1
|
Zhang H, Cheng D, Tan K, Liu H, Ye T, Li S, Ma H, Zheng H. Identification of two ferritin genes and their expression profiles in response to bacterial challenge in noble scallop Chlamys nobilis with different carotenoids content. FISH & SHELLFISH IMMUNOLOGY 2019; 88:9-16. [PMID: 30825540 DOI: 10.1016/j.fsi.2019.02.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
As a major intracellular iron storage protein, ferritin plays important roles in iron homeostasis and innate immunity. In this study, two novel ferritin subunits from noble scallop Chlamys nobilis (CnFer1 and CnFer2) were identified and analyzed. The open reading frame of CnFer1 and CnFer2 was 522 and 519bp long, encoding 173 and 172 amino acids, respectively. Both ferritins contained a putative iron-binding region signature (IBRS). Analysis of putative conserved domains showed the two CnFer genes contained three key domains of ferritin subunits, a ferroxidase diiron center (E25, Y32, E59, E60, H63, E105, and Q139), an iron ion channel (H116, D129, E132) and a ferrihydrite nucleation center (D58, E59, and E62) that present in M type subunits. A putative iron response element (IRE) was observed at both CnFer genes in the 5' UTR. Phylogenetic analysis result suggested that the two genes are cytoplasmic ferritins and have the closest evolution relationship with ferritins from Mizuhopecten yessoensis. The two ferritin genes were wildly expressed in examined tissues and the highest level was found in gill. After V. parahaemolyticus challenged, both CnFer genes were significantly up-regulated suggesting that they are important proteins involved in host immune defense. Moreover, under bacterial challenge, the expression levels of both two genes in Golden scallops (rich in carotenoids) were significantly higher than that in Brown scallops (less in carotenoids) which suggesting that carotenoids enhance the immunity in scallops to defense against the bacterial stress.
Collapse
Affiliation(s)
- Hongkuan Zhang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Dewei Cheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Karsoon Tan
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Hongxing Liu
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Ting Ye
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Hongyu Ma
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Huaiping Zheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
2
|
Coba de la Peña T, Cárcamo CB, Díaz MI, Winkler FM, Morales-Lange B, Mercado L, Brokordt KB. Cloning and molecular characterization of two ferritins from red abalone Haliotis rufescens and their expressions in response to bacterial challenge at juvenile and adult life stages. FISH & SHELLFISH IMMUNOLOGY 2018; 82:279-285. [PMID: 30125708 DOI: 10.1016/j.fsi.2018.08.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
Ferritins are ubiquitous proteins with a pivotal role in iron storage and homeostasis, and in host defense responses during infection by pathogens in several organisms, including mollusks. In this study, we characterized two ferritin homologues in the red abalone Haliotis rufescens, a species of economic importance for Chile, USA and Mexico. Two ferritin subunits (Hrfer1 and Hrfer2) were cloned. Hrfer1 cDNA is an 807 bp clone containing a 516 bp open reading frame (ORF) that corresponds to a novel ferritin subunit in H. rufescens. Hrfer2 cDNA is an 868 bp clone containing a 516 bp ORF that corresponds to a previously reported ferritin subunit, but in this study 5'- and 3'-UTR sequences were additionally found. We detected a putative Iron Responsive Element (IRE) in the 5'-UTR sequence, suggesting a posttranscriptional regulation of Hrfer2 translation by iron. The deduced protein sequences of both cDNAs possessed the motifs and domains required in functional ferritin subunits. Expression patterns of both ferritins in different tissues, during different developmental stages, and in response to bacterial (Vibrio splendidus) exposure were examined. Both Hrfer1 and Hrfer2 are most expressed in digestive gland and gonad. Hrfer1 mRNA levels increased about 34-fold along with larval developmental process, attaining the highest level in the creeping post-larvae. Exogenous feeding is initiated at the creeping larva stage; thus, the increase of Hrfer1 may suggest and immunity-related role upon exposure to bacteria. Highest Hrfer2 expression levels were detected at trochophore stage; which may be related with early shell formation. Upon challenge with, the bacteria an early mild induction of Hrfer2 (2 h post-challenge), followed by a stronger induction of Hrfer1 at 15 h post-challenge, was observed in haemocytes from adult abalones. While maximal upregulation of both genes in the whole individual occurred at 24 h post-challenge, in juveniles. A significant increase in ferritin protein levels from 6 h to 24 h post-challenge was also detected. Our results suggest an involvement of Hrfer1 and Hrfer2, and of ferritin proteins in the immune response of H. rufescens to bacterial infection.
