1
|
Zhang Y, Yan Y, Smagghe G, Yang H, Dai RH, Yang WJ. Identification and immune analysis of antimicrobial peptides from the cigarette beetle (Lasioderma serricorne). INSECT SCIENCE 2024; 31:1121-1134. [PMID: 37984503 DOI: 10.1111/1744-7917.13298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023]
Abstract
Antimicrobial peptides (AMPs) in insects are endogenous peptides that are effector components of the innate defense system of the insect. AMPs may serve as antimicrobial agents because of their small molecular weight and broad-spectrum antimicrobial activity. In this study, we performed transcriptome analysis of cigarette beetle (Lasioderma serricorne) larvae, parasitized by the ectoparasitic wasp, Anisopteromalus calandrae. Several AMP genes were significantly upregulated following A. calandrae parasitism, postulating the hypothesis that the parasitization enhanced the host's resistance against pathogenic microorganisms through the regulation of host AMP genes. Specifically, 3 AMP genes (LsDef1, LsDef2, and LsCole) were significantly upregulated and we studied their immune function in L. serricorne. Immune challenge and functional analysis showed that LsCole was responsible for the immune response against Gram-negative and Gram-positive bacteria, while LsDef1 and LsDef2 were involved in insect defense against Gram-positive bacteria. Purified recombinant LsCole exhibited antimicrobial activities against the Gram-negative bacterium Escherichia coli and the Gram-positive bacterium Staphylococcus aureus. LsDef2 showed an antibacterial effect against S. aureus. LsCole and LsDef2 exhibited antibiofilm activity against S. aureus. The 2 AMPs disrupted cell membranes and caused leakage of S. aureus cell contents. The results indicated that the 3 AMPs in L. serricorne are involved in the innate immunity of this pest insect. These AMPs may have potential as antimicrobial agents for bacterial infection chemotherapy. Hence, data are discussed in relation to new control strategies with greater biosafety against pest insects with use of microbial biocontrol agents in combination with RNA interference against the insect's defensive AMP genes.
Collapse
Affiliation(s)
- Yue Zhang
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Yi Yan
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Guy Smagghe
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Hong Yang
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Ren-Huai Dai
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Wen-Jia Yang
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| |
Collapse
|
2
|
Deng X, Liu L, Deng J, Zha X. Specific Expression of Antimicrobial Peptides from the Black Soldier Fly in the Midgut of Silkworms ( Bombyx mori) Regulates Silkworm Immunity. INSECTS 2023; 14:insects14050443. [PMID: 37233071 DOI: 10.3390/insects14050443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Antimicrobial peptides are molecules with strong antimicrobial activity and are of substantial interest for the immunization of insects. As a type of dipteran insect that can turn organic waste into animal feed, the black soldier fly (BSF) can "turn waste into treasure". In this study, we investigated the antimicrobial activity of the antimicrobial peptide genes, HiCG13551 and Hidiptericin-1, of BSF in silkworms, by overexpressing the genes specifically in the midgut. Changes in the mRNA levels of the transgenic silkworms after infection with Staphylococcus aureus were evaluated using transcriptome sequencing. The results showed that Hidiptericin-1 had stronger antimicrobial activity than HiCG13551. KEGG enrichment analysis showed that the differentially expressed genes in the transgenic overexpressed Hidiptericin-1 silkworm lines from the D9L strain were mainly enriched in the starch and sucrose metabolism, pantothenate and CoA biosynthesis, drug metabolism (other enzymes), biotin metabolism, platinum drug resistance, galactose metabolism, and pancreatic secretion pathways. In addition, immune-related genes were up-regulated in this transgenic silkworm strain. Our study may provide new insights for future immune studies on insects.
Collapse
Affiliation(s)
- Xuan Deng
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Lianlian Liu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Jing Deng
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xingfu Zha
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Senra MVX. In silico characterization of cysteine-stabilized αβ defensins from neglected unicellular microeukaryotes. BMC Microbiol 2023; 23:82. [PMID: 36966312 PMCID: PMC10040121 DOI: 10.1186/s12866-023-02817-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/09/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND The emergence of multi-resistant pathogens have increased dramatically in recent years, becoming a major public-health concern. Among other promising antimicrobial molecules with potential to assist in this worldwide struggle, cysteine-stabilized αβ (CS-αβ) defensins are attracting attention due their efficacy, stability, and broad spectrum against viruses, bacteria, fungi, and protists, including many known human pathogens. RESULTS Here, 23 genomes of ciliated protists were screened and two CS-αβ defensins with a likely antifungal activity were identified and characterized, using bioinformatics, from a culturable freshwater species, Laurentiella sp. (LsAMP-1 and LsAMP-2). Although any potential cellular ligand could be predicted for LsAMP-2; evidences from structural, molecular dynamics, and docking analyses suggest that LsAMP-1 may form stably associations with phosphatidylinositol 4,5-bisphosphates (PIP2), a phospholipid found on many eukaryotic cells, which could, in turn, represent an anchorage mechanism within plasma membrane of targeted cells. CONCLUSION These data stress that more biotechnology-oriented studies should be conducted on neglected protists, such ciliates, which could become valuable sources of novel bioactive molecules for therapeutic uses.
Collapse
|
4
|
Park SE, Kim JC, Im Y, Kim JS. Pathogenesis and defense mechanism while Beauveria bassiana JEF-410 infects poultry red mite, Dermanyssus gallinae. PLoS One 2023; 18:e0280410. [PMID: 36800366 PMCID: PMC9937463 DOI: 10.1371/journal.pone.0280410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/28/2022] [Indexed: 02/18/2023] Open
Abstract
The poultry red mite, Dermanyssus gallinae (Mesostigmata: Dermanyssidae), is a major pest that causes great damage to chicken egg production. In one of our previous studies, the management of red mites using entomopathogenic fungi was evaluated, and the acaricidal fungus Beauveria bassiana JEF-410 was selected for further research. In this study, we tried to elucidate the pathogenesis of B. bassiana JEF-410 and the defense mechanisms of red mites at a transcriptome level. Red mites collected from a chicken farm were treated with B. bassiana JEF-410. When the mortality of infected red mites reached 50%, transcriptome analyses were performed to determine the interaction between B. bassiana JEF-410 and red mites. Uninfected red mites and non-infecting fungus served as controls. In B. bassiana JEF-410, up-regulated gene expression was observed in tryptophan metabolism and secondary metabolite biosynthesis pathways. Genes related to acetyl-CoA synthesis were up-regulated in tryptophan metabolism, suggesting that energy metabolism and stress management were strongly activated. Secondary metabolites associated with fungal up-regulated DEGs were related to the production of substances toxic to insects such as beauvericin and beauveriolide, efflux pump of metabolites, energy production, and resistance to stress. In red mites, physical and immune responses that strengthen the cuticle against fungal infection were highly up-regulated. From these gene expression analyses, we identified essential factors for fungal infection and subsequent defenses of red mites. These results will serve as a strong platform for explaining the interaction between B. bassiana JEF-410 and red mites in the stage of active infection.
Collapse
Affiliation(s)
- So Eun Park
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju, Korea
| | - Jong-Cheol Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju, Korea
| | - Yeram Im
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju, Korea
| | - Jae Su Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju, Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Korea
- * E-mail:
| |
Collapse
|
5
|
Shi G, Zhou Y, Ren F. Identification and function analysis of BmPxtA in the immune response regulated by PGE 2 of silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 130:104358. [PMID: 35081420 DOI: 10.1016/j.dci.2022.104358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Prostaglandins (PGs) can mediate the immune response of insects to infection. Mammalian cyclooxygenase (COXs) is a key enzyme in the synthesis of PGs, and Pxt may be its homologous gene in some sequenced insect genomes. As a representative of Lepidoptera, the silkworm also contains PGs, but the biosynthetic source of PGs is still unclear. In this study, Sequence analysis showed that peroxinectin (BmPxtA) gene of silkworm was closely related to human COX gene, and its homologous protein had conserved domains corresponding to human COX. The expression of BmPxtA gene was the highest in the hemocytes and was induced by Nuclear Polyhedrosis Virus (NPV) challenge in the detected tissues. The quantitative polymerase chain reaction (qPCR) results showed that silencing BmPxtA mediated by RNA interference (RNAi) inhibited the expression of immune-related pathway genes, and specifically suppressed hemocyte-spreading and nodule formation in silkworm; Hemocyte-spreading and nodule formation were also inhibited by aspirin, a COX inhibitor. Treatment by PGE2 but not arachidonic acid (AA) rescued the immunosuppression; PGs concentrations was also inhibited by aspirin. PGE2, but not AA, treatment rescued the PGs concentrations. These results suggest that BmPxtA gene is associated with PG biosynthesis in silkworm and the immune response of silkworm was affected by regulating the concentrations of PGs.
