1
|
Jagtap UA, Rathod S, Shukla R, Paul AT. Computational insights into human UCP1 activators through molecular docking, MM-GBSA, and molecular dynamics simulation studies. Comput Biol Chem 2024; 113:108252. [PMID: 39461164 DOI: 10.1016/j.compbiolchem.2024.108252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/09/2024] [Accepted: 10/13/2024] [Indexed: 10/29/2024]
Abstract
The prevalence of obesity is rapidly increasing worldwide. Brown adipose tissue activates uncoupling protein 1 (UCP1) to generate heat through bypassing ATP synthesis, offering a potential target for obesity treatment. Targeting UCP1 activation to induce thermogenesis through small molecules presents a promising approach for obesity management. In this study, molecular docking of UCP1 activators, using 2,4-dinitrophenol (DNP) as a reference ligand (PDB ID: 8J1N, docking score: -5.343 kcal/mol), identified seven top-scoring compounds: naringin (-7.284 kcal/mol), quercetin (-6.661 kcal/mol), salsalate (-6.017 kcal/mol), rhein (-5.798 kcal/mol), mirabegron (-5.535 kcal/mol), curcumin (-5.479 kcal/mol), and formoterol (-5.451 kcal/mol). Prime MM-GBSA calculation of the top-scored molecule (i.e., naringin) in the docking study showed ΔGBind of -70.48 kcal/mol. Key interactions of these top 7 activators with UCP1 binding pocket residues Trp280, Arg276, Glu190, Arg83, and Arg91 were observed. Molecular dynamics simulations performed for 100 ns confirmed complex stability, with RMSD values below 6 Å. Additionally, most activators showed favorable intestinal absorption (>90 %) and lipophilicity (LogP 2-4), with pKa values supporting their pharmacological potential as UCP1-targeting therapeutics for obesity. These findings provide a foundation for designing potent UCP1 activators by integrating docking scores, interaction profiles, statistical profiles from MD simulations, and physicochemical assessments to develop effective anti-obesity therapies.
Collapse
Affiliation(s)
- Utkarsh A Jagtap
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Pilani campus, Pilani, Rajasthan 333031, India
| | - Sanket Rathod
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Pilani campus, Pilani, Rajasthan 333031, India; School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Ravi Shukla
- School of Science, RMIT University, Melbourne, VIC 3000, Australia; NanoBiotechnology Research Laboratory, Centre for Advanced Materials & Industrial Chemistry, RMIT University, Melbourne, VIC 3001, Australia
| | - Atish T Paul
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Pilani campus, Pilani, Rajasthan 333031, India.
| |
Collapse
|
2
|
Biçer A, Çağlayan C, Demir Y, Türkeş C, Altundaş R, Akyıldız H, Beydemir Ş. Synthesis of N-substituted 4-phenyl-2-aminothiazole derivatives and investigation of their inhibition properties against hCA I, II, and AChE enzymes. Arch Biochem Biophys 2024; 761:110159. [PMID: 39322099 DOI: 10.1016/j.abb.2024.110159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
In this study, thiazole derivatives containing sulphonamide, amide, and phenyl amino groups were synthesized to protect the free amino groups of 5-methyl-4-phenyl-2-aminothiazole and 4-phenyl-2-aminothiazole. Halogenated reactions of N-protected thiazole derivatives have been investigated. LCMS, FT-IR, 1H NMR, and 13C NMR spectroscopy techniques were used to elucidate the structures of the synthesized compounds. Inhibition effects of the N-protected thiazole derivatives against human carbonic anhydrase I, II (hCA I, hCA II), and acetylcholinesterase (AChE) were investigated. The best results among the synthesized N-protected thiazole derivatives showed Ki values in the range of 46.85-587.53 nM against hCA I, 35.01-578.06 nM against hCA II, and in the range of 19.58-226.18 nM against AChE. Furthermore, in silico studies with the target enzyme of the thiazole derivatives (9 and 11), which showed the best results experimentally, have examined the binding interactions of the related compounds at the enzyme active site.
Collapse
Affiliation(s)
- Abdullah Biçer
- Department of Chemistry, Faculty of Science, Bilecik Şeyh Edebali University, Bilecik, 11230, Türkiye; Scientific Research Projects Coordinatorship, Bilecik Şeyh Edebali University, Bilecik, 11230, Türkiye.
| | - Cüneyt Çağlayan
- Department of Medical Biochemistry, Faculty of Medicine, Bilecik Şeyh Edebali University, Bilecik, 11230, Türkiye
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, 75700, Türkiye
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, 24002, Türkiye
| | - Ramazan Altundaş
- Department of Chemistry, Faculty of Science, Gebze Technical University, Kocaeli, 41400, Türkiye
| | - Hasan Akyıldız
- Department of Chemistry, Faculty of Science, Gebze Technical University, Kocaeli, 41400, Türkiye
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, 26470, Türkiye
| |
Collapse
|
3
|
Lolak N, Türkeş C, Akocak S, Duran HE, Işık M, Durgun M, Beydemir Ş. Interactions of novel 1,3-diaryltriazene-sulfamethazines with carbonic anhydrases: Kinetic studies and in silico simulations. Arch Biochem Biophys 2024; 761:110181. [PMID: 39396797 DOI: 10.1016/j.abb.2024.110181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Sulfonamides, recognized as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors, are crucial in treating diverse diseases, including epilepsy, glaucoma, bacterial infections, and various pathological processes, e.g., high blood pressure, rheumatoid arthritis, ulcerative colitis, pain, and inflammation. Additionally, therapeutically, 1,3-diaryl-substituted triazenes and sulphamethazines (SM) are integral components in various drug structures, and the synthesis of novel compounds within these two categories holds substantial significance. Herein, ten 1,3-diaryltriazene-substituted sulphamethazine derivatives SM(1-10), which were created by reacting the diazonium salt of sulphamethazine with substituted aromatic amines, were synthesized and the physiologically and pharmacologically relevant human (h) isoforms hCA I and II, cytosolic isozymes, were included in the study. The synthesized compounds showed excellent inhibition versus hCAs; the 4-butoxy (SM7, KI of 5.69 ± 0.59 nM) compound exhibited a potent inhibitory effect against the hCA I compared with the reference drug acetazolamide (AAZ, KI of 116.00 ± 8.48 nM). The 4-cyano (SM4, KI of 5.87 ± 0.57 nM) compound displayed higher potency than AAZ (KI of 57.25 ± 4.15 nM) towards hCA II. Meanwhile, among the synthesized molecules, the 3,4-dimethoxy (SM9, KI of 74.98 ± 10.49 nM, SI of 9.94) compound (over hCA I) displayed a noticeable selectivity for hCA isoform II. The target compounds in the molecular docking investigation were determined to take part in various hydrophilic and hydrophobic interactions with nearby amino acids and fit nicely into the active sites of the hCAs. This research has yielded compounds displaying varying affinity toward hCA isoenzymes, ultimately serving as potent and selective hCA inhibitors. Given its substantial biological inhibitory potency, this particular derivative series is determined to hold the potential to serve as a promising lead compound against these hCAs.
