manuscript, we conducted a comprehensive review of the diverse effects of peppermint on human health and explored the potential underlying mechanisms. Peppermint contains three main groups of phytochemical constituents, including essential oils (mainly menthol), flavonoids (such as hesperidin, eriodictyol, naringenin, quercetin, myricetin, and kaempferol), and nonflavonoid phenolcarboxylic acids. Peppermint exhibits antimicrobial, antioxidant, anti-inflammatory, immunomodulatory, anti-cancer, anti-aging, and analgesic properties and may be effective in treating various disorders, including gastrointestinal disorders (e.g., irritable bowel syndrome, dyspepsia, constipation, functional gastrointestinal disorders, nausea/vomiting, and gallbladder stones). In addition, peppermint has therapeutic benefits for psychological and cognitive health, dental health, urinary retention, skin and wound healing, as well as anti-depressant and anti-anxiety effects, and it may improve memory. However, peppermint has paradoxical effects on sleep quality and alertness, as it has been shown to improve sleep quality in patients with fatigue and anxiety, while also increasing alertness under conditions of monotonous work and relaxation. We also discuss its protective effects against toxic agents at recommended doses, as well as its safety and potential toxicity. Overall, this review provides the latest findings and insights into the properties and clinical effects of peppermint/menthol and highlights its potential as a natural therapeutic agent for various health conditions.
Collapse
Affiliation(s)
- Asma Kazemi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Niusha Esmaealzadeh
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Traditional Persian Medicine and Complementary Medicine (PerCoMed) Student Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Salehi
- Traditional and Complementary Medicine Research Center (TCMRC), Department of Traditional Medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Karhana S, Dabral S, Garg A, Bano A, Agarwal N, Khan MA. Network pharmacology and molecular docking analysis on potential molecular targets and mechanism of action of BRAF inhibitors for application in wound healing. J Cell Biochem 2023. [PMID: 37334778 DOI: 10.1002/jcb.30430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023]
Abstract
Topical application of BRAF inhibitors has been shown to accelerate wound healing in murine models, which can be extrapolated into clinical applications. The aim of the study was to identify suitable pharmacological targets of BRAF inhibitors and elucidate their mechanisms of action for therapeutic applicability in wound healing, by employing bioinformatics tools including network pharmacology and molecular docking. The potential targets for BRAF inhibitors were obtained from SwissTargetPrediction, DrugBank, CTD, Therapeutic Target Database, and Binding Database. Targets of wound healing were obtained using online databases DisGeNET and OMIM (Online Mendelian Inheritance in Man). Common targets were found by using the online GeneVenn tool. Common targets were then imported to STRING to construct interaction networks. Topological parameters were assessed using Cytoscape and core targets were identified. FunRich was employed to uncover the signaling pathways, cellular components, molecular functions, and biological processes in which the core targets participate. Finally, molecular docking was performed using MOE software. Key targets for the therapeutic application of BRAF inhibitors for wound healing are peroxisome proliferator-activated receptor γ, matrix metalloproteinase 9, AKT serine/threonine kinase 1, mammalian target of rapamycin, and Ki-ras2 Kirsten rat sarcoma viral oncogene homolog. The most potent BRAF inhibitors that can be exploited for their paradoxical activity for wound healing applications are Encorafenib and Dabrafenib. By using network pharmacology and molecular docking, it can be predicted that the paradoxical activity of BRAF inhibitors can be used for their potential application in wound healing.
Collapse
Affiliation(s)
- Sonali Karhana
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Swarna Dabral
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Aakriti Garg
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Aysha Bano
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Nidhi Agarwal
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Mohd Ashif Khan
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
7
|
Liu X, Lan Y, Zhang L, Ye X, Shen Q, Mo G, Chen X. Genistein exerts anti-colorectal cancer actions: clinical reports, computational and validated findings. Aging (Albany NY) 2023; 15:3678-3689. [PMID: 37155147 PMCID: PMC10449307 DOI: 10.18632/aging.204702] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023]
Abstract
Colorectal cancer (CRC) is presently a health challenge in China. Although clinical chemotherapy is prescribed availably, the negative effects and poor prognoses still occur. Genistein has antitumor properties in our previous studies. However, the molecular mechanisms underlying the anti-CRC effects of genistein remain unclear. Increasing evidences have indicated that the induction of autophagy, one of cell death models, is closely associated with the formation and development of human cancer. In the current study, a systematic bioinformatics approach using network pharmacology and molecular docking imitation was aimed at identifying the pharmacological targets and anti-CRC mechanisms of genistein, characterized by autophagy-related processes and pathways. Moreover, experimental validation was conducted by using clinical and cell culture samples. All 48 potential targets of genistein-anti-CRC-associated autophagy were screened accordingly. Further bioinformatics analyses identified 10 core genistein-anti-CRC targets related to autophagy, and enrichment-assayed results revealed that the biological processes of these core targets might regulate multiple molecular pathways, including the estrogen signaling pathway. Additionally, molecular docking data demonstrated that genistein has a high affinity for epidermal growth factor receptor (EGFR) and estrogen receptor 1 (ESR1). Both EGFR and ESR1 proteins were highly expressed in clinical CRC samples. Preliminary in vitro data showed that genistein effectively reduced cellular proliferation, activated apoptosis, and suppressed EGFR and ESR1 protein expressions in CRC cells. Our research findings uncovered the molecular mechanisms of genistein against CRC, and the potential drug targets associated with autophagy in genistein treatment of CRC were identified and validated experimentally, including EGFR and ESR1.
Collapse
Affiliation(s)
- Xiaoxia Liu
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, People’s Republic of China
| | - Ying Lan
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, People’s Republic of China
| | - Li Zhang
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, People’s Republic of China
| | - Xi Ye
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, People’s Republic of China
| | - Qingrong Shen
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, People’s Republic of China
| | - Guangyan Mo
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, People’s Republic of China
| | - Xiaoyu Chen
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, People’s Republic of China
| |
Collapse
|