Collapse
Affiliation(s)
- Teodoro Coba de la Peña
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA) and Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile
| | - Claudia B Cárcamo
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA) and Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile; Centro de Innovación Acuícola AquaPacífico, Facultad de Ciencias Del Mar, Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile
| | - María I Díaz
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA) and Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile; Programa de Magíster en Ciencias Del Mar Mención Recursos Costeros, Facultad de Ciencias Del Mar, Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile
| | - Federico M Winkler
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA) and Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile; Centro de Innovación Acuícola AquaPacífico, Facultad de Ciencias Del Mar, Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile; Departamento de Biología Marina, Facultad de Ciencias Del Mar, Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile
| | - Byron Morales-Lange
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, 2373223, Valparaíso, Chile
| | - Luis Mercado
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, 2373223, Valparaíso, Chile
| | - Katherina B Brokordt
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA) and Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile; Centro de Innovación Acuícola AquaPacífico, Facultad de Ciencias Del Mar, Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile.
| |
Collapse
|
3
|
Li J, Zhang Y, Zhang Y, Mao F, Xiao S, Xiang Z, Ma H, Yu Z. A Lysin motif (LysM)-containing protein from Hong Kong oyster, Crassostrea hongkongensis functions as a pattern recognition protein and an antibacterial agent. Gene 2018; 674:134-142. [DOI: 10.1016/j.gene.2018.06.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 12/26/2022]
|
4
|
Coba de la Peña T, Cárcamo CB, Díaz MI, Brokordt KB, Winkler FM. Molecular characterization of two ferritins of the scallop Argopecten purpuratus and gene expressions in association with early development, immune response and growth rate. Comp Biochem Physiol B Biochem Mol Biol 2016; 198:46-56. [DOI: 10.1016/j.cbpb.2016.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/21/2016] [Accepted: 03/28/2016] [Indexed: 12/16/2022]
|
5
|
Li J, Zhang Y, Liu Y, Zhang Y, Xiang Z, Qu F, Yu Z. A thymosin beta-4 is involved in production of hemocytes and immune defense of Hong Kong oyster, Crassostrea hongkongensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 57:1-9. [PMID: 26695126 DOI: 10.1016/j.dci.2015.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 06/05/2023]
Abstract
Thymosin beta-4 (Tβ4) is a ubiquitous protein with multiple and diverse intracellular and extracellular functions in vertebrates. In this study, the full-length cDNA of Tβ4 was cloned and identified in Crassostrea hongkongensis, designated as ChTβ4. The full-length cDNA of ChTβ4 consists of 530 bp with an open reading frame of 126 bp encoding a 41 amino acid polypeptide. SMART analysis indicated that there is one thymosin domain and a highly conserved actin-binding motif (18LKKTET23) in ChTβ4. In vivo injection of recombinant ChTβ4 protein could significantly increase total hemocytes count in oysters, and knockdown of the expression of ChTβ4 resulted in a significant decrease in the circulating hemocytes. Tissue distribution analysis revealed a ubiquitous presence of ChTβ4, with the highest expression in hemocytes. The upregulated transcripts of ChTβ4 in response to bacterial challenge and tissue injury suggest that ChTβ4 is involved in both innate immunity against pathogen infection and wound healing. Moreover, bacteria-clearance experiment showed ChTβ4 could facilitate the clearance of injected bacteria in oysters. In vivo injection with ChTβ4 resulted in reduction of the intracellular ROS in hemocytes, which was associated with increased expression of antioxidant enzymes Cu/Zn superoxide dismutase (SOD), Catalase, and Glutathione Peroxidase (GPX) by pre-treatment with ChTβ4. These results suggest that ChTβ4 is a thymosin beta-4 homolog and plays a vital role in the immune defense of C. hongkongensis.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, China
| | - Yuehuan Zhang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, China
| | - Ying Liu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yang Zhang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, China.
| | - Zhiming Xiang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, China
| | - Fufa Qu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, China
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, China.