Collapse
Affiliation(s)
- Guiqin Shi
- Zhengzhou University of Light Industry, Zhengzhou, 450002, China.
| | - Yuan Zhou
- Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Fei Ren
- Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| |
Collapse
|
6
|
The Functions of β-Defensin in Flounder ( Paralichthys olivaceus): Antibiosis, Chemotaxis and Modulation of Phagocytosis. BIOLOGY 2021; 10:biology10121247. [PMID: 34943162 PMCID: PMC8698591 DOI: 10.3390/biology10121247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/25/2022]
Abstract
Simple Summary The study identified a new spliced isoform of anionic β-defensin from flounder (Paralichthys olivaceus, fBD) and examined its antibiosis, chemotaxis and modulation of phagocytosis. It also analyzed the contributions of fBD to the antimicrobial activity of extracellular traps (ETs). The analyses found that an anionic β-defensin in fish possesses strong bacteriostatic ability in line with that of cationic defensins and also plays an important role in immune response. This study provides new insights into the biological function of anionic defensins, which can serve as one of the important effectors in extracellular traps and contribute to the immune response. Abstract Most defensins are cationic antimicrobial peptides with broad-spectrum killing activity against bacteria, fungi and enveloped viruses. However, it should be recognized that there are some non-cationic β-defensins in organisms, which need to be further studied. In this study, a new spliced isoform of anionic β-defensin from flounder (Paralichthys olivaceus, fBD) was identified, and its antibiosis, chemotaxis and modulation of phagocytosis were examined. In addition, the contributions of fBD to the antimicrobial activity of extracellular traps (ETs) were also analyzed. The recombinant fBD (rfBD) could effectively inhibit the growth of Gram-positive bacteria (S. aureus, Micrococcus luteus) and Gram-negative bacteria (E. coli, V. alginolyticus, V. anguillarum). An indirect immunofluorescence assay showed that the fBD was co-localized in the extracellular traps released by the leukocytes. When the ETs were blocked with antibodies against rfBD, the proliferation of S. aureus and E. coli incubated with ETs tended to increase compared with that in the control group. In addition, the results obtained by flow cytometry showed that the rfBD could significantly chemoattract leukocytes and increase phagocytic activity in vitro. In conclusion, this study provides new insights into the biological function of anionic defensins, which can serve as one of the important effectors in extracellular traps and as a bridge between innate and adaptive immunity in teleosts.
Collapse
|
7
|
Shi G, Kang Z, Liu H, Ren F, Zhou Y. The effects of quercetin combined with nucleopolyhedrovirus on the growth and immune response in the silkworm (Bombyx mori). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21839. [PMID: 34427962 DOI: 10.1002/arch.21839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Flavonoids are secondary metabolites that help plants resist insect attack. It can resist insect attack by inhibiting insect immune defense, and pathogens can also inhibit insect immune defense. It is speculated that the combination of flavonoids and pathogens may inhibit the immune defense and have stronger toxicity to silkworm. In this study, the combined treatment of quercetin with Bombyx mori nuclear polyhedrosis virus (BmNPV) had significant negative effects on the growth and survival of silkworm compared with BmNPV group. The detoxifying enzyme activity of BmNPV group was significantly increased at 96 h, while the activity of the combined treatment group was significantly decreased with the increase of quercetin exposure time (72 or 96 h). The activity of antioxidant enzymes also showed a similar trend, that was, the activity of antioxidant enzymes in the combined treatment group also decreased significantly with the increase of quercetin exposure time, which led to the increase of reactive oxygen species content. The silkworm cells would produce lipid peroxidation, malondialdehyde content was significantly increased, so that the expression of immune-related genes (the antimicrobial peptide, Toll pathway, IMD pathway, JAK-STAT pathway, and melanin genes) were decreased, leading to the damage of the immune system of silkworm. These results indicated that quercetin combined with BmNPV could inhibit the activities of protective enzymes and lead to oxidative damage to silkworm. It can also affect the immune response of the silkworm, and thus resulting in abnormal growth. This study provides the novel conclusion that quercetin accumulation will increase the susceptibility of silkworm to pathogens.
Collapse
Affiliation(s)
- Guiqin Shi
- Zhengzhou University of Light Industry, Zhengzhou, China
| | - Zhaoyang Kang
- Zhengzhou University of Light Industry, Zhengzhou, China
| | - Huijuan Liu
- Zhengzhou University of Light Industry, Zhengzhou, China
| | - Fei Ren
- Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yuan Zhou
- Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
8
|
Luo X, Ouyang J, Wang Y, Zhang M, Fu L, Xiao N, Gao L, Zhang P, Zhou J, Wang Y. A novel anionic cathelicidin lacking direct antimicrobial activity but with potent anti-inflammatory and wound healing activities from the salamander Tylototriton kweichowensis. Biochimie 2021; 191:37-50. [PMID: 34438004 DOI: 10.1016/j.biochi.2021.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/08/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022]
Abstract
Cathelicidin is a family of antimicrobial peptides (AMPs) existing in vertebrates, which play multiple functions in host responses against environmental stresses. All cathelicidins identified to date are cationic, no anionic member with net negative charges has been reported. In the present study, a novel anionic cathelicidin (TK-CATH) with a net charge of -3 was identified from the skin of the salamander, T. kweichowensis. Unlike most other cathelicidin members, it didn't exhibit direct antimicrobial activity. However, it demonstrated strong anti-inflammatory activity. It effectively inhibited the LPS-induced pro-inflammatory cytokine gene expression and protein production in amphibian leukocytes and mouse macrophages by inhibiting the LPS-activated mitogen-activated protein kinase (MAPK) signaling pathways. Besides, TK-CATH showed potent wound healing activity. It could effectively induce the production of several cytokines, chemokines and growth factors relating to wound healing, promote the motility and proliferation of keratinocytes, and accelerate the skin wound healing in a mouse full-thickness wound model. These results imply that TK-CATH participates in both the inflammatory phase and new tissue formation phase of wound repair process. Meanwhile, TK-CATH exhibited weak but effective free radical scavenging activity and low cytotoxicity. All the results above indicate that TK-CATH is a multifunctional peptide in the skin of the salamander T. kweichowensis. It may play important roles in host immune responses against bacterial infection and skin wound repair.
Collapse
Affiliation(s)
- Xuanjin Luo
- Biology Department, Guizhou Normal University, Guiyang, 550000, Guizhou, China
| | - Jianhong Ouyang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yan Wang
- Biology Department, Guizhou Normal University, Guiyang, 550000, Guizhou, China
| | - Minghui Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Lei Fu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Ning Xiao
- Guiyang Nursing Vacational College, Guiyang, 550014, Guizhou, China
| | - Lianghui Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Peng Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, Jiangsu, 215004, China
| | - Jiang Zhou
- Biology Department, Guizhou Normal University, Guiyang, 550000, Guizhou, China.
| | - Yipeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
9
|
Silva FJ, Muñoz-Benavent M, García-Ferris C, Latorre A. Blattella germanica displays a large arsenal of antimicrobial peptide genes. Sci Rep 2020; 10:21058. [PMID: 33273496 PMCID: PMC7712779 DOI: 10.1038/s41598-020-77982-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/19/2020] [Indexed: 11/09/2022] Open
Abstract
Defence systems against microbial pathogens are present in most living beings. The German cockroach Blattella germanica requires these systems to adapt to unhealthy environments with abundance of pathogenic microbes, in addition to potentially control its symbiotic systems. To handle this situation, four antimicrobial gene families (defensins, termicins, drosomycins and attacins) were expanded in its genome. Remarkably, a new gene family (blattellicins) emerged recently after duplication and fast evolution of an attacin gene, which is now encoding larger proteins with the presence of a long stretch of glutamines and glutamic acids. Phylogenetic reconstruction, within Blattellinae, suggests that this duplication took place before the divergence of Blattella and Episymploce genera. The latter harbours a long attacin gene (pre-blattellicin), but the absence of the encoded Glx-region suggests that this element evolved recently in the Blattella lineage. A screening of AMP gene expression in available transcriptomic SR projects of B. germanica showed that, while some AMPs are expressed during almost the whole development, others are restricted to shorter periods. Blattellicins are highly expressed only in adult females. None of the available SR tissue projects could be associated with blattellicins’ expression, suggesting that it takes place in other tissues, maybe the gut.