Collapse
Affiliation(s)
- Nabih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, 02040, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, 24002, Turkey.
| | - Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, 02040, Turkey.
| | - Hatice Esra Duran
- Department of Medical Biochemistry, Faculty of Medicine, Kafkas University, Kars, 36100, Turkey
| | - Mesut Işık
- Department of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University, Bilecik, 11230, Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Şanlıurfa, 63290, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, 26470, Turkey
| |
Collapse
|
4
|
Buza A, Türkeş C, Arslan M, Demir Y, Dincer B, Nixha AR, Beydemir Ş. Novel benzenesulfonamides containing a dual triazole moiety with selective carbonic anhydrase inhibition and anticancer activity. RSC Med Chem 2024:d4md00617h. [PMID: 39493223 PMCID: PMC11525713 DOI: 10.1039/d4md00617h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024] Open
Abstract
A series of sulfonamides incorporating a 1,2,3-triazolyloxime substituted 1,2,3-triazolyl moiety were conceptualized and synthesized as human carbonic anhydrase (hCA) inhibitors. The synthesized small structures, denoted 7a through 7o, exhibited moderate inhibitory effects against the tumor-associated isoforms hCA IX and hCA XII compared to the well-known hCA inhibitor acetazolamide. In contrast, these molecules demonstrated higher potency and a diverse range of selectivity against the cytosolic isoforms hCA I and hCA II. Notably, the 4-hydroxyphenyl derivative (compound 7dversus cytosolic isoforms), the 4-acetylphenyl derivative (compound 7o), and the phenyl derivative (compound 7a) emerged as the most potent and selective inhibitors in this series, with inhibition constants (K I) of 47.1, 35.9, 170.0, and 149.9 nM, respectively, against hCA I, II, IX, and XII. Further cytotoxicity assays of compounds 7a-o against cancer cell lines Hep3B and A549, as well as normal cell line L929, were conducted to assess their selectivity towards malignant cells. Compounds 7d, 7g, and 7k exhibited selective cytotoxicity towards the Hep3B cell line, with reduced selectivity towards A549, whereas compound 7j demonstrated higher selectivity for the A549 cell line. Additionally, molecular docking studies were performed to elucidate the binding modes of these compounds within the active sites of hCAs, revealing crucial interactions that underpin their significant activity and selectivity for the tumor-specific isoforms.
Collapse
Affiliation(s)
- Aida Buza
- Department of Chemistry, Faculty of Mathematical and Natural Sciences, University of Prishtina Prishtina 1000 Republic of Kosova
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University Erzincan 24002 Turkey
| | - Mustafa Arslan
- Department of Chemistry, Faculty of Sciences, Sakarya University Sakarya 54187 Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University Ardahan 75700 Turkey
| | - Busra Dincer
- Department of Pharmacology, Faculty of Pharmacy, Ondokuz Mayıs University Samsun 55020 Turkey
| | - Arleta Rifati Nixha
- Department of Chemistry, Faculty of Mathematical and Natural Sciences, University of Prishtina Prishtina 1000 Republic of Kosova
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University Eskişehir 26470 Turkey
| |
Collapse
|
5
|
Güleç Ö, Türkeş C, Arslan M, Işık M, Demir Y, Duran HE, Fırat M, Küfrevioğlu Öİ, Beydemir Ş. Dynamics of small molecule-enzyme interactions: Novel benzenesulfonamides as multi-target agents endowed with inhibitory effects against some metabolic enzymes. Arch Biochem Biophys 2024; 759:110099. [PMID: 39009270 DOI: 10.1016/j.abb.2024.110099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/30/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
In contemporary medicinal chemistry, employing a singular small molecule to concurrently multi-target disparate molecular entities is emerging as a potent strategy in the ongoing battle against metabolic disease. In this study, we present the meticulous design, synthesis, and comprehensive biological evaluation of a novel series of 1,2,3-triazolylmethylthio-1,3,4-oxadiazolylbenzenesulfonamide derivatives (8a-m) as potential multi-target inhibitors against human carbonic anhydrase (EC.4.2.1.1, hCA I/II), α-glycosidase (EC.3.2.1.20, α-GLY), and α-amylase (EC.3.2.1.1, α-AMY). Each synthesized sulfonamide underwent rigorous assessment for inhibitory effects against four distinct enzymes, revealing varying degrees of hCA I/II, a-GLY, and a-AMY inhibition across the tested compounds. hCA I was notably susceptible to inhibition by all compounds, demonstrating remarkably low inhibition constants (KI) ranging from 42.20 ± 3.90 nM to 217.90 ± 11.81 nM compared to the reference standard AAZ (KI of 439.17 ± 9.30 nM). The evaluation against hCA II showed that most of the synthesized compounds exhibited potent inhibition effects with KI values spanning the nanomolar range 16.44 ± 1.53-70.82 ± 4.51 nM, while three specific compounds, namely 8a-b and 8d, showcased lower inhibitory potency than other derivatives that did not exceed that of the reference drug AAZ (with a KI of 98.28 ± 1.69 nM). Moreover, across the spectrum of synthesized compounds, potent inhibition profiles were observed against diabetes mellitus-associated α-GLY (KI values spanning from 0.54 ± 0.06 μM to 5.48 ± 0.50 μM), while significant inhibition effects were noted against α-AMY, with IC50 values ranging between 0.16 ± 0.04 μM and 7.81 ± 0.51 μM) compared to reference standard ACR (KI of 23.53 ± 2.72 μM and IC50 of 48.17 ± 2.34 μM, respectively). Subsequently, these inhibitors were evaluated for their DPPH· and ABTS+· radical scavenging activity. Moreover, molecular docking investigations were meticulously conducted within the active sites of hCA I/II, α-GLY, and α-AMY to provide comprehensive elucidation and rationale for the observed inhibitory outcomes.
Collapse
Affiliation(s)
- Özcan Güleç
- Department of Chemistry, Faculty of Arts and Science, Sakarya University, Sakarya, 54187, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, 24002, Turkey.
| | - Mustafa Arslan
- Department of Chemistry, Faculty of Arts and Science, Sakarya University, Sakarya, 54187, Turkey.
| | - Mesut Işık
- Department of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University, Bilecik, 11230, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, 75700, Turkey
| | - Hatice Esra Duran
- Department of Medical Biochemistry, Faculty of Medicine, Kafkas University, Kars, 36100, Turkey
| | - Muhammet Fırat
- Department of Biotechnology, Graduate Institute, Bilecik Şeyh Edebali University, Bilecik, 11230, Turkey
| | - Ömer İrfan Küfrevioğlu
- Department of Chemistry, Faculty of Sciences, Atatürk University, 25240, Erzurum, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, 26470, Turkey
| |
Collapse
|
6
|
Khan S, Hussain R, Khan Y, Iqbal T, Tahir Y, Hafeez A, Darwish HW, Adnan M. Synthesis, Spectral Analysis and Molecular Docking Investigation of Thiadiazole Based Sulfonamide Derivatives: An Effective Approach Toward Alzheimer's Disease. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202401473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/18/2024] [Indexed: 01/03/2025]
Abstract
AbstractAlzheimer's disease (AD), a neurodegenerative condition is expected to affect 152 million in 2050. The current study comprises the evaluation of thiazole based thiadiazole bearing sulfonamide derivatives to treat Alzheimer's disease. A series of compounds (1‐15) were synthesized and were studied for their anti‐Alzheimer's potential. Their IC50 values lie in the range between (19.20±0.20 nM–2.50±0.20 nM) for AChE and (19.80±0.20 nM–3.30±0.50 nM) for AChE. Among all of them, analog 2, 7, 9, and 15 were reported to possess significant activity. Among all the members of series, compound 15 having IC50=2.50±0.20 nM and 3.30±0.50 nM for AChE and BuChE, respectively, emerged as the most promising candidate due to the presence of two electronegative fluorine (F) atoms. The small and highly electronegative fluorine atoms have the ability to block the enzyme's activity by forming strong hydrogen bonds with the amino acids of the target enzymes, thereby inhibiting their function. The efficacy of these novel compounds was studied in comparison to the standard drug donepezil having IC50=5.80±0.30 nM for AChE and IC50=6.30±0.81 nM BuChE. For further assessment of inhibition potential and mode of inhibition, molecular docking study of all the potent compounds was carried out. Further, the structural identity of the synthesized compounds was confirmed using various spectroscopic techniques, including 1H‐NMR, 13C‐NMR, and High‐Resolution Electron Impact (HREI) Mass spectrometry, which provided detailed information about their molecular structure. ADME analysis of all the synthesized compounds confirmed their potential as drugs, indicating favorable pharmacokinetic properties and a promising drug profile.