| |
Collapse
|
6
|
Qiu R, Kan Y, Li D. Ferritin from the Pacific abalone Haliotis discus hannai: Analysis of cDNA sequence, expression, and activity. FISH & SHELLFISH IMMUNOLOGY 2016; 49:315-323. [PMID: 26766182 DOI: 10.1016/j.fsi.2015.12.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/30/2015] [Accepted: 12/31/2015] [Indexed: 06/05/2023]
Abstract
Ferritin plays an important role in iron homeostasis due to its ability to bind and sequester large amounts of iron. In this study, the gene encoding a ferritin (HdhFer2) was cloned from Pacific abalone (Haliotis discus hannai). The full-length cDNA of HdhFer2 contains a 5'-UTR of 121 bp, an ORF of 516 bp, and a 3'-UTR of 252 bp with a polyadenylation signal sequence of AATAAA and a poly(A) tail. It also contains a 31 bp iron-responsive element (IRE) in the 5'-UTR position, which is conserved in many ferritins. HdhFer2 consists of 171 amino acid residues with a predicted molecular weight (MW) ∼19.8 kDa and a theoretical isoelectric point (PI) of 4.84. The deduced amino acid sequence of HdhFer2 contains two ferritin iron-binding region signatures (IBRSs). HdhFer2 mRNA was detected in a wide range of tissues and was dominantly expressed in the gill. Infection with the bacterial pathogen Vibrio anguillarum significantly upregulated HdhFer2 expression in a time-dependent manner. Recombinant HdhFer2 (rHdhFer2) purified from Escherichia coli was able to bind ferrous iron in a concentration-dependent manner. In summary, these results suggest that HdhFer2 is a crucial protein in the iron-withholding defense system, and plays an important role in the innate immune response of abalone.
Collapse
Affiliation(s)
- Reng Qiu
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, Henan 473061, China.
| | - Yunchao Kan
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, Henan 473061, China
| | - Dandan Li
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, Henan 473061, China
| |
Collapse
|
7
|
Song L, Wang L, Zhang H, Wang M. The immune system and its modulation mechanism in scallop. FISH & SHELLFISH IMMUNOLOGY 2015; 46:65-78. [PMID: 25797696 DOI: 10.1016/j.fsi.2015.03.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/07/2015] [Indexed: 06/04/2023]
Abstract
Scallops are a cosmopolitan family of bivalves, and some of them are highly prized as dominant aquaculture species. In the past decades, there have been increasing studies on the basic biology and immunology of scallops, and this review summarizes the research progresses of immune system and its modulation mechanism in scallop. As invertebrate, scallops lack adaptive immunity and they have evolved an array of sophisticated strategies to recognize and eliminate various invaders by employing a set of molecules and cells. It is evident that basic immune reactions such as immune recognition, signal transduction, and effector synthesis involved in immune response are accomplished in a variety of ways. They rely upon an extensive repertoire of phagocytosis, apoptosis and encapsulation of the circulating hemocytes for eliminating invasive pathogens, as well as the production of immune effectors that are active against a large range of pathogens or sensitive for the environmental stress. Furthermore, the molecular constitutions, metabolic pathways and immunomodulation mechanisms of the primitive catecholaminergic, cholinergic, enkephalinergic system and NO system in scallop are also discussed, which can be taken as an entrance to better understand the origin and evolution of the neuroendocrine-immune regulatory network in lower invertebrates.
Collapse
Affiliation(s)
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
8
|
Molecular cloning and expression analysis of ferritin, heavy polypeptide 1 gene from duck (Anas platyrhynchos). Mol Biol Rep 2014; 41:6233-40. [PMID: 24981929 DOI: 10.1007/s11033-014-3503-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/18/2014] [Indexed: 01/14/2023]
Abstract
H-ferritin is a core subunit of the iron storage protein ferritin, and is related to the pathogenesis of malignant diseases. A differential expressed sequence tag of the ferritin, heavy polypeptide 1 gene (FTH1) was obtained from our previously constructed suppression subtractive cDNA library from 3-day-old ducklings challenged with duck hepatitis virus type I (DHV-1). The expression and function of FTH1 in immune defense against infection remains largely unknown in ducks. In this study, the full-length duFTH1 cDNA was obtained using reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends. It consisted of 153 basepairs (bp) 5'untranslated region (UTR), 183 bp 3'UTR, and 546 bp open reading frame that encodes a single protein of 181 amino acid residues. duFTH1 shares high similarity with FTH1 genes from other vertebrates. The amino acid sequence possesses the conserved domain of typical ferritin H subunits, including seven metal ligands in the ferroxidase center, one iron binding region signature, and a potential bio-mineralization residue (Thy(29)). Moreover, in agreement with a previously reported ferritin H subunit, we identified an iron response element in the 5'UTR. RT-PCR analyses revealed duFTH1 mRNA is widely expressed in various tissues. Real-time quantitative polymerase chain reaction analyses suggested that duFTH1 mRNA is significantly up-regulated in the liver after DHV-1 injection or polyriboinosinic polyribocytidylic acid (polyI:C) treatment, reaching a peak 4 h post-infection, and dropping progressively and returning to normal after 24 h. Our findings suggest that duFTH1 functions as an iron chelating protein subunit in duck and contributes to the innate immune responses against viral infections.