Collapse
Affiliation(s)
- Francisco J Silva
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Paterna, Spain. .,Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research, Valencia, Spain.
| | - Maria Muñoz-Benavent
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Paterna, Spain
| | - Carlos García-Ferris
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Paterna, Spain.,Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Amparo Latorre
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Paterna, Spain.,Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research, Valencia, Spain
| |
Collapse
|
10
|
Shi G, Kang Z, Ren F, Zhou Y, Guo P. Effects of Quercetin on the Growth and Expression of Immune-Pathway-Related Genes in Silkworm (Lepidoptera: Bombycidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5960128. [PMID: 33159528 PMCID: PMC7648594 DOI: 10.1093/jisesa/ieaa124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Indexed: 05/05/2023]
Abstract
Quercetin is a flavonoid produced as a defense by plants. The effects of 1% quercetin on the growth and development of Bombyx mori were studied. The activities of the enzymes superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), carboxy-lesterase (CarEs), and glutathione S-transferase (GST) were all measured at 24, 48, 72, and 96 h after quercetin exposure. The results show that quercetin induces the activities of antioxidant and detoxification enzymes. With longer exposure times, enzyme activity first increased and then decreased. The relative expressions of AMP (defensin, CecA), the Toll pathway (cactus, Spatzle, and Rel), the IMD pathway (Imd, Fadd, and Dorsal), the JAK-STAT pathway (STAT, HOP, and Pi3k60), and the Melanization gene (DDC and PAH) were analyzed using quantitative polymerase chain reaction (qPCR). The results indicated that long-term exposure to quercetin could inhibit the expression of immune-related pathway genes in silkworms. This suggests that it can inhibit the activities of antioxidant and detoxifying enzymes, thus inhibiting the immune system and affecting the growth and development, resulting in an increase in the death rate in silkworm. This study provides the novel conclusion that quercetin accumulation inhibits the immune system of silkworm and increases its death rate, a result that may promote the development and utilization of better biopesticides that avoid environmental pollution.
Collapse
Affiliation(s)
- Guiqin Shi
- The College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Corresponding author, e-mail:
| | - Zhaoyang Kang
- The College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Fei Ren
- The College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yuan Zhou
- The College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Penglei Guo
- The College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
11
|
A Toll-Spätzle Pathway in the Immune Response of Bombyx mori. INSECTS 2020; 11:insects11090586. [PMID: 32882853 PMCID: PMC7564906 DOI: 10.3390/insects11090586] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/12/2023]
Abstract
The Toll-Spätzle pathway is a crucial defense mechanism in insect innate immunity, it plays an important role in fighting against pathogens through the regulation of antimicrobial peptide gene expression. Although Toll and Spätzle (Spz) genes have been identified in Bombyx mori, little is known regarding the specific Spz and Toll genes members involved in innate immunity. There is also limited direct evidence of the interaction between Spz and Toll. In this study, the dual-luciferase reporter assay results showed that BmToll11 and BmToll9-1 could activate both drosomycin and diptericin promoters in S2 cells. Furthermore, BmToll11, BmToll9-1, and five BmSpzs genes were found to be significantly upregulated in B. mori infected by Escherichia coli and Staphylococcus aureus. Additionally, the yeast two-hybrid assay results confirmed that BmSpz2, but not other BmSpzs, could interact with both BmToll11 and BmToll9-1. These findings suggest that the activated BmSpz2 can bind with BmToll11 and BmToll9-1 to induce the expression of AMPs after the silkworm is infected by pathogens.
Collapse
|
12
|
Sowa-Jasiłek A, Zdybicka-Barabas A, Stączek S, Pawlikowska-Pawlęga B, Grygorczuk-Płaneta K, Skrzypiec K, Gruszecki WI, Mak P, Cytryńska M. Antifungal Activity of Anionic Defense Peptides: Insight into the Action of Galleria mellonella Anionic Peptide 2. Int J Mol Sci 2020; 21:ijms21061912. [PMID: 32168818 PMCID: PMC7139982 DOI: 10.3390/ijms21061912] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 01/27/2023] Open
Abstract
Anionic antimicrobial peptides constitute an integral component of animal innate immunity, however the mechanisms of their antifungal activity are still poorly understood. The action of a unique Galleria mellonella anionic peptide 2 (AP2) against fungal pathogen Candida albicans was examined using different microscopic techniques and Fourier transform infrared (FTIR) spectroscopy. Although the exposure to AP2 decreased the survival rate of C. albicans cells, the viability of protoplasts was not affected, suggesting an important role of the fungal cell wall in the peptide action. Atomic force microscopy showed that the AP2-treated cells became decorated with numerous small clods and exhibited increased adhesion forces. Intensified lomasome formation, vacuolization, and partial distortion of the cell wall was also observed. FTIR spectroscopy suggested AP2 interactions with the cell surface proteins, leading to destabilization of protein secondary structures. Regardless of the anionic character of the whole AP2 molecule, bioinformatics analyses revealed the presence of amphipathic α-helices with exposed positively charged lysine residues. High content of the α-helical structure was confirmed after deconvolution of the IR absorption spectrum and during circular dichroism measurements. Our results indicated that the antimicrobial properties of G. mellonella AP2 rely on the same general characteristics found in cationic defense peptides.
Collapse
Affiliation(s)
- Aneta Sowa-Jasiłek
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.S.-J.); (A.Z.-B.); (S.S.); (K.G.-P.)
| | - Agnieszka Zdybicka-Barabas
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.S.-J.); (A.Z.-B.); (S.S.); (K.G.-P.)
| | - Sylwia Stączek
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.S.-J.); (A.Z.-B.); (S.S.); (K.G.-P.)
| | - Bożena Pawlikowska-Pawlęga
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland;
| | - Katarzyna Grygorczuk-Płaneta
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.S.-J.); (A.Z.-B.); (S.S.); (K.G.-P.)
| | - Krzysztof Skrzypiec
- Analytical Laboratory, Faculty of Chemistry, Maria Curie-Skłodowska University, M.C. Skłodowska Square 5, 20-031 Lublin, Poland;
| | - Wiesław I. Gruszecki
- Department of Biophysics, Institute of Physics, Faculty of Mathematics, Physics and Informatics, Maria Curie-Skłodowska University, M.C. Skłodowska Square 1, 20-031 Lublin, Poland;
| | - Paweł Mak
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 Street, 30-387 Krakow, Poland;
| | - Małgorzata Cytryńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.S.-J.); (A.Z.-B.); (S.S.); (K.G.-P.)
- Correspondence:
| |
Collapse
|
13
|
Nesa J, Sadat A, Buccini DF, Kati A, Mandal AK, Franco OL. Antimicrobial peptides fromBombyx mori: a splendid immune defense response in silkworms. RSC Adv 2020; 10:512-523. [PMID: 35492565 PMCID: PMC9047522 DOI: 10.1039/c9ra06864c] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/15/2019] [Indexed: 01/27/2023] Open
Abstract
Bombyx mori L., a primary producer of silk, is the main tool in the sericulture industry and provides the means of livelihood to a large number of people. Silk cocoon crop losses due to bacterial infection pose a major threat to the sericulture industry. Bombyx mori L., a silkworm of the mulberry type, has a sophisticated inherent innate immune mechanism to combat such invasive pathogens. Among all the components in this defense system, antimicrobial peptides (AMPs) are notable due to their specificity towards the invading pathogens without harming the normal host cells. Bombyx mori L. so far has had AMPs identified that belong to six different families, namely cecropin, defensin, moricin, gloverin, attacin and lebocin, which are produced by the Toll and immune deficiency (IMD) pathways. Their diverse modes of action depend on microbial pathogens and are still under investigation. This review examines the recent progress in understanding the immune defense mechanism of Bombyx mori based on AMPs. AMPs produced by B. mori induced by microbial challenge in the fat body.![]()
Collapse
Affiliation(s)
- Jannatun Nesa
- Chemical Biology Laboratory
- Department of Sericulture
- Raiganj University
- India
| | - Abdul Sadat
- Insect Ecology and Conservation Biology Laboratory
- Department of Sericulture
- Raiganj University
- India
| | - Danieli F. Buccini
- S-INOVA Biotech, Post-Graduate Program in Biotechnology
- Catholic University Dom Bosco
- Campo Grande
- Brazil
| | - Ahmet Kati
- Biotechnology Department
- Institution of Health Science
- University of Health Science
- Istanbul
- Turkey
| | - Amit K. Mandal
- Chemical Biology Laboratory
- Department of Sericulture
- Raiganj University
- India
- Centre for Nanotechnology Sciences
| | - Octavio L. Franco
- S-INOVA Biotech, Post-Graduate Program in Biotechnology
- Catholic University Dom Bosco
- Campo Grande
- Brazil
- Center of Proteomic and Biochemical Analysis
| |
Collapse
|
14
|
Abstract
The composition of insect hemolymph can change depending on many factors, e.g. access to nutrients, stress conditions, and current needs of the insect. In this chapter, insect immune-related polypeptides, which can be permanently or occasionally present in the hemolymph, are described. Their division into peptides or low-molecular weight proteins is not always determined by the length or secondary structure of a given molecule but also depends on the mode of action in insect immunity and, therefore, it is rather arbitrary. Antimicrobial peptides (AMPs) with their role in immunity, modes of action, and classification are presented in the chapter, followed by a short description of some examples: cecropins, moricins, defensins, proline- and glycine-rich peptides. Further, we will describe selected immune-related proteins that may participate in immune recognition, may possess direct antimicrobial properties, or can be involved in the modulation of insect immunity by both abiotic and biotic factors. We briefly cover Fibrinogen-Related Proteins (FREPs), Down Syndrome Cell Adhesion Molecules (Dscam), Hemolin, Lipophorins, Lysozyme, Insect Metalloproteinase Inhibitor (IMPI), and Heat Shock Proteins. The reader will obtain a partial picture presenting molecules participating in one of the most efficient immune strategies found in the animal world, which allow insects to inhabit all ecological land niches in the world.