Collapse
Affiliation(s)
- Shoaib Khan
- Department of Chemistry Abbottabad University of Science and Technology 22500 Abbottabad Pakistan
| | - Rafaqat Hussain
- Department of Chemistry Hazara University 21120 Mansehra Pakistan
| | - Yousaf Khan
- Department of Chemistry COMSATS University Islamabad 45550 Islamabad Pakistan
| | - Tayyiaba Iqbal
- Department of Chemistry Abbottabad University of Science and Technology 22500 Abbottabad Pakistan
| | - Yameena Tahir
- Department of Chemistry Abbottabad University of Science and Technology 22500 Abbottabad Pakistan
| | - Abdul Hafeez
- Department of Chemistry Abbottabad University of Science and Technology 22500 Abbottabad Pakistan
| | - Hany W. Darwish
- Department of Pharmaceutical Chemistry College of Pharmacy King Saud University P.O. Box 2457 11451 Riyadh Saudi Arabia
| | - Muhammad Adnan
- Graduate School of Energy Science and Technology Chungnam National University 34134 Daejeon Republic of Korea
| |
Collapse
|
7
|
Güleç Ö, Türkeş C, Arslan M, Demir Y, Dincer B, Ece A, Beydemir Ş. Novel beta-lactam substituted benzenesulfonamides: in vitro enzyme inhibition, cytotoxic activity and in silico interactions. J Biomol Struct Dyn 2024; 42:6359-6377. [PMID: 37540185 DOI: 10.1080/07391102.2023.2240889] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/01/2023] [Indexed: 08/05/2023]
Abstract
In this study, a library of twelve beta-lactam-substituted benzenesulfonamides (5a-l) was synthesized using the tail-approach method. The compounds were characterized using IR, 1H NMR, 13C NMR and elemental analysis techniques. These newly synthesized compounds were tested for their ability to inhibit the activity of two carbonic anhydrases (hCA) isoforms, I and II, and acetylcholinesterase (AChE) in vitro. The results showed that the synthesized compounds were potent inhibitors of hCA I, with KIs in the low nanomolar range (66.60-278.40 nM) than the reference drug acetazolamide (AAZ), which had a KI of 439.17 nM. The hCA II was potently inhibited by compounds 5a, 5d-g and 5l, with KIs of 69.56, 39.64, 79.63, 74.76, 78.93 and 74.94 nM, respectively (AAZ, KI of 98.28 nM). Notably, compound 5a selectively inhibited hCA II with a selectivity of > 4-fold over hCA I. In terms of inhibition of AChE, the synthesized compounds had KIs ranging from 30.95 to 154.50 nM, compared to the reference drug tacrine, which had a KI of 159.61 nM. Compounds 5f, 5h and 5l were also evaluated for their ability to inhibit the MCF-7 cancer cell line proliferation and were found to have promising anticancer activity, more potent than 5-fluorouracil and cisplatin. Molecular docking studies suggested that the sulfonamide moiety of these compounds fits snugly into the active sites of hCAs and interacts with the Zn2+ ion. Furthermore, molecular dynamics simulations were performed for 200 ns to assess the stability and dynamics of each enzyme-ligand complex. The acceptability of the compounds based on Lipinski's and Jorgensen's rules was also estimated from the ADME/T results. These results indicate that the synthesized molecules have the potential to be developed into effective and safe inhibitors of hCAs and AChE and could be lead agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Özcan Güleç
- Department of Chemistry, Faculty of Arts and Science, Sakarya University, Sakarya, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Mustafa Arslan
- Department of Chemistry, Faculty of Arts and Science, Sakarya University, Sakarya, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Busra Dincer
- Department of Pharmacology, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, İstanbul, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
8
|
Kırboğa KK, Işık M. Explainable artificial intelligence in the design of selective carbonic anhydrase I-II inhibitors via molecular fingerprinting. J Comput Chem 2024; 45:1530-1539. [PMID: 38491535 DOI: 10.1002/jcc.27335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 03/18/2024]
Abstract
Inhibiting the enzymes carbonic anhydrase I (CA I) and carbonic anhydrase II (CA II) presents a potential avenue for addressing nervous system ailments such as glaucoma and Alzheimer's disease. Our study explored harnessing explainable artificial intelligence (XAI) to unveil the molecular traits inherent in CA I and CA II inhibitors. The PubChem molecular fingerprints of these inhibitors, sourced from the ChEMBL database, were subjected to detailed XAI analysis. The study encompassed training 10 regression models using IC50 values, and their efficacy was gauged using metrics including R2, RMSE, and time taken. The Decision Tree Regressor algorithm emerged as the optimal performer (R2: 0.93, RMSE: 0.43, time-taken: 0.07). Furthermore, the PFI method unveiled key molecular features for CA I inhibitors, notably PubChemFP432 (C(O)N) and PubChemFP6978 (C(O)O). The SHAP analysis highlighted the significance of attributes like PubChemFP539 (C(O)NCC), PubChemFP601 (C(O)OCC), and PubChemFP432 (C(O)N) in CA I inhibitiotable n. Likewise, features for CA II inhibitors encompassed PubChemFP528(C(O)OCCN), PubChemFP791 (C(O)OCCC), PubChemFP696 (C(O)OCCCC), PubChemFP335 (C(O)NCCN), PubChemFP580 (C(O)NCCCN), and PubChemFP180 (C(O)NCCC), identified through SHAP analysis. The sulfonamide group (S), aromatic ring (A), and hydrogen bonding group (H) exert a substantial impact on CA I and CA II enzyme activities and IC50 values through the XAI approach. These insights into the CA I and CA II inhibitors are poised to guide future drug discovery efforts, serving as a beacon for innovative therapeutic interventions.
Collapse
Affiliation(s)
- Kevser Kübra Kırboğa
- Faculty of Engineering, Department of Bioengineering, Bilecik Seyh Edebali University, Bilecik, Turkey
- Bioengineering Department, Süleyman Demirel University, Isparta, Turkey
| | - Mesut Işık
- Faculty of Engineering, Department of Bioengineering, Bilecik Seyh Edebali University, Bilecik, Turkey
| |
Collapse
|
9
|
Bendi A, Taruna, Rajni, Kataria S, Singh L, Kennedy JF, Supuran CT, Raghav N. Chemistry of heterocycles as carbonic anhydrase inhibitors: A pathway to novel research in medicinal chemistry review. Arch Pharm (Weinheim) 2024; 357:e2400073. [PMID: 38683875 DOI: 10.1002/ardp.202400073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
Nowadays, the scientific community has focused on dealing with different kinds of diseases by exploring the chemistry of various heterocycles as novel drugs. In this connection, medicinal chemists identified carbonic anhydrases (CA) as one of the biologically active targets for curing various diseases. The widespread distribution of these enzymes and the high degree of homology shared by the different isoforms offer substantial challenges to discovering potential drugs. Medicinal and synthetic organic chemists have been continuously involved in developing CA inhibitors. This review explored the chemistry of different heterocycles as CA inhibitors using the last 11 years of published research work. It provides a pathway for young researchers to further explore the chemistry of a variety of synthetic as well as natural heterocycles as CA inhibitors.