Collapse
|
9
|
Ren C, Chen T, Jiang X, Wang Y, Hu C. Identification and functional characterization of a novel ferritin subunit from the tropical sea cucumber, Stichopus monotuberculatus. FISH & SHELLFISH IMMUNOLOGY 2014; 38:265-274. [PMID: 24698995 DOI: 10.1016/j.fsi.2014.03.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 03/12/2014] [Accepted: 03/15/2014] [Indexed: 06/03/2023]
Abstract
Ferritin is one of the major non-harm iron storage proteins that found in most cell types of animals, plants and microorganisms. In this study, a ferritin subunit named StmFer was identified from the sea cucumber (Stichopus monotuberculatus) and characterized functionally. The full-length cDNA of StmFer is 1184 bp in size with a 5'-untranslated region (UTR) of 131 bp, a 3'-UTR of 531 bp and an open reading frame of 522 bp that encoding a protein of 173 amino acids with a deduced molecular weight of 19.95 kDa. StmFer possesses both the ferroxidase center of vertebrate ferritin heavy subunit and iron nucleation sites of vertebrate ferritin light subunit. For the gene structure, StmFer contains only three exons separated by two introns. Higher levels of mRNA expression were noticed in intestine and coelomocyte of S. monotuberculatus by northern blot analysis. In in vitro experiments performed in coelomocytes, transcriptional expression of StmFer showed the strongest response to polyriboinosinic polyribocytidylic acid [Poly (I:C)] (9.08 fold up-regulation), followed by lipopolysaccharides (LPS), ferrous chloride (FeCl2) and inactivated bacteria (Vibrio alginolyticus) (7.84, 7.41 and 4.90 fold up-regulation, respectively) after 3 h post-challenge. In addition, the anti-oxidation activity and iron binding capacity of recombinant ferritin protein were demonstrated in this study. As a whole, our study suggested that the ferritin from sea cucumber may play critical roles not only in the cellular and organismic iron homeostasis, but also in the innate immune defense.
Collapse
Affiliation(s)
- Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB); Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB); Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB); Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.
| | - Yanhong Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB); Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB); Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.
| |
Collapse
|
10
|
Sun Y, Zhang Y, Fu X, Zhang R, Zou J, Wang S, Hu X, Zhang L, Bao Z. Identification of two secreted ferritin subunits involved in immune defense of Yesso scallop Patinopecten yessoensis. FISH & SHELLFISH IMMUNOLOGY 2014; 37:53-59. [PMID: 24434645 DOI: 10.1016/j.fsi.2014.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/03/2014] [Accepted: 01/04/2014] [Indexed: 06/03/2023]
Abstract
As an important iron storage protein, ferritin plays a crucial role in the iron-withholding defense system. In this study, two secreted ferritin subunits (PyFerS1 and PyFerS2) were identified from the Yesso scallop, Patinopecten yessoensis. The complete DNA sequences of the two ferritins are 7101 and 5359 bp, consisting of seven and five exons, respectively. The full-length cDNAs of PyFerS1 and PyFerS2 are 960 and 956 bp in length, encoding 228 and 220 amino acids, respectively. They have typical ferritin structures, with four long α-helices, one short α-helix and an L-loop. Signal peptides were found at the N-terminus of both ferritins, and phylogenetic analysis showed that they both clustered with secreted mollusc ferritins. PyFerS1 possesses all seven conserved residues of the ferroxidase center, whereas PyFerS2 only has two. Real-time PCR analysis indicated high expression level of PyFerS2 in the D-shaped larvae, and PyFerS1 in both D-shaped larvae and fertilized eggs. In adult scallops, PyFerS1 was only detected in the hepatopancreas, whereas PyFerS2 was detected in both hepatopancreas and mantle. After the scallops were challenged by iron ion or bacteria Vibrio anguillarum, the expression of both PyFerS1 and PyFerS2 was significantly elevated, suggesting they may play a role in scallop innate immune defense. For the first time, secreted ferritins were cloned and comprehensively characterized in bivalve molluscs. It will assist in better understanding of the role of secreted ferritins in bivalve innate immunity.