Collapse
Affiliation(s)
- Iwona Wojda
- Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland.
| | - Małgorzata Cytryńska
- Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Agnieszka Zdybicka-Barabas
- Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Jakub Kordaczuk
- Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
15
|
Liu SH, Li HF, Yang Y, Wei D, Jiang HB, Dou W, Yuan GR, Wang JJ. Antimicrobial peptide gene BdPho responds to peptidoglycan infection and mating stimulation in oriental fruit fly, Bactrocera dorsalis (Hendel). AMB Express 2018; 8:5. [PMID: 29327267 PMCID: PMC5764898 DOI: 10.1186/s13568-017-0533-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/29/2017] [Indexed: 11/10/2022] Open
Abstract
Phormicins belong to defensin family, which are important antimicrobial peptides (AMPs) in insects. These AMPs are inducible upon challenging by immune triggers. In the present study, we identified the cDNA of a phormicin gene (BdPho) in the oriental fruit fly, Bactrocera dorsalis (Hendel), a ruinous agricultural pest causing great economic losses to fruits and vegetables. The cDNA of BdPho contains a 282 bp open reading frame encoding 93 amino acid residues, and the predicted molecular weight and isoelectric point of BdPho peptide were 9.83 kDa and 7.54, respectively. Quantitative real-time PCR analyses showed that the transcription level of BdPho was the highest in adult during different developmental stages and was the highest in abdomen among adult tagmata. Moreover, BdPho was highly expressed in fat body among different tissues, both in female and male adult. The mRNA level of BdPho was significantly up-regulated to 7.46- and 14.53-fold at 3 and 6 h after the insects were challenged with peptidoglycans from Escherichia coli (PGN-EB), respectively, suggesting its antimicrobial activity against Gram-negative microorganisms. Furthermore, the expression level of BdPho was significantly up-regulated to 3.83-fold after mating, suggesting that female adults might enhance their immunity by up-regulating the expression level of BdPho during mating. These results firstly describe the basic properties of the phormicin gene from B. dorsalis, and lay the foundation for investigating functional properties of AMPs and exploring the molecular mechanisms in the immune system.
Collapse
|
16
|
Koehbach J. Structure-Activity Relationships of Insect Defensins. Front Chem 2017; 5:45. [PMID: 28748179 PMCID: PMC5506212 DOI: 10.3389/fchem.2017.00045] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/12/2017] [Indexed: 11/13/2022] Open
Abstract
Insects make up the largest and most diverse group of organisms on earth with several million species to exist in total. Considering the sheer number of insect species and the vast variety of ways they interact with their environment through chemistry, it is clear that they have significant potential as a source of new lead molecules. They have adapted to a range of ecological habitats and exhibit a symbiotic lifestyle with various microbes such as bacteria and fungi. Accordingly, numerous antimicrobial compounds have been identified including for example defensin peptides. Insect defensins were found to have broad-spectrum activity against various gram-positive/negative bacteria as well as fungi. They exhibit a unique structural topology involving the complex arrangement of three disulfide bonds as well as an alpha helix and beta sheets, which is known as cysteine-stabilized αβ motif. Their stability and amenability to peptide engineering make them promising candidates for the development of novel antibiotics lead molecules. This review highlights the current knowledge regarding the structure-activity relationships of insect defensin peptides and provides basis for future studies focusing on the rational design of novel cysteine-rich antimicrobial peptides.
Collapse
Affiliation(s)
- Johannes Koehbach
- School of Biomedical Sciences, University of QueenslandSt. Lucia, QLD, Australia
| |
Collapse
|
17
|
Liu SH, Wei D, Yuan GR, Jiang HB, Dou W, Wang JJ. Antimicrobial peptide gene cecropin-2 and defensin respond to peptidoglycan infection in the female adult of oriental fruit fly, Bactrocera dorsalis (Hendel). Comp Biochem Physiol B Biochem Mol Biol 2017; 206:1-7. [DOI: 10.1016/j.cbpb.2017.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/06/2017] [Accepted: 01/10/2017] [Indexed: 12/31/2022]
|
18
|
Gu Z, Li F, Hu J, Ding C, Wang C, Tian J, Xue B, Xu K, Shen W, Li B. Sublethal dose of phoxim and Bombyx mori nucleopolyhedrovirus interact to elevate silkworm mortality. PEST MANAGEMENT SCIENCE 2017; 73:554-561. [PMID: 27220913 DOI: 10.1002/ps.4326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/29/2016] [Accepted: 05/22/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Silkworm (Bombyx mori) is an economically important insect. It is relatively less resistant to certain chemicals and environment exposures such as pesticides and pathogens. After pesticide exposures, the silkworms are more susceptible to microbial infections. The mechanism underlying the susceptibility might be related to immune response and oxidative stress. RESULTS A sublethal dose of phoxim combined with Bombyx mori nucleopolyhedrovirus (BmNPV) elevated the silkworm mortality at 96 h. We found a higher content of H2 O2 and increased levels of genes related to oxidative stress and immune response after treatment with a sublethal dose of phoxim for 24 h or 48 h. However, such response decreased with longer pesticide treatment. Mortality increased by 44% when B. mori was exposed to combined treatment with BmNPV and phoxim rather than BmNPV alone. The level of examined immune-related and oxidative-stress-related genes significantly decreased in the combined treatment group compared with the BmNPV group. Our results indicated that, with long-term exposure to pesticides such as OPs, even at sublethal dose, the oxidative stress response and immune responses in silkworm were inhibited, which may lead to further immune impairment and accumulation of oxidative stress, resulting in susceptibility to the virus and harm to the silkworm. CONCLUSION Our study provided insights for understanding the susceptibility to pathogen after pesticide exposures, which may promote the development of better pesticide controls to avoid significant economic losses. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- ZhiYa Gu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
| | - FanChi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
| | - JingSheng Hu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Chao Ding
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Chaoqian Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
| | - JiangHai Tian
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Bin Xue
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
| | - KaiZun Xu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
| | - WeiDe Shen
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
19
|
Xu XX, Zhang YQ, Freed S, Yu J, Gao YF, Wang S, Ouyang LN, Ju WY, Jin FL. An anionic defensin from Plutella xylostella with potential activity against Bacillus thuringiensis. BULLETIN OF ENTOMOLOGICAL RESEARCH 2016; 106:790-800. [PMID: 27443911 DOI: 10.1017/s0007485316000596] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Insect defensins, are cationic peptides that play an important role in immunity against microbial infection. In the present study, an anionic defensin from Plutella xylostella, (designated as PxDef) was first cloned and characterized. Amino acid sequence analysis showed that the mature peptide owned characteristic six-cysteine motifs with predicted isoelectric point of 5.57, indicating an anionic defensin. Quantitative real-time polymerase chain reaction analysis showed that PxDef was significantly induced in epidermis, fat body, midgut and hemocytes after injection of heat-inactivated Bacillus thuringiensis, while such an induction was delayed by the injection of live B. thuringiensis in the 4th instar larvae of P. xylostella. Knocking down the expression of nuclear transcription factor Dorsal in P. xylostella by RNA interference significantly decreased the mRNA level of PxDef, and increased the sensitivity of P. xylostella larvae to the infection by live B. thuringiensis. The purified recombinant mature peptide (PxDef) showed higher activity against Gram-positive bacteria, with the minimum inhibition concentrations of 1.6 and 2.6 µM against B. thuringiensis and Bacillus subtilis, respectively. To our knowledge, this is the first report about an anionic PxDef, which may play an important role in the immune system of P. xylostella against B. thuringiensis.
Collapse
Affiliation(s)
- X-X Xu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province,College of Agriculture, South China Agricultural University,Guangzhou 510642,P. R. China
| | - Y-Q Zhang
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province,College of Agriculture, South China Agricultural University,Guangzhou 510642,P. R. China
| | - S Freed
- Department of Entomology,Faculty of Agricultural Sciences and Technology,Bahauddin Zakariya University,Multan 60800,Pakistan
| | - J Yu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province,College of Agriculture, South China Agricultural University,Guangzhou 510642,P. R. China
| | - Y-F Gao
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province,College of Agriculture, South China Agricultural University,Guangzhou 510642,P. R. China
| | - S Wang
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province,College of Agriculture, South China Agricultural University,Guangzhou 510642,P. R. China
| | - L-N Ouyang
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province,College of Agriculture, South China Agricultural University,Guangzhou 510642,P. R. China
| | - W-Y Ju
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province,College of Agriculture, South China Agricultural University,Guangzhou 510642,P. R. China
| | - F-L Jin
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province,College of Agriculture, South China Agricultural University,Guangzhou 510642,P. R. China
| |
Collapse
|
20
|
Ferraresso S, Bonaldo A, Parma L, Buonocore F, Scapigliati G, Gatta PP, Bargelloni L. Ontogenetic onset of immune-relevant genes in the common sole (Solea solea). FISH & SHELLFISH IMMUNOLOGY 2016; 57:278-292. [PMID: 27554393 DOI: 10.1016/j.fsi.2016.08.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/25/2016] [Accepted: 08/19/2016] [Indexed: 06/06/2023]
Abstract
Fish are free-living organisms since initial stages of development and are exposed to numerous pathogens before their lymphoid organs have matured and adaptive immunity has developed. Susceptibility to diseases and juvenile mortality represent key critical factors for aquaculture. In this context, the characterization of the appearance kinetics of the immune system key members will be useful in understanding the ability of a particular species in generating immune protection against invading pathogens at different developmental stages. The present study characterized, for the first time, the transcriptional onset of un-explored relevant genes of both innate and adaptive immune system during the Solea solea ontogenesis. Gene expression profiles of immune relevant genes was investigated, by means of DNA microarray, in ten developmental stages, from hatching (1 day post-hatching, dph) to accomplishment of the juvenile form (33 dph). The obtained results revealed that transcripts encoding relevant members of innate immune repertoire, such as lysozyme, AMPs (hepcidin, β-defensin), PPRs and complement components are generally characterized by high expression levels at first stages (i.e. hatch and first feeding) indicating protection from environmental pathogens even at early development. Transcription of adaptive immune genes (i.e. Class I and class II MHC, TCRs) differs from that of the innate immune system. Their onset coincides with metamorphosis and larvae-to-juvenile transition, and likely overlaps with the appearance and maturation of the main lymphoid organs. Finally, data collected suggest that at the end of metamorphosis S. solea cell-mediated immune system hasn't still undergone full maturation.