Collapse
Affiliation(s)
- Anjaneyulu Bendi
- Department of Chemistry, Presidency University, Bengaluru, Karnataka, India
| | - Taruna
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Rajni
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Sweety Kataria
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Lakhwinder Singh
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | | | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Neutraceutical Section, University of Florence, Florence, Italy
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
10
|
Wani MJ, Arif A, Salman KA, Mahmood R. Glycated LDL generates reactive species that damage cell components, oxidize hemoglobin and alter surface morphology in human erythrocytes. Int J Biol Macromol 2024; 269:132257. [PMID: 38729492 DOI: 10.1016/j.ijbiomac.2024.132257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/12/2024]
Abstract
Low-density lipoprotein (LDL) transports cholesterol to various tissues via the blood. Glycation of LDL occurs during hyperglycemic condition which is characterised by persistently high blood glucose level. Circulating erythrocytes can come in direct contact with glycated LDL (G-LDL). The objective of this study was to investigate the effect of G-LDL on human erythrocytes, specifically on hemoglobin, intracellular generation of reactive species and the antioxidant defence system. Isolated erythrocytes were incubated with G-LDL (3 and 6 mg/ml) and native LDL (6 mg/ml) at 37 °C for 24 h. Native LDL and G-LDL untreated erythrocytes were similarly incubated at 37 °C and served as control. G-LDL treatment increased hemolysis compared to control and native LDL-treated erythrocytes. Incubation of erythrocytes with G-LDL led to an increase in protein oxidation and lipid peroxidation while greatly decreasing the total sulfhydryl content. It also significantly enhanced hemoglobin oxidation, heme degradation, and the release of free iron moiety. Treatment with G-LDL led to an appreciable increase in the production of reactive oxygen and nitrogen species. The antioxidant power and activities of major antioxidant enzymes were drastically reduced, while critical membrane-bound enzymes were inhibited. The surface morphology of G-LDL-treated erythrocytes was altered leading to the formation of echinocytes. Importantly, treatment of erythrocytes with native LDL did not significantly affect the above-mentioned parameters and values were similar to the corresponding controls. Thus, G-LDL is cytotoxic to human erythrocytes and causes oxidative damage to cell components. This can reduce the oxygen-transporting ability of blood and also result in red cell senescence and anemia.
Collapse
Affiliation(s)
- Mohd Junaid Wani
- Department of Biochemistry, Faculty of Medicine, J.N.M.C., Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Amin Arif
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Khushtar Anwar Salman
- Department of Biochemistry, Faculty of Medicine, J.N.M.C., Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India.
| |
Collapse
|
11
|
Kumar S, Jaiswal S, Gupta SK, Ayyannan SR. Benzimidazole-derived carbohydrazones as dual monoamine oxidases and acetylcholinesterase inhibitors: design, synthesis, and evaluation. J Biomol Struct Dyn 2024; 42:4710-4729. [PMID: 37345530 DOI: 10.1080/07391102.2023.2224887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023]
Abstract
A series of novel benzimidazole-derived carbohydrazones was designed, synthesized and evaluated for their dual inhibition potential against monoamine oxidases (MAOs) and acetylcholinesterase (AChE) using multitarget-directed ligand approach (MTDL). The investigated compounds have exhibited moderate to excellent in vitro MAOs/AChE inhibitory activity at micromolar to nanomolar concentrations. Compound 12, 2-(1H-Benzo[d]imidazol-1-yl)-N'-[1-(4-hydroxyphenyl) ethylidene]acetohydrazide has emerged as a lead dual MAO-AChE inhibitor by exhibiting superior multi-target activity profile against MAO-A (IC50 = 0.067 ± 0.018 µM), MAO-B (IC50 = 0.029 ± 0.005 µM) and AChE (IC50 = 1.37 ± 0.026 µM). SAR studies suggest that the site A (hydrophobic ring) and site C (semicarbazone linker) modifications attempted on the semicarbazone-based MTDL resulted in a significant enhancement in the MAO-A/B inhibitory potential and a drastic decrease in the AChE inhibitory activity. Further, molecular docking and dynamics simulation experiments disclosed the possible molecular interactions of inhibitors inside the active site of respective enzymes. Also, computational prediction of drug-likeness and ADME parameters of test compounds revealed their drug-like characteristics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sandeep Kumar
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Shivani Jaiswal
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sukesh Kumar Gupta
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
12
|
Dawbaa S, Türkeş C, Nuha D, Demir Y, Evren AE, Yurttaş L, Beydemir Ş. New N-(1,3,4-thiadiazole-2-yl)acetamide derivatives as human carbonic anhydrase I and II and acetylcholinesterase inhibitors. J Biomol Struct Dyn 2024:1-19. [PMID: 38533902 DOI: 10.1080/07391102.2024.2331085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
Various carbonic anhydrase (CA) enzyme isoforms are known today. In addition to the use of CA inhibitors as diuretics, antiepileptics and antiglaucoma agents, the inhibition of other specific isoforms of CA was reported to have clinical benefits in cancers. In this study, two groups of 1,3,4-thiadiazole derivatives were designed and synthesized to act as human CA I and II (hCA I and hCA II) inhibitors. The activities of these compounds were tested in vitro and evaluated in silico studies. The activity of the synthesized compounds was also tested against acetylcholinesterase (AChE) to evaluate the relation of the newly designed structures to the activity against AChE. The synthesized compounds were analyzed by 1H NMR,13C NMR and high-resolution mass spectroscopy (HRMS). The results displayed a better activity of all the synthesized compounds against hCA I than that of the commonly used standard drug, Acetazolamide (AAZ). The compounds also showed better activity against hCA II, except for compounds 5b and 6b. Only compounds 6a and 6c showed superior activity against AChE compared to the standard agent, tacrine (THA). In silico studies, including absorption, distribution, metabolism and excretion (ADME) and drug-likeness evaluation, molecular docking, molecular dynamic simulations (MDSs) and density functional theory (DFT) calculations, were compatible with the in vitro results and presented details regarding the structure-activity relationship.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sam Dawbaa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Department of Doctor of Pharmacy (PharmD), Faculty of Medical Sciences, Thamar University, Dhamar, Yemen
- Department of Pharmacy, Faculty of Medical Sciences, Al-Hikma University, Dhamar, Yemen
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Demokrat Nuha
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Department of Chemistry, Faculty of Science, Eskisehir Technical University, Eskişehir, Turkey
- Faculty of Pharmacy, University for Business and Technology, Prishtina, Kosovo
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Asaf Evrim Evren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Department of Pharmacy Services, Vocational School of Health Services, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Leyla Yurttaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- The Rectorate of Bilecik Seyh Edebali University, Bilecik, Turkey
| |
Collapse
|
13
|
Bano B, Kanwal, Hameed S, Lateef M, Wadood A, Shams S, Hussain S, Ain NU, Perveen S, Taha M, Khan KM. Unsymmetrical thiourea derivatives: synthesis and evaluation as promising antioxidant and enzyme inhibitors. Future Med Chem 2024; 16:497-511. [PMID: 38372209 DOI: 10.4155/fmc-2023-0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Background: Unsymmetrical thioureas 1-20 were synthesized and then characterized by various spectroscopy techniques such as UV, IR, fast atom bombardment (FAB)-MS, high-resolution FAB-MS, 1H-NMR and 13C-NMR. Methods: Synthetic compounds 1-20 were tested for their ability for antioxidant, lipoxygenase and xanthine oxidase activities. Results: Compounds 1, 2, 9, 12 and 15 exhibited strong antioxidant potential, whereas compounds 1-3, 9, 12, 15 and 19 showed good to moderate lipoxygenase activity. Ten compounds demonstrated moderate xanthine oxidase inhibition. Conclusion: Compound 15 displayed the highest potency among the series, exhibiting good antioxidant, lipoxygenase and xanthine oxidase activities. Theoretical calculations using density functional theory and molecular docking studies supported the experimental findings, indicating the potential of the synthesized compounds as potent antioxidants, lipoxygenases and xanthine oxidase agents.
Collapse
Affiliation(s)
- Bilquees Bano
- H. E. J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Kanwal
- H. E. J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Shehryar Hameed
- H. E. J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Mehreen Lateef
- Department of Biochemistry, Multi-Disciplinary Research Laboratory, Bahria University Medical & Dental College, Karachi - 74400, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Shankar Campus, Abdul Wali Khan University, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan
| | - Sulaiman Shams
- Department of Biochemistry, Shankar Campus, Abdul Wali Khan University, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan
| | - Shafqat Hussain
- Department of Chemistry, University of Baltistan, Skardu, Gilgit-Baltistan, 1600, Pakistan
| | - Noor Ui Ain
- Pharmacy Department City University of Science & Information Technology, Peshawar, Pakistan
| | - Shahnaz Perveen
- PCSIR Laboratories Complex, Karachi, Shahrah-e-Dr. Salimuzzaman Siddiqui, Karachi - 75280, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam - 31441, Saudi Arabia
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi-75270, Pakistan
- Department of Clinical Pharmacy, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam - 31441, Saudi Arabia
| |
Collapse
|
14
|
Yapar G, Lolak N, Bonardi A, Akocak S, Supuran CT. Exploring the potency of diazo-coumarin containing hybrid molecules: Selective inhibition of tumor-associated carbonic anhydrase isoforms IX and XII. ChemMedChem 2024; 19:e202300626. [PMID: 38193633 DOI: 10.1002/cmdc.202300626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
This study introduces a series of ten hybrid molecules DK(1-10), which combine diazo and coumarin moieties along with diverse aromatic substitutions. The primary objective was to evaluate the inhibitory capabilities of these compounds against four prominent isoforms: the cytosolic hCA I and II, as well as the tumor-associated membrane-bound hCA IX and XII. Impressively, the majority of the tested compounds exhibited significant inhibition activity against the tumor-associated isoforms hCA IX and XII, with KI values ranging from 29.2 to 293.3 nM. Notably, compound DK-8 displayed particularly robust inhibitory activity against the tumor-associated membrane-bound isoforms, hCA IX and XII, yielding KI values of 32.5 and 29.2 nM, respectively. Additionally, another derivative, DK-9, containing a primary sulfonamide, exhibited notable inhibition against hCA XII with a KI value of 36.4 nM. This investigation aimed to explore the structure-activity relationships within these compounds, shedding light on how various substitutions and structural components influence their inhibitory potential. As a result, these compounds present promising candidates for further exploration in medicinal and pharmacological research. Their ability to selectively inhibit specific isoforms, particularly those associated with hypoxic tumors, suggests their potential as foundational compounds for the development of novel therapeutic agents.
Collapse
Affiliation(s)
- Gönül Yapar
- Department of Chemistry, Faculty of Arts and Sciences, Istanbul Technical University, Istanbul, 34469, Türkiye
| | - Nebih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040, Adıyaman, Türkiye
| | - Alessandro Bonardi
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino (Florence), Italy
| | - Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040, Adıyaman, Türkiye
| | - Claudiu T Supuran
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino (Florence), Italy
| |
Collapse
|
15
|
Xia J, Dong S, Yang L, Wang F, Xing S, Du J, Li Z. Design, synthesis, and biological evaluation of novel tryptanthrin derivatives as selective acetylcholinesterase inhibitors for the treatment of Alzheimer's disease. Bioorg Chem 2024; 143:106980. [PMID: 38006789 DOI: 10.1016/j.bioorg.2023.106980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023]
Abstract
Two novel series of tryptanthrin (TRYP) derivatives were designed and synthesized as multifunctional agents for the treatment of Alzheimer's disease (AD). Inhibition assay against cholinesterase (ChE) indicated that these derivatives can act as acetylcholinesterase (AChE) inhibitors with selectivity over butyrylcholinesterase (BuChE). Among them, n1 exhibited the most excellent ChE inhibitory potency (AChE, IC50 = 12.17 ± 1.50 nM; BuChE, IC50 = 6.29 ± 0.48 μΜ; selectivity index = 517). Molecular docking studies indicated that compound n1 can interact with amino acid residues in the catalytic active site and peripheral anionic site of AChE and the molecular dynamics (MD) simulation studies demonstrated that the AChE-n1 complex had good stability. N1 also exhibited anti-amyloid-β (Aβ) aggregation (63.48 % ± 1.02 %, 100 μΜ) and anti-neuroinflammation activity (NO, IL-1β, TNF-α; IC50 = 2.13 ± 0.54 μΜ, 2.21 ± 0.37 μΜ, 2.47 ± 0.07 μΜ, respectively), and n1 had neuroprotective and metal-chelating properties. Further studies indicated n1 had proper blood-brain barrier permeability in the Parallel artificial membrane permeation assay. In vivo studies found that n1 effectively improved learning and memory impairment in scopolamine-induced AD mouse models. Nissl staining ofmice hippocampaltissue sections revealed that n1 restored neuronal cells in the hippocampus CA3 and CA1 regions. These findings suggested that n1 can be a promising compound for further development of multifunctional agents for AD treatment.
Collapse
Affiliation(s)
- Jucheng Xia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, PR China
| | - Shuanghong Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, PR China
| | - Lili Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, PR China
| | - Fang Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, PR China
| | - Siqi Xing
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, PR China
| | - Jiyu Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, PR China
| | - Zeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, PR China.
| |
Collapse
|
16
|
Desmiaty Y, Sandhiutami NMD, Mulatsari E, Maziyah FA, Rahmadhani K, Algifari HOZ, Jantuna FA. Antioxidant and anti-inflammatory activity through inhibition of NF-κB and sEH of some citrus peel and phytoconstituent characteristics. Saudi Pharm J 2024; 32:101959. [PMID: 38303924 PMCID: PMC10831157 DOI: 10.1016/j.jsps.2024.101959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
In Indonesia, there are many types of citrus where parts of the fruit, leaves, and peel can be utilized as food, drinks, spices, and medicine. This research aims to determine the phytochemical characteristics, antioxidant activities, and anti-inflammatory activity through inhibition of NF-κB and sEH, and the main phytoconstituents of three types of citrus fruits that are commonly used as herbs in Indonesia. The flesh and peel of Citrus amblycarpa/CAm, C. aurantiifolia/CAu, and C. hystrix/CH were extracted by Ultrasound-Assisted Extraction (UAE) with 70 % ethanol and then concentrated. All extracts were tested for total flavonoid content (TFC), total polyphenolic content (TPC), chemical constituents using LCMS, and DPPH radical scavenging activity. Molecular docking tests of 33 compounds containing CAm, CAu, and CH fruit peels from the literature study against NF-κB (Nuclear Factor Kappa Beta) and sEH (Soluble Epoxide Hydrolase) were also conducted. The TFC in fruit peels was 13.47-17.34 mg QE/g extract, and in flesh was 1.35-2.51 mg QE/g extract. The TPC in fruit peels was 4.28-6.3 mg GAE/g extract, and in flesh was 0.85-2.09 mg GAE/g extract. The IC50 values of antioxidant activity on fruit peel were 74.01-168.54 µg/mL; and flesh 185.62-2669 µg/mL. CAu peels provided the highest antioxidant activity and polyphenol content. The LC-MS/MS test on citrus peels shows the main chemical compounds: naringin (C27H32O14), naringenin (C15H12O5), hesperidin (C28H34O15), and hesperitin (C16H14O6). Molecular docking shows that naringin and neohesperidin predicted inhibit NF-κB, and hesperidin, neohesperidin, narirutin, naringin, apigenin, kaempferol, quercetin, rutin, eriocitrin, sinensetin, and vitamin A predicted can inhibit sEH enzyme. All citrus peel has stronger antioxidant activity and more flavonoids and phenolics than the flesh. Naringin and neohesperidin can inhibit NF-κB and sEH enzymes. The main flavonoid contents of the citrus peels and presumed to have activity are hesperidin and naringin. These flavonoids and their glycosides can be used as marker phytoconstituents in the quality assurance of pharmaceutical products.