Collapse
Affiliation(s)
- Serena Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Alessio Bonaldo
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy.
| | - Luca Parma
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy.
| | - Francesco Buonocore
- Department for Innovation in Biological, Agro-food and Forest Systems, Tuscia University, Via San Camillo de Lellis s.n.c., 01100 Viterbo, Italy.
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agro-food and Forest Systems, Tuscia University, Via San Camillo de Lellis s.n.c., 01100 Viterbo, Italy.
| | - Pier Paolo Gatta
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy.
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| |
Collapse
|
21
|
Lv M, Mohamed AA, Zhang L, Zhang P, Zhang L. A Family of CSαβ Defensins and Defensin-Like Peptides from the Migratory Locust, Locusta migratoria, and Their Expression Dynamics during Mycosis and Nosemosis. PLoS One 2016; 11:e0161585. [PMID: 27556587 PMCID: PMC4996505 DOI: 10.1371/journal.pone.0161585] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/08/2016] [Indexed: 11/23/2022] Open
Abstract
Insect defensins are effector components of the innate defense system. During infection, these peptides may play a role in the control of pathogens by providing protective antimicrobial barriers between epithelial cells and the hemocoel. The cDNAs encoding four defensins of the migratory locust, Locusta migratoria, designated LmDEF 1, 3–5, were identified for the first time by transcriptome-targeted analysis. Three of the members of this CSαβ defensin family, LmDEF 1, 3, and 5, were detected in locust tissues. The pro regions of their sequences have little-shared identities with other insect defensins, though the predicted mature peptides align well with other insect defensins. Phylogenetic analysis indicates a completely novel position of both LmDEF 1 and 3, compared to defensins from hymenopterans. The expression patterns of the genes encoding LmDEFs in the fat body and salivary glands were studied in response to immune-challenge by the microsporidian pathogen Nosema locustae and the fungus Metarhizium anisopliae after feeding or topical application, respectively. Focusing on Nosema-induced immunity, qRT-PCR was employed to quantify the transcript levels of LmDEFs. A higher transcript abundance of LmDEF5 was distributed more or less uniformly throughout the fat body along time. A very low baseline transcription of both LmDEFs 1 and 3 in naïve insects was indicated, and that transcription increases with time or is latent in the fat body or salivary glands of infected nymphs. In the salivary glands, expression of LmDEF3 was 20-40-times higher than in the fat body post-microbial infection. A very low expression of LmDEF3 could be detected in the fat body, but eventually increased with time up to a maximum at day 15. Delayed induction of transcription of these peptides in the fat body and salivary glands 5–15 days post-activation and the differential expression patterns suggest that the fat body/salivary glands of this species are active in the immune response against pathogens. The ability of N. locustae to induce salivary glands as well as fat body expression of defensins raises the possibility that these AMPs might play a key role in the development and/or tolerance of parasitic infections.
Collapse
Affiliation(s)
- Mingyue Lv
- Department of Entomology, Key Lab for Biological Control of the Ministry of Agriculture, China Agricultural University, Beijing, P. R. China
| | - Amr Ahmed Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | - Liwei Zhang
- Department of Entomology, Key Lab for Biological Control of the Ministry of Agriculture, China Agricultural University, Beijing, P. R. China
| | - Pengfei Zhang
- Department of Entomology, Key Lab for Biological Control of the Ministry of Agriculture, China Agricultural University, Beijing, P. R. China
| | - Long Zhang
- Department of Entomology, Key Lab for Biological Control of the Ministry of Agriculture, China Agricultural University, Beijing, P. R. China
- * E-mail:
| |
Collapse
|
22
|
Bombyx mori cecropin A has a high antifungal activity to entomopathogenic fungus Beauveria bassiana. Gene 2016; 583:29-35. [DOI: 10.1016/j.gene.2016.02.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/26/2016] [Accepted: 02/28/2016] [Indexed: 11/18/2022]
|
23
|
Park SI, Kim JW, Yoe SM. Purification and characterization of a novel antibacterial peptide from black soldier fly (Hermetia illucens) larvae. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 52:98-106. [PMID: 25956195 DOI: 10.1016/j.dci.2015.04.018] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/23/2015] [Accepted: 04/30/2015] [Indexed: 06/04/2023]
Abstract
In this study, we induced and purified a novel antimicrobial peptide exhibiting activity against Gram-positive bacteria from the immunized hemolymph of Hermetia illucens larvae. The immunized hemolymph was extracted, and the novel defensin-like peptide 4 (DLP4) was purified using solid-phase extraction and reverse-phase chromatography. The purified DLP4 demonstrated a molecular weight of 4267 Da, as determined using the matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) method. From analysis of DLP4 by N-terminal amino acid sequencing using Edman degradation, combined with MALDI-TOF and rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR), the amino acid sequence of the mature peptide was determined to be ATCDLLSPFKVGHAACAAHCIARGKRGGWCDKRAVCNCRK. In NCBI BLAST, the amino acid sequence of DPL4 was found to be 75% identical to the Phlebotomus duboscqi defensin. Analysis of the minimal inhibitory concentration (MIC) revealed that DLP4 have antibacterial effects against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA). The expression of DLP4 transcripts in several tissues after bacterial challenge was measured by quantitative real-time PCR. Expression of the DLP4 gene hardly occurred throughout the body before immunization, but was mostly evident in the fat body after immunization.
Collapse
Affiliation(s)
- Soon-Ik Park
- Department of Biological Sciences, Dankook University, Cheonan 330-714, Republic of Korea
| | - Jong-Wan Kim
- Department of Nanobiomedical Science, Dankook University Graduate School, Cheonan 330-714, Republic of Korea; Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 330-714, Republic of Korea
| | - Sung Moon Yoe
- Department of Biological Sciences, Dankook University, Cheonan 330-714, Republic of Korea.
| |
Collapse
|
24
|
Crava CM, Jakubowska AK, Escriche B, Herrero S, Bel Y. Dissimilar Regulation of Antimicrobial Proteins in the Midgut of Spodoptera exigua Larvae Challenged with Bacillus thuringiensis Toxins or Baculovirus. PLoS One 2015; 10:e0125991. [PMID: 25993013 PMCID: PMC4436361 DOI: 10.1371/journal.pone.0125991] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/27/2015] [Indexed: 01/24/2023] Open
Abstract
Antimicrobial peptides (AMPs) and lysozymes are the main effectors of the insect immune system, and they are involved in both local and systemic responses. Among local responses, midgut immune reaction plays an important role in fighting pathogens that reach the insect body through the oral route, as do many microorganisms used in pest control. Under this point of view, understanding how insects defend themselves locally during the first phases of infections caused by food-borne pathogens is important to further improve microbial control strategies. In the present study, we analyzed the transcriptional response of AMPs and lysozymes in the midgut of Spodoptera exigua (Lepidoptera: Noctuidae), a polyphagous pest that is commonly controlled by products based on Bacillus thuringiensis (Bt) or baculovirus. First, we comprehensively characterized the transcripts encoding AMPs and lysozymes expressed in S. exigua larval midgut, identifying 35 transcripts that represent the S. exigua arsenal against microbial infection. Secondly, we analyzed their expression in the midgut after ingestion of sub-lethal doses of two different pore-forming B. thuringiensis toxins, Cry1Ca and Vip3Aa, and the S. exigua nucleopolyhedrovirus (SeMNPV). We observed that both Bt toxins triggered a similar, wide and in some cases high transcriptional activation of genes encoding AMPs and lysozymes, which was not reflected in the activation of the classical systemic immune-marker phenoloxidase in hemolymph. Baculovirus ingestion resulted in the opposed reaction: Almost all transcripts coding for AMPs and lysozymes were down-regulated or not induced 96 hours post infection. Our results shed light on midgut response to different virulence factors or pathogens used nowadays as microbial control agents and point out the importance of the midgut immune response contribution to the larval immunity.
Collapse
Affiliation(s)
- Cristina M. Crava
- Department of Genetics, University of Valencia, Burjassot, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), University of Valencia, Burjassot, Valencia, Spain
| | - Agata K. Jakubowska
- Department of Genetics, University of Valencia, Burjassot, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), University of Valencia, Burjassot, Valencia, Spain
| | - Baltasar Escriche
- Department of Genetics, University of Valencia, Burjassot, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), University of Valencia, Burjassot, Valencia, Spain
| | - Salvador Herrero
- Department of Genetics, University of Valencia, Burjassot, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), University of Valencia, Burjassot, Valencia, Spain
| | - Yolanda Bel
- Department of Genetics, University of Valencia, Burjassot, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), University of Valencia, Burjassot, Valencia, Spain
- * E-mail:
| |
Collapse
|
25
|
Chen Z, He F, Xiao Y, Liu C, Li J, Yang Y, Ai H, Peng J, Hong H, Liu K. Endogenous expression of a Bt toxin receptor in the Cry1Ac-susceptible insect cell line and its synergistic effect with cadherin on cytotoxicity of activated Cry1Ac. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 59:1-17. [PMID: 25662100 DOI: 10.1016/j.ibmb.2015.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 01/18/2015] [Accepted: 01/23/2015] [Indexed: 06/04/2023]
Abstract
Although many insect cell lines derived from various tissues are available, it is unclear whether endogenous receptors of Bacillus thuringiensis (Bt) crystal toxins are expressed in these cell lines. In the present study, we demonstrated that the ovaries-derived Spodoptera litura Sl-HP cell line was susceptible to activated Cry1Ac although larvae of S. litura are not susceptible to the toxin. Assays of the transcriptome revealed that thirteen ATP-binding cassette transporter genes (ABC) were expressed at different levels in this cell line. Of these, the SlABCC3 shared 52-55% amino acid sequence identity with the known Bt toxin receptor ABCC2. RNAi-mediated knockdown targeting SlABCC3 significantly decreased the susceptibility of Sl-HP cells to activated Cry1Ac. Over-expression of the gene strongly increased the susceptibility of Trichoplusia ni Hi5 cells to the toxin. Not only was SlABCC3 comparable to the heterologously expressed Helicoverpa armigera Hacadherin on the receptor-mediated cytotoxicity of activated Cry1Ac to Hi5 cells, but also SlABCC3 and Hacadherin had a strong synergistic effect on cytotoxicity of activated Cry1Ac. These results suggested that Bt toxin receptors-expressing insect cell lines can be used as an alternative model for evaluating cytotoxicity of Bt toxins and studying their mechanisms of action.
Collapse
Affiliation(s)
- Zuwen Chen
- School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Fei He
- School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Yutao Xiao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Chenxi Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jianghuai Li
- School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Yongbo Yang
- School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Hui Ai
- School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Jianxin Peng
- School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Huazhu Hong
- School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Kaiyu Liu
- School of Life Sciences, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
26
|
The first anionic defensin from amphibians. Amino Acids 2015; 47:1301-8. [DOI: 10.1007/s00726-015-1963-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/10/2015] [Indexed: 12/30/2022]
|
27
|
Sowa-Jasiłek A, Zdybicka-Barabas A, Stączek S, Wydrych J, Mak P, Jakubowicz T, Cytryńska M. Studies on the role of insect hemolymph polypeptides: Galleria mellonella anionic peptide 2 and lysozyme. Peptides 2014; 53:194-201. [PMID: 24472857 DOI: 10.1016/j.peptides.2014.01.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/10/2014] [Accepted: 01/10/2014] [Indexed: 11/26/2022]
Abstract
The lysozymes are well known antimicrobial polypeptides exhibiting antibacterial and antifungal activities. Their antibacterial potential is related to muramidase activity and non-enzymatic activity resembling the mode of action of cationic defense peptides. However, the mechanisms responsible for fungistatic and/or fungicidal activity of lysozyme are still not clear. In the present study, the anti-Candida albicans activity of Galleria mellonella lysozyme and anionic peptide 2 (AP2), defense factors constitutively present in the hemolymph, was examined. The lysozyme inhibited C. albicans growth in a dose-dependent manner. The decrease in the C. albicans survival rate caused by the lysozyme was accompanied by a considerable reduction of the fungus metabolic activity, as revealed by LIVE/DEAD staining. In contrast, although AP2 reduced C. albicans metabolic activity, it did not influence its survival rate. Our results suggest fungicidal action of G. mellonella lysozyme and fungistatic activity of AP2 toward C. albicans cells. In the presence of AP2, the anti-C. albicans activity of G. mellonella lysozyme increased. Moreover, when the fungus was incubated with both defense factors, true hyphae were observed besides pseudohyphae and yeast-like C. albicans cells. Atomic force microscopy analysis of the cells exposed to the lysozyme and/or AP2 revealed alterations in the cell surface topography and properties in comparison with the control cells. The results indicate synergistic action of G. mellonella AP2 and lysozyme toward C. albicans. The presence of both factors in the hemolymph of naive larvae suggests their important role in the early stages of immune response against fungi in G. mellonella.
Collapse
Affiliation(s)
- Aneta Sowa-Jasiłek
- Department of Immunobiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Agnieszka Zdybicka-Barabas
- Department of Immunobiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Sylwia Stączek
- Department of Immunobiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Jerzy Wydrych
- Department of Comparative Anatomy and Anthropology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Paweł Mak
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 St., 30-387 Krakow, Poland
| | - Teresa Jakubowicz
- Department of Immunobiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Małgorzata Cytryńska
- Department of Immunobiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| |
Collapse
|
28
|
Identification of immune response-related genes in the Chinese oak silkworm, Antheraea pernyi by suppression subtractive hybridization. J Invertebr Pathol 2013; 114:313-23. [PMID: 24076149 DOI: 10.1016/j.jip.2013.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 08/26/2013] [Accepted: 09/05/2013] [Indexed: 12/21/2022]
Abstract
Insects possess an innate immune system that responds to invading microorganisms. In this study, a subtractive cDNA library was constructed to screen for immune response-related genes in the fat bodies of Antheraea pernyi (Lepidoptera: Saturniidae) pupa challenged with Escherichia coli. Four hundred putative EST clones were identified by suppression subtractive hybridization (SSH), including 50 immune response-related genes, three cytoskeleton genes, eight cell cycle and apoptosis genes, five respiration and energy metabolism genes, five transport genes, 40 metabolism genes, ten stress response genes, four transcription and translation regulation genes and 77 unknown genes. To verify the reliability of the SSH data, the transcription of a set of randomly selected immune response-related genes were confirmed by semi-quantitative reverse transcription-PCR (RT-PCR) and real-time quantitative reverse transcription-PCR (qRT-PCR). These identified immune response-related genes provide insight into understanding the innate immunity in A. pernyi.
Collapse
|
29
|
Liang T, Wang DD, Zhang GR, Wei KJ, Wang WM, Zou GW. Molecular cloning and expression analysis of two β-defensin genes in the blunt snout bream (Megalobrama amblycephala). Comp Biochem Physiol B Biochem Mol Biol 2013; 166:91-8. [PMID: 23876385 DOI: 10.1016/j.cbpb.2013.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 07/15/2013] [Accepted: 07/15/2013] [Indexed: 11/16/2022]
Abstract
β-Defensins are a group of cysteine-rich, cationic antimicrobial peptides that play important roles in innate immune system against pathogenic microbes invading. In this study, the part-length cDNA sequences of two β-defensin genes (maΒD-1, maΒD-2) in blunt snout bream (Megalobrama amblycephala) were identified. Homology analysis showed that the cDNA sequences of maΒD-1 and maΒD-2 had high similarities to those in common carp and zebrafish. Real-time quantitative PCR results exhibited that expression level of maΒD-1 in juvenile tissues was the highest in skin, followed by blood and liver, whereas maΒD-2 was lowly expressed in liver, kidney, brain and foregut. In the early development period, fertilized eggs to 31-day post-hatching (dph) larvae, the expression levels of maΒD-1 were higher at the stage from heart beat stage to 3 dph with the highest value at 1 dph, whereas maΒD-2 was expressed higher at fertilized eggs and late cleavage stages. Following bacterial stimulation in vivo by Aeromonas sobria, maΒD-2 expressions were significantly up-regulated in liver, skin, gill, and foregut of juveniles, and maΒD-1 expressions were significantly up-regulated in liver and skin. The results suggest that maΒD-1 and maΒD-2 may play important roles in protecting blunt snout bream embryos, fry and juveniles from pathogenic microbe invading.