Collapse
Affiliation(s)
- Yesi Desmiaty
- Faculty of Pharmacy, Pancasila University, Jakarta 12640, Indonesia
| | | | - Esti Mulatsari
- Faculty of Pharmacy, Pancasila University, Jakarta 12640, Indonesia
| | | | | | | | | |
Collapse
|
17
|
Durgun M, Akocak S, Lolak N, Topal F, Koçyiğit ÜM, Türkeş C, Işık M, Beydemir Ş. Design and Synthesis of Pyrazole Carboxamide Derivatives as Selective Cholinesterase and Carbonic Anhydrase Inhibitors: Molecular Docking and Biological Evaluation. Chem Biodivers 2024; 21:e202301824. [PMID: 38149720 DOI: 10.1002/cbdv.202301824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 12/28/2023]
Abstract
The present study focused on the synthesis and characterization of novel pyrazole carboxamide derivatives (SA1-12). The inhibitory effect of the compounds on cholinesterases (ChEs; AChE and BChE) and carbonic anhydrases (hCAs; hCA I and hCA II) isoenzymes were screened as in vitro. These series compounds have been identified as potential inhibitors with a KI values in the range of 10.69±1.27-70.87±8.11 nM for hCA I, 20.01±3.48-56.63±6.41 nM for hCA II, 6.60±0.62-14.15±1.09 nM for acetylcholinesterase (AChE) and 54.87±7.76-137.20 ±9.61 nM for butyrylcholinesterase (BChE). These compounds have a more effective inhibition effect when compared to the reference compounds. In addition, the potential binding positions of the compounds with high affinity for ChE and hCAs were demonstrated by in silico methods. The results of in silico and in vitro studies support each other. As a result of the present study, the compounds with high inhibitory activity for metabolic enzymes, such as ChE and hCA were designed. The compounds may be potential alternative agents used as selective ChE and hCA inhibitors in the treatment of Alzheimer's disease and glaucoma.
Collapse
Affiliation(s)
- Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, 63290, Şanlıurfa, Turkey
| | - Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040, Adıyaman, Turkey
| | - Nebih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040, Adıyaman, Turkey
| | - Fevzi Topal
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Gümüşhane University, 29100, Gümüşhane, Turkey
- Department of Chemical and Chemical Processing Technologies, Gümüşhane Vocational School, Gümüşhane University, 29100, Gümüşhane, Turkey
| | - Ümit Muhammet Koçyiğit
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24002, Erzincan, Turkey
| | - Mesut Işık
- Department of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
- Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| |
Collapse
|
18
|
Öztürk C, Kalay E, Gerni S, Balci N, Tokali FS, Aslan ON, Polat E. Sulfonamide derivatives with benzothiazole scaffold: Synthesis and carbonic anhydrase I-II inhibition properties. Biotechnol Appl Biochem 2024; 71:223-231. [PMID: 37964505 DOI: 10.1002/bab.2534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023]
Abstract
The secondary sulfonamide derivatives containing benzothiazole scaffold (1-10) were synthesized to determine their inhibition properties on two physiologically essential human carbonic anhydrases isoforms (hCAs, EC, 4.2.1.1), hCA I, and hCA II. The inhibitory effects of the compounds on hCA I and hCA II isoenzymes were investigated by comparing their IC50 and Ki values. The Ki values of compounds (1-10) against hCA I and hCA II are in the range of 0.052 ± 0.022-0.971 ± 0.280 and 0.025 ± 0.010-0.682 ± 0.335, respectively. Some of these inhibited the enzyme more effectively than the standard drug, acetazolamide. In particular, compounds 5 and 4 were found to be most effective on hCA I and hCA II.
Collapse
Affiliation(s)
- Cansu Öztürk
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Erbay Kalay
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, Kars, Turkey
| | - Serpil Gerni
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Neslihan Balci
- Siran Dursun Keles Vocational School of Health Services, Gümüshane University, Gümüshane, Turkey
| | - Feyzi Sinan Tokali
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, Kars, Turkey
| | - Osman Nuri Aslan
- East Anatolian High Technology Application and Research Center, Atatürk University, Erzurum, Turkey
| | - Emrah Polat
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
19
|
Ndhlala AR, Işık M, Kavaz Yüksel A, Dikici E. Phenolic Content Analysis of Two Species Belonging to the Lamiaceae Family: Antioxidant, Anticholinergic, and Antibacterial Activities. Molecules 2024; 29:480. [PMID: 38257392 PMCID: PMC10821218 DOI: 10.3390/molecules29020480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The Lamiaceae family are utilized as ornamental, medicinal, and food supplements throughout the world. The current study focuses on a comparative analysis of the phenolic compositions and bioactivities (including antioxidant, anticholinergic, and antibacterial activities) of ethanolic extracts derived from the aerial parts of the two species (Lavandula stoechas L. and Thymus sipyleus Boiss). The presence of phenolic compounds and phytochemicals in the plant extracts was identified using the LC-MS/MS technique. The LC-MS/MS analysis revealed that vanillic acid (125,596.66 µg/L) was the most abundant phytochemical in L. stoechas. Kaempferol (8550.52 µg/L) was the most abundant substance in Thymus sipyleus. The assessment of the antioxidant efficacy of the species extracts was conducted using the DPPH (2.2-diphenyl-1-picryl-hydrazyl-hydrate), ABTS (2.2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)), Fe3+-Fe2+ reducing, and CUPRAC (Cu2+-Cu+ reducing) assays. The anticholinergic activity of the samples was determined using the acetylcholinesterase (AChE) inhibition assay. The results of antioxidant activity were higher in the T. sipyleus than in the L. stoechas ethanol extracts. The extracts of L. stoechas exhibited radical scavenging activity ranging from 15 to 18%, while T. sipyleus had activity effects ranging from 34% to 38%. The AChE inhibition potential for L. stoechas and T. sipyleus extracts as IC50 values were 0.221 ± 0.01 mg/mL and 0.067 ± 0.02 mg/mL, respectively. The antibacterial effects of the ethanolic extracts of these species against pathogenic bacteria isolates were determined using the MIC (minimal inhibitory concentration) method. These findings indicated that the extracts from L. stoechas and T. sipyleus possess the potential to be natural antioxidants in the realm of food preservation. Additionally, their antioxidant, anticholinergic, and antimicrobial properties suggest potential therapeutic utility in the management of certain diseases.
Collapse
Affiliation(s)
- Ashwell R. Ndhlala
- Green Biotechnologies Research Centre, School of Agricultural and Environmental Sciences, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa;
| | - Mesut Işık
- Department of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University, Bilecik 11230, Turkey
| | - Arzu Kavaz Yüksel
- Department of Food Technology, Technical Sciences Vocational School, Atatürk University, Erzurum 25030, Turkey;
| | - Emrah Dikici
- Science and Technology Application and Research Center, Aksaray University, Aksaray 68100, Turkey;
| |
Collapse
|
20
|
Lolak N, Akocak S, Petreni A, Budak Y, Bozgeyik E, Gurdere MB, Ceylan M, Supuran CT. 1,3-Diaryl Triazenes Incorporating Disulfonamides Show Both Antiproliferative Activity and Effective Inhibition of Tumor-associated Carbonic Anhydrases IX and XII. Anticancer Agents Med Chem 2024; 24:755-763. [PMID: 38362678 DOI: 10.2174/0118715206285326240207045249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/31/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024]
Abstract
AIM The aim of this study was to synthesize a library of novel di-sulfa drugs containing 1,3- diaryltriazene derivatives TS (1-13) by conjugation of diazonium salts of primary sulfonamides with sulfa drugs to investigate the cytotoxic effect of these new compounds in different cancer types and to determine their inhibitory activity against tumor-associated carbonic anhydrases IX and XII. MATERIALS AND METHODS A carbonic anhydrase inhibitory activity of the obtained compounds was evaluated against four selected human carbonic anhydrase isoforms (hCA I, hCA II, hCA IX and hCA XII) by a stoppedflow CO2 hydrase assay. In addition, in vitro, cytotoxicity studies were applied by using A549 (lung cancer), BEAS-2B (normal lung), MCF-7 (breast cancer), MDA-MB-231 (breast cancer), CRL-4010 (normal breast epithelium), HT-29 (colon cancer), and HCT -116 (colon cancer) cell lines. RESULTS As a result of the inhibition data, the 4-aminobenzenesulfonamide derivatives were more active than their 3-aminobenzenesulfonamide counterparts. More specifically, compounds TS-1 and TS-2, both of which have primary sulfonamides on both sides of the triazene linker, showed the best inhibitory activity against hCA IX with Ki values of 19.5 and 13.7 nM and also against hCA XII with Ki values of 6.6 and 8.3 nM, respectively. In addition, in vitro cytotoxic activity on the human breast cancer cell line MCF-7 showed that some derivatives of di-sulfa triazenes, such as TS-5 and TS-13, were more active than SLC-0111. CONCLUSION With the aim of developing more potent and isoform-selective CA inhibitors, these novel hybrid molecules containing sulfa drugs, triazene linkers, and the classical primary sulfonamide chemotype may be considered an interesting example of effective enzyme inhibitors and important anticancer agents.