Collapse
Affiliation(s)
- Tao Liang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | | | | | | | | | | |
Collapse
|
30
|
Teixeira ML, Rosa AD, Brandelli A. Characterization of an antimicrobial peptide produced by Bacillus subtilis subsp. spizezinii showing inhibitory activity towards Haemophilus parasuis. MICROBIOLOGY-SGM 2013; 159:980-988. [PMID: 23519163 DOI: 10.1099/mic.0.062828-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Haemophilus parasuis is the pathogen that causes Glässer's disease, a major illness affecting young pigs. The aim of this work was to investigate the antagonistic activity of antimicrobial substances produced by Bacillus species against H. parasuis. Among the tested strains, only Bacillus subtilis ATCC 6633 inhibited H. parasuis growth. The antibacterial substance was purified by ammonium sulfate precipitation, gel filtration chromatography on Sephadex G-50 and ion-exchange chromatography on DEAE-cellulose. The purification was about 100-fold with a yield of 0.33 %. The purified substance was resistant up to 80 °C and pH ranging 3-7, but the substance lost its activity when it was treated with proteases. The peptide had a molecular mass of 1083 Da and its sequence was determined by MS as NRWCFAGDD, which showed no homology with other known antimicrobial peptides. The complete inhibition of H. parasuis growth was observed at 20 µg peptide ml(-1) after 20 min of exposure. The peptide obtained by chemical synthesis also showed antimicrobial activity on H. parasuis. The identification of antimicrobial substances that can be effective against H. parasuis is very relevant to combat this pathogen that causes important losses in swine production.
Collapse
Affiliation(s)
- Mário Lettieri Teixeira
- Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos, ICTA, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brasil
| | - Andréia Dalla Rosa
- Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos, ICTA, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brasil
| | - Adriano Brandelli
- Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos, ICTA, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brasil
| |
Collapse
|
31
|
d'Alençon E, Bierne N, Girard PA, Magdelenat G, Gimenez S, Seninet I, Escoubas JM. Evolutionary history of x-tox genes in three lepidopteran species: origin, evolution of primary and secondary structure and alternative splicing, generating a repertoire of immune-related proteins. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:54-64. [PMID: 23142192 DOI: 10.1016/j.ibmb.2012.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 09/24/2012] [Accepted: 10/30/2012] [Indexed: 06/01/2023]
Abstract
The proteins of the X-tox family have imperfectly conserved tandem repeats of several defensin-like motifs known as cysteine-stabilized αβ (CS-αβ) motifs. These immune-related proteins are inducible and expressed principally in hemocytes, but they have lost the antimicrobial properties of the ancestral defensins from which they evolved. We compared x-tox gene structure and expression in three lepidopteran species (Spodoptera frugiperda, Helicoverpa armigera and Bombyx mori). Synteny and phylogenetic analyses showed that the x-tox exons encoding CS-αβ motifs were phylogenetically closely related to defensin genes mapping to chromosomal positions close to the x-tox genes. We were able to define two groups of paralogous x-tox exons (three in Noctuids) that each followed the expected species tree. These results suggest that the ancestor of the three species already possessed an x-tox gene with at least two proto-domains, and an additional duplication/fusion should have occurred in the ancestor of the two noctuid species. An expansion of the number of exons subsequently occurred in each lineage. Alternatively, the proto x-tox gene possessed more copy and each group of x-tox domains might undergo concerted evolution through gene conversion. Accelerated protein evolution was detected in x-tox domains when compared to related defensins, concomitantly to multiplication of exons and/or the possible activation of concerted evolution. The x-tox genes of the three species have similar structural organizations, with repeat motifs composed of CS-αβ-encoding exons flanked by introns in phase 1. Diverse mechanisms underlie this organization: (i) the acquisition of new repeat motifs, (ii) the duplication of preexisting repeat motifs and (iii) the duplication of modules. A comparison of gDNA and cDNA structures showed that alternative splicing results in the production of multiple X-tox protein isoforms from the x-tox genes. Differences in the number and sequence of CS-αβ motifs in these isoforms were found between species, but also between individuals of the same species. Thus, our analysis of the genetic organization and expression of x-tox genes in three lepidopteran species suggests a rapid evolution of the organization of these genes.
Collapse
Affiliation(s)
- Emmanuelle d'Alençon
- INRA, UMR 1333 Laboratoire Diversité, Génomes & Interactions Microorganismes - Insectes (DGIMI), CC54, 2 place E. Bataillon, 34095 Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Zdybicka-Barabas A, Mak P, Klys A, Skrzypiec K, Mendyk E, Fiołka MJ, Cytryńska M. Synergistic action of Galleria mellonella anionic peptide 2 and lysozyme against Gram-negative bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2623-35. [PMID: 22705262 DOI: 10.1016/j.bbamem.2012.06.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/15/2012] [Accepted: 06/06/2012] [Indexed: 12/13/2022]
Abstract
Lysozyme and antimicrobial peptides are key factors of the humoral immune response in insects. In the present work lysozyme and anionic defense peptide (GMAP2) were isolated from the hemolymph of the greater wax moth Galleria mellonella and their antibacterial activity was investigated. Adsorption of G. mellonella lysozyme on the cell surface of Gram-positive and Gram-negative bacteria was demonstrated using immunoblotting with anti-G. mellonella lysozyme antibodies. Lysozyme effectively inhibited the growth of selected Gram-positive bacteria, which was accompanied by serious alterations of the cell surface, as revealed by atomic force microscopy (AFM) imaging. G. mellonella lysozyme used in concentrations found in the hemolymph of naive and immunized larvae, perforated also the Escherichia coli cell membrane and the level of such perforation was considerably increased by GMAP2. GMAP2 used alone did not perforate E. coli cells nor influence lysozyme muramidase activity. However, the peptide induced a decrease in the turgor pressure of the bacterial cell. Moreover, in the samples of bacteria treated with a mixture of lysozyme and GMAP2 the sodium chloride crystals were found, suggesting disturbance of ion transport across the membrane leading to cell disruption. These results clearly indicated the synergistic action of G. mellonella lysozyme and anionic peptide 2 against Gram-negative bacteria. The reported results suggested that, thanks to immune factors constitutively present in hemolymph, G. mellonella larvae are to some extent protected against infection caused by Gram-negative bacteria.
Collapse
Affiliation(s)
- Agnieszka Zdybicka-Barabas
- Department of Immunobiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | | | | | | | | | | | | |
Collapse
|
33
|
Seufi AM, Hafez EE, Galal FH. Identification, phylogenetic analysis and expression profile of an anionic insect defensin gene, with antibacterial activity, from bacterial-challenged cotton leafworm, Spodoptera littoralis. BMC Mol Biol 2011; 12:47. [PMID: 22067477 PMCID: PMC3234185 DOI: 10.1186/1471-2199-12-47] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 11/09/2011] [Indexed: 11/15/2022] Open
Abstract
Background Defensins are a well known family of cationic antibacterial peptides (AMPs) isolated from fungi, plants, insects, mussels, birds, and various mammals. They are predominantly active against gram (+) bacteria, and a few of them are also active against gram (-) bacteria and fungi. All insect defensins belonging to the invertebrate class have a consensus motif, C-X5-16-C-X3-C-X9-10-C-X4-7-CX1-C. Only seven AMPs have already been found in different lepidopteran species. No report was published on the isolation of defensin from the Egyptian cotton leafworm, Spodoptera littoralis. Results An anionic defensin, termed SpliDef, was isolated from the haemolymph of the cotton leafworm, S. littoralis, after bacterial challenge using differential display technique. Based on sequence analyses of the data, specific primers for full length and mature peptide of defensin were designed and successfully amplified 471 and 150 bp amplicons. The integration of the results revealed that the 471 bp-PCR product has one open reading frame (orf) of 303 bp long, including both start codon (AUG) and stop codon (UGA). The deduced peptide consists of a 23-residues signal peptide, a 27-residues propeptide and a 50-residues mature peptide with the conserved six-cysteine motif of insect defensins. Both haemolymph and expressed protein exhibited antibacterial activities comparable to positive control. The RT-qPCR indicated that it was more than 41-folds up-regulated at 48 h p.i. Conclusion Our results highlight an important immune role of the defensin gene in Spodoptera littoralis by cooperating with other AMPs to control bacterial infection.
Collapse
Affiliation(s)
- Alaaeddeen M Seufi
- Department of Entomology, Faculty of Science, Cairo university, 9 Gamaa St. Giza, 12613, Egypt.
| | | | | |
Collapse
|
34
|
Song KJ, Park BR, Kim SY, Park KS. Molecular characterization of anionic defensin-like peptide in immune response of silkworm, Bombyx mori L. (Lepidoptera). Genes Genomics 2010. [DOI: 10.1007/s13258-010-0038-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
35
|
Mak P, Zdybicka-Barabas A, Cytryńska M. A different repertoire of Galleria mellonella antimicrobial peptides in larvae challenged with bacteria and fungi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:1129-1136. [PMID: 20558200 DOI: 10.1016/j.dci.2010.06.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 06/08/2010] [Accepted: 06/09/2010] [Indexed: 05/29/2023]
Abstract
To date, functioning of insect humoral immune response is especially well described in Diptera. The mechanisms of pathogen recognition, activation of signaling pathways and regulation of antimicrobial defense peptide expression are relatively well known. The present paper demonstrates evidence that the immune system of the Lepidoptera moth, Galleria mellonella, is also able to distinguish between different classes of microorganisms and responds to the invading pathogen accordingly. G. mellonella larvae were challenged with Gram-negative and Gram-positive bacteria as well as with yeast and filamentous fungus cells. Subsequently, 24, 48 and 72 h after immunization, the concentrations of lysozyme and six defense peptides were determined in the hemolymph by the HPLC technique. The compounds studied demonstrated variability both in the kinetics of the increase as well as in the concentrations reached. The Gram-negative bacterium and filamentous fungus were particularly effective immunogens, especially affecting the levels of lysozyme, Galleria defensin, proline-rich peptide 2 and cecropin D-like peptide.