Collapse
Affiliation(s)
- Nebih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040 Adıyaman, Türkiye
| | - Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040 Adıyaman, Türkiye
| | - Andrea Petreni
- Università Degli Studi di Firenze, NEUROFARBA Department Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Yakup Budak
- Department of Chemistry, Faculty of Arts and Sciences, Gaziosmanpaşa University, 60250 Tokat, Türkiye
| | - Esra Bozgeyik
- Department of Medical Services and Techniques, Vocational School of Health Services, Adıyaman University, 02040 Adıyaman, Türkiye
| | - Meliha Burcu Gurdere
- Department of Chemistry, Faculty of Arts and Sciences, Gaziosmanpaşa University, 60250 Tokat, Türkiye
| | - Mustafa Ceylan
- Department of Chemistry, Faculty of Arts and Sciences, Gaziosmanpaşa University, 60250 Tokat, Türkiye
| | - Claudiu Trandafir Supuran
- Università Degli Studi di Firenze, NEUROFARBA Department Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| |
Collapse
|
21
|
Alaei L, Ashengroph M, Moosavi-Movahedi AA. Sulfonamides stimulate ROS formation upon glycation of human carbonic anhydrase II. Int J Biol Macromol 2024; 255:128294. [PMID: 37992931 DOI: 10.1016/j.ijbiomac.2023.128294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
Advanced glycation end products are the most important species of glycation pathway, and cause disorders such as oxidative stress and diabetes. Sulfonamide compounds, which are generally known as widespread inhibitors, are potential agents used in different drug products, which can readily enter biological matrices. In the present work, the structure and activity of human carbonic anhydrase II studied in the presence of glucose as well as four sulfonamide agents from different views. These included enzyme kinetics, free lysine content, fluorescence spectroscopy, circular dichroism, and ROS measurement. Our results indicated that upon glycation, the structure of HCA II collapses and 8 to 13 lysine residues will be more available based on ligand incubation. Secondary and tertiary structural changes were also observed in the presence and absence of sulfonamide agents using fluorescence and circular dichroism methods, respectively. These spectroscopic data also showed a remarkable increase in hydrophobicity and decrease in α-helix contents during glycation, especially after 35 days of incubation. ROS assay was studied in the presence of glucose and sulfonamide compounds, that demonstrated the role of sulfonamide compounds in ROS formation in the presence of glucose in a synergistic manner. Overall, our data indicated that sulfonamides act as a stimulant factor upon prolonged interaction with HCA II and may intensify the complications of some disorders, such as diabetes and other conformational diseases.
Collapse
Affiliation(s)
- Loghman Alaei
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Iran; Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| | - Morahem Ashengroph
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Iran.
| | | |
Collapse
|
22
|
Erdoğan M, Serdar Çavuş M, Muğlu H, Yakan H, Türkeş C, Demir Y, Beydemir Ş. Synthesis, Theoretical, in Silico and in Vitro Biological Evaluation Studies of New Thiosemicarbazones as Enzyme Inhibitors. Chem Biodivers 2023; 20:e202301063. [PMID: 37769192 DOI: 10.1002/cbdv.202301063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
Eleven new thiosemicarbazone derivatives (1-11) were designed from nine different biologically and pharmacologically important isothiocyanate derivatives containing functional groups such as fluorine, chlorine, methoxy, methyl, and nitro at various positions of the phenyl ring, in addition to the benzyl unit in the molecular skeletal structure. First, their substituted-thiosemicarbazide derivatives were synthesized from the treatment of isothiocyanate with hydrazine to synthesize the designed compounds. Through a one-step easy synthesis and an eco-friendly process, the designed compounds were synthesized with yields of up to 95 % from the treatment of the thiosemicarbazides with aldehyde derivatives having methoxy and hydroxy groups. The structures of the synthesized molecules were elucidated with elemental analysis and FT-IR, 1 H-NMR, and 13 C-NMR spectroscopic methods. The electronic and spectroscopic properties of the compounds were determined by the DFT calculations performed at the B3LYP/6-311++G(2d,2p) level of theory, and the experimental findings were supported. The effects of some global reactivity parameters and nucleophilic-electrophilic attack abilities of the compounds on the enzyme inhibition properties were also investigated. They exhibited a highly potent inhibition effect on acetylcholinesterase (AChE) and carbonic anhydrases (hCAs) (KI values are in the range of 23.54±4.34 to 185.90±26.16 nM, 103.90±23.49 to 325.90±77.99 nM, and 86.15±18.58 to 287.70±43.09 nM for AChE, hCA I, and hCA II, respectively). Furthermore, molecular docking simulations were performed to explain each enzyme-ligand complex's interaction.
Collapse
Affiliation(s)
- Musa Erdoğan
- Department of Food Engineering, Faculty of Engineering and Architecture, Kafkas University, 36100, Kars, Turkey
| | - M Serdar Çavuş
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Kastamonu University, 37200, Kastamonu, Turkey
| | - Halit Muğlu
- Department of Chemistry, Faculty of Sciences, Kastamonu University, 37200, Kastamonu, Turkey
| | - Hasan Yakan
- Department of Chemistry Education, Faculty of Education, Ondokuz Mayis University, 55200, Samsun, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24002, Erzincan, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, 75700, Ardahan, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
- Bilecik Şeyh Edebali University, 11230 Bilecik, Turkey, Department of Chemistry Education, Faculty of Education, Ondokuz Mayis University, Samsun, 55200, Turkey
| |
Collapse
|
23
|
Tchaikovskaya O, Bocharnikova E, Bazyl O, Chaidonova V, Mayer G, Avramov P. Nature of Luminescence and Pharmacological Activity of Sulfaguanidine. Molecules 2023; 28:molecules28104159. [PMID: 37241901 DOI: 10.3390/molecules28104159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Sulfonamides are one of the oldest groups of veterinary chemotherapeutic agents. Physico-chemical properties, the concentration and the nature of the environment are the factors responsible for the distribution of sulfonamides in the living organism. Although these drug compounds have been in use for more than half a century, knowledge about their behavior is still limited. Physiological activity is currently attributed to the sulfanyl radical. Our study is devoted to the spectral properties of aqueous solutions of sulfaguanidine, in which the formation of complexes with an H-bond and a protonated form takes place. The nature of the fluorescent state of sulfaguanidine was interpreted using computational chemistry, the electronic absorption method and the luminescence method. The structure of sulfaguanidine includes several active fragments: aniline, sulfonic and guanidine. To reveal the role of fragments in the physiological activity of the studied antibiotic, we calculated and compared the effective charges of the fragments of aniline and sulfaguanidine molecules. Chromophore groups were identified in molecules, which determine the intermolecular interaction between a molecule and a proton-donor solvent. The study also revealed the impact of sulfone and guanidine groups, as well as complexation, on the effective charge of the antibiotic fragment responsible for physiological activity and luminescent ability.