Collapse
Affiliation(s)
- Pawel Mak
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 St., 30-387 Krakow, Poland
| | | | | |
Collapse
|
36
|
Xia H, Wu C, Xu Q, Shi J, Feng F, Chen K, Yao Q, Wang Y, Wang L. Molecular cloning and characterization of lactate dehydrogenase gene 1 in the silkworm, Bombyx mori. Mol Biol Rep 2010; 38:1853-60. [DOI: 10.1007/s11033-010-0302-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 09/03/2010] [Indexed: 11/25/2022]
|
37
|
Wei ZJ, Yu M, Tang SM, Yi YZ, Hong GY, Jiang ST. Transcriptional regulation of the gene for prothoracicotropic hormone in the silkworm, Bombyx mori. Mol Biol Rep 2010; 38:1121-7. [PMID: 20563654 DOI: 10.1007/s11033-010-0209-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 06/11/2010] [Indexed: 11/30/2022]
Abstract
Prothoracicotropic hormone (PTTH) is one of key players in regulation of insect growth, molting, metamorphosis, diapause, and is expressed specifically in the two pairs of lateral PTTH-producing neurosecretory cells in the brain. Analysis of cis-regulatory elements of the PTTH promoter might elucidate the regulatory mechanism controlling PTTH expression. In this study, the PTTH gene promoter of Bombyx mori (Bom-PTTH) was cloned and sequenced. The cis-regulatory elements in Bom-PTTH gene promoter were predicted using Matinspector software, including myocyte-specific enhancer factor 2, pre-B-cell leukemia homeobox 1, TATA box, etc. Transient transfection assays using a series of fragments linked to the luciferase reporter gene indicated that the fragment spanning -110 to +33 bp of the Bom-PTTH promoter showed high ability to support reporter gene expression, but the region of +34 to +192 bp and -512 to -111 bp repressed the promoter activity in the BmN and Bm5 cell lines. Electrophoretic mobility shift assays demonstrated that the nuclear protein could specifically bind to the region spanning -124 to -6 bp of the Bom-PTTH promoter. Furthermore, we observed that the nuclear protein could specifically bind to the -59 to -30 bp region of the Bom-PTTH promoter. A classical TATA box, TATATAA, localized at positions -47 to -41 bp, which is a potential site for interaction with TATA box binding protein (TBP). Mutation of this TATA box resulted in no distinct binding band. Taken together, TATA box was involved in regulation of PTTH gene expression in B. mori.
Collapse
Affiliation(s)
- Zhao-Jun Wei
- Department of Biotechnology, Hefei University of Technology, Hefei, 230009, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
38
|
Tian C, Gao B, Fang Q, Ye G, Zhu S. Antimicrobial peptide-like genes in Nasonia vitripennis: a genomic perspective. BMC Genomics 2010; 11:187. [PMID: 20302637 PMCID: PMC2853521 DOI: 10.1186/1471-2164-11-187] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 03/19/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Antimicrobial peptides (AMPs) are an essential component of innate immunity which can rapidly respond to diverse microbial pathogens. Insects, as a rich source of AMPs, attract great attention of scientists in both understanding of the basic biology of the immune system and searching molecular templates for anti-infective drug design. Despite a large number of AMPs have been identified from different insect species, little information in terms of these peptides is available from parasitic insects. RESULTS By using integrated computational approaches to systemically mining the Hymenopteran parasitic wasp Nasonia vitripennis genome, we establish the first AMP repertoire whose members exhibit extensive sequence and structural diversity and can be distinguished into multiple molecular types, including insect and fungal defensin-like peptides (DLPs) with the cysteine-stabilized alpha-helical and beta-sheet (CSalphabeta) fold; Pro- or Gly-rich abaecins and hymenoptaecins; horseshoe crab tachystatin-type AMPs with the inhibitor cystine knot (ICK) fold; and a linear alpha-helical peptide. Inducible expression pattern of seven N. vitripennis AMP genes were verified, and two representative peptides were synthesized and functionally identified to be antibacterial. In comparison with Apis mellifera (Hymenoptera) and several non-Hymenopteran model insects, N. vitripennis has evolved a complex antimicrobial immune system with more genes and larger protein precursors. Three classical strategies that are likely responsible for the complexity increase have been recognized: 1) Gene duplication; 2) Exon duplication; and 3) Exon-shuffling. CONCLUSION The present study established the N. vitripennis peptidome associated with antimicrobial immunity by using a combined computational and experimental strategy. As the first AMP repertoire of a parasitic wasp, our results offer a basic platform for further studying the immunological and evolutionary significances of these newly discovered AMP-like genes in this class of insects.
Collapse
Affiliation(s)
- Caihuan Tian
- Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | | | | | | | | |
Collapse
|
39
|
Nam BH, Moon JY, Kim YO, Kong HJ, Kim WJ, Lee SJ, Kim KK. Multiple beta-defensin isoforms identified in early developmental stages of the teleost Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2010; 28:267-274. [PMID: 19900559 DOI: 10.1016/j.fsi.2009.11.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 10/26/2009] [Accepted: 11/02/2009] [Indexed: 05/28/2023]
Abstract
The beta-defensin-like gene and its cloned isoforms (fBDI-1 to -5) were identified in an expressed sequence tag (EST) library from the early developmental stages of the olive flounder, Paralichthys olivaceus. The fBDI cDNA clones show identical amino acid sequences in 24 residues of the signal peptide and 38 residues of the mature peptide; however, the propiece region varies in sequence and length, from 5 to 15 amino acid residues. The predicted molecular weight of the mature peptide is 3.83 kDa, and its predicted isoelectric point is 4.1, showing anionic properties. The genomic organisation of the isoforms was analysed using bacterial artificial chromosome (BAC) DNA containing the fBDI gene. Southern blotting and sequence analyses of fBDI BAC DNA confirmed that the fBDI isoforms cluster at the same locus and exhibit the conserved gene organisation reported for other fish defensin genes. The fBDI mRNA was expressed constitutively in early developmental stages after hatching, and pathogen challenge induced fBDI expression in the head kidney of juvenile fish. We also produced a recombinant fBDI peptide (smfBD) using the expression plasmid pET32 and examined its bioactivity toward Escherichia coli.
Collapse
Affiliation(s)
- Bo-Hye Nam
- Biotechnology Research Division, Aquaculture Industry Department, National Fisheries Research and Development Institute, 408-1 Sirang-ri, Gijang-eup, Gijang-gun, Busan 619-902, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
40
|
Waniek PJ, Castro HC, Sathler PC, Miceli L, Jansen AM, Araújo CAC. Two novel defensin-encoding genes of the Chagas disease vector Triatoma brasiliensis (Reduviidae, Triatominae): gene expression and peptide-structure modeling. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:840-8. [PMID: 19505471 DOI: 10.1016/j.jinsphys.2009.05.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 05/25/2009] [Accepted: 05/26/2009] [Indexed: 05/24/2023]
Abstract
Defensins are cysteine-rich peptides involved in the innate immunity of insects and many other organisms. In the present study, two novel defensin-encoding cDNAs and the respective genomic DNAs (def3 and def4) of Triatoma brasiliensis were identified and their tissue-specific and temporal expression was characterized. Both of the deduced mature peptides consisted of 43 amino acid residues and were highly similar to previously identified triatomine defensins (81.4-100%). Semi-quantitative RT-PCR data showed that def3 was constitutively expressed in the fat body and was induced in salivary glands and the small intestine at 5 and 3 days after feeding (daf), respectively. The def4 mRNA level was highly up-regulated in the stomach and fat-body tissues at 5 and 3 daf, respectively. The three-dimensional structures of these defensins were predicted using a homology modeling approach with Def-AAA, the defensin from Anopheles gambiae, as template (62-74% identity). A map of the electrostatic potential of these models revealed that, despite their similar folding patterns, mature Def2 and Def4 have a more cationic structure than is the case for Def1 and Def3. Such differences may orient the antimicrobial profile of these defensins against distinct targets in different organs of the insect.
Collapse
Affiliation(s)
- Peter J Waniek
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz-IOC/FIOCRUZ, Av. Brasil 4365, Zip Code: 21045-900, Rio de Janeiro, Brazil.
| | | | | | | | | | | |
Collapse
|