Collapse
Affiliation(s)
- Olga Tchaikovskaya
- Quantum Electronics Laboratory, Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences, 620146 Yekaterinburg, Russia
- Laboratory of Photophysics and Photochemistry of Molecules, Faculty of Physics, Tomsk State University, 634050 Tomsk, Russia
| | - Elena Bocharnikova
- Laboratory of Photophysics and Photochemistry of Molecules, Faculty of Physics, Tomsk State University, 634050 Tomsk, Russia
| | - Olga Bazyl
- Laboratory of Photophysics and Photochemistry of Molecules, Faculty of Physics, Tomsk State University, 634050 Tomsk, Russia
| | - Vlada Chaidonova
- Laboratory of Photophysics and Photochemistry of Molecules, Faculty of Physics, Tomsk State University, 634050 Tomsk, Russia
- Hygienic and Epidemiological Center in Republic of Khakassia, 655017 Abakan, Russia
| | - George Mayer
- Laboratory of Photophysics and Photochemistry of Molecules, Faculty of Physics, Tomsk State University, 634050 Tomsk, Russia
| | - Paul Avramov
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| |
Collapse
|
24
|
Tokalı FS, Demir Y, Türkeş C, Dinçer B, Beydemir Ş. Novel acetic acid derivatives containing quinazolin-4(3H)-one ring: Synthesis, in vitro, and in silico evaluation of potent aldose reductase inhibitors. Drug Dev Res 2023; 84:275-295. [PMID: 36598092 DOI: 10.1002/ddr.22031] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023]
Abstract
Aldose reductase (AR) is a crucial enzyme of the polyol pathway through which glucose is metabolized under conditions of hyperglycemia related to diabetes. A series of novel acetic acid derivatives containing quinazolin-4(3H)-one ring (1-22) was synthesized and tested for in vitro AR inhibitory effect. All the target compounds exhibited nanomolar activity against the target enzyme, and all compounds displayed higher activity as compared to the reference drug epalrestat. Among them, Compound 19, named 2-(4-[(2-[(4-methylpiperazin-1-yl)methyl]-4-oxoquinazolin-3(4H)-ylimino)methyl]phenoxy)acetic acid, displayed the strongest inhibitory effect with a KI value of 61.20 ± 10.18 nM. Additionally, these compounds were investigated for activity against L929, nontumoral fibroblast cells, and MCF-7, breast cancer cells using the MTT assay. Compounds 16 and 19 showed lower toxicity against the normal L929 cells. The synthesized compounds' (1-22) absorption, distribution, metabolism, and excretion properties were also evaluated. Molecular docking simulations were used to look into the possible binding mechanisms of these inhibitors against AR.
Collapse
Affiliation(s)
- Feyzi Sinan Tokalı
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, Kars, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Büşra Dinçer
- Department of Pharmacology, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
25
|
Yakan H, Muğlu H, Türkeş C, Demir Y, Erdoğan M, Çavuş MS, Beydemir Ş. A novel series of thiosemicarbazone hybrid scaffolds: Design, Synthesis, DFT studies, metabolic enzyme inhibition properties, and molecular docking calculations. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
26
|
Altıntop MD, Demir Y, Türkeş C, Öztürk RB, Cantürk Z, Beydemir Ş, Özdemir A. A new series of hydrazones as small-molecule aldose reductase inhibitors. Arch Pharm (Weinheim) 2023; 356:e2200570. [PMID: 36603162 DOI: 10.1002/ardp.202200570] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023]
Abstract
In the search for small-molecule aldose reductase (AR) inhibitors, new tetrazole-hydrazone hybrids (1-15) were designed. An efficient procedure was employed for the synthesis of compounds 1-15. All hydrazones were subjected to an in vitro assay to assess their AR inhibitory profiles. Compounds 1-15 caused AR inhibition with Ki values ranging between 0.177 and 6.322 µM and IC50 values ranging between 0.210 and 0.676 µM. 2-[(1-(4-Hydroxyphenyl)-1H-tetrazol-5-yl)thio]-N'-(4-fluorobenzylidene)acetohydrazide (4) was the most potent inhibitor of AR in this series. Compound 4 markedly inhibited AR (IC50 = 0.297 µM) in a competitive manner (Ki = 0.177 µM) compared to epalrestat (Ki = 0.857 µM, IC50 = 0.267 µM). Based on the in vitro data obtained by applying the MTT test, compound 4 showed no cytotoxic activity toward normal (NIH/3T3) cells at the tested concentrations, indicating its safety as an AR inhibitor. Compound 4 exhibited proper interactions with crucial amino acid residues within the active site of AR. In silico QikProp data of all hydrazones (1-15) were also determined to assess their pharmacokinetic profiles. Taken together, compound 4 stands out as a promising inhibitor of AR for further in vivo studies.
Collapse
Affiliation(s)
- Mehlika D Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Remzi B Öztürk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Zerrin Cantürk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Ahmet Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
27
|
Demir Y, Türkeş C, Çavuş MS, Erdoğan M, Muğlu H, Yakan H, Beydemir Ş. Enzyme inhibition, molecular docking, and density functional theory studies of new thiosemicarbazones incorporating the 4-hydroxy-3,5-dimethoxy benzaldehyde motif. Arch Pharm (Weinheim) 2022; 356:e2200554. [PMID: 36575148 DOI: 10.1002/ardp.202200554] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/29/2022]
Abstract
New Schiff base-bearing thiosemicarbazones (1-13) were obtained from 4-hydroxy-3,5-dimethoxy benzaldehyde and various isocyanates. The structures of the synthesized molecules were elucidated in detail. Density functional theory calculations were also performed to determine the spectroscopic properties of the compounds. Moreover, the enzyme inhibition activities of these compounds were investigated. They showed highly potent inhibition effects on acetylcholinesterase (AChE) and human carbonic anhydrases (hCAs) (KI values are in the range of 51.11 ± 6.01 to 278.10 ± 40.55 nM, 60.32 ± 9.78 to 300.00 ± 77.41 nM, and 64.21 ± 9.99 to 307.70 ± 61.35 nM for AChE, hCA I, and hCA II, respectively). In addition, molecular docking studies were performed, confirmed by binding affinities studies of the most potent derivatives.
Collapse
Affiliation(s)
- Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Muhammet S Çavuş
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Musa Erdoğan
- Department of Food Engineering, Faculty of Engineering and Architecture, Kafkas University, Kars, Turkey
| | - Halit Muğlu
- Department of Chemistry, Faculty of Sciences, Kastamonu University, Kastamonu, Turkey
| | - Hasan Yakan
- Department of Chemistry Education, Faculty of Education, Ondokuz Mayis University, Samsun, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
28
|
Türkeş C, Demir Y, Beydemir Ş. In Vitro
Inhibitory Activity and Molecular Docking Study of Selected Natural Phenolic Compounds as AR and SDH Inhibitors**. ChemistrySelect 2022. [DOI: 10.1002/slct.202204050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry Faculty of Pharmacy Erzincan Binali Yıldırım University Erzincan 24002 Turkey
| | - Yeliz Demir
- Department of Pharmacy Services Nihat Delibalta Göle Vocational High School Ardahan University Ardahan 75700 Turkey
| | - Şükrü Beydemir
- Department of Biochemistry Faculty of Pharmacy Anadolu University Eskişehir 26470 Turkey
- The Rectorate of Bilecik Şeyh Edebali University Bilecik 11230 Turkey
| |
Collapse
|