Collapse
Affiliation(s)
- Yan Sun
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yueyue Zhang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaoteng Fu
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ru Zhang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jiajun Zou
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shi Wang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaoli Hu
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lingling Zhang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Zhenmin Bao
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
11
|
Zhang L, Sun W, Cai W, Zhang Z, Gu Y, Chen H, Ma S, Jia X. Differential response of two ferritin subunit genes (VpFer1 and VpFer2) from Venerupis philippinarum following pathogen and heavy metals challenge. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1658-1662. [PMID: 23891591 DOI: 10.1016/j.fsi.2013.07.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/11/2013] [Accepted: 07/15/2013] [Indexed: 06/02/2023]
Abstract
As a principal extracellular iron storage molecule, ferritin plays an important role in the iron-withholding strategy of innate immunity and detoxification system. In this study, we cloned and characterized another ferritin from Venerupis philippinarum (designated as VpFer2), in addition to one previously reported (VpFer1). VpFer2 possessed all the conserved features critical for the fundamental structure and function of ferritin H subunit. VpFer1 and VpFer2 mRNA were both found to be most abundantly expressed in hepatopancreas. Vibrio challenge could significantly up-regulate the mRNA expression of VpFers, and VpFer2 showed more sensitive to Vibrio anguillarum infection. For heavy metals exposure, the expression level of VpFer1 was significantly induced by Cd at 48 h, but kept relatively constant after exposure to Cu. With regards to VpFer2, the expression level dropped significantly at 24 h, then began to increase to the peak value at 48 h under Cd exposure, while Cu exposure constantly depressed the expression level of VpFer2 throughout the time course. Similarly, VpFer2 seemed to be more sensitive to heavy metals exposure than VpFer1 as its mRNA level changed by higher magnitudes. All these results suggested that VpFers may be important proteins involved in host immune defense and heavy metals detoxification. The diverse expression patterns of VpFers demonstrated that VpFer2 was an early and sensitive responder to environmental stress in V. philippinarum.
Collapse
Affiliation(s)
- Linbao Zhang
- Key Lab. of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Key Lab. of Fishery Ecology Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Diz AP, Dudley E, Cogswell A, MacDonald BW, Kenchington ELR, Zouros E, Skibinski DOF. Proteomic analysis of eggs from Mytilus edulis females differing in mitochondrial DNA transmission mode. Mol Cell Proteomics 2013; 12:3068-80. [PMID: 23869045 DOI: 10.1074/mcp.m113.031401] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Many bivalves have an unusual mechanism of mitochondrial DNA (mtDNA) inheritance called doubly uniparental inheritance (DUI) in which distinctly different genomes are inherited through the female (F genome) and male (M genome) lineages. In fertilized eggs that will develop into male embryos, the sperm mitochondria remain in an aggregation, which is believed to be delivered to the primordial germ cells and passed to the next generation through the sperm. In fertilized eggs that will develop into female embryos, the sperm mitochondria are dispersed throughout the developing embryo and make little if any contribution to the next generation. The frequency of embryos with the aggregated or dispersed mitochondrial type varies among females. Previous models of DUI have predicted that maternal nuclear factors cause molecular differences among unfertilized eggs from females producing embryos with predominantly dispersed or aggregated mitochondria. We test this hypothesis using females of each of the two types from a natural population. We have found small, yet detectable, differences of the predicted type at the proteome level. We also provide evidence that eggs of females giving the dispersed pattern have consistently lower expression for different proteasome subunits than eggs of females giving the aggregated pattern. These results, combined with those of an earlier study in which we used hatchery lines of Mytilus, and with a transcriptomic study in a clam that has the DUI system of mtDNA transmission, reinforce the hypothesis that the ubiquitin-proteasome system plays a key role in the mechanism of DUI and sex determination in bivalves. We also report that eggs of females giving the dispersed pattern have higher expression for arginine kinase and enolase, enzymes involved in energy production, whereas ferritin, which is involved in iron homeostasis, has lower expression. We discuss these results in the context of genetic models for DUI and suggest experimental methods for further understanding the role of these proteins in DUI.
Collapse
Affiliation(s)
- Angel P Diz
- Institute of Life Science, College of Medicine, Swansea University, Swansea SA28PP, Wales UK
| | | | | | | | | | | | | |
Collapse
|
13
|
Navarro A, Campos B, Barata C, Piña B. Transcriptomic seasonal variations in a natural population of zebra mussel (Dreissena polymorpha). THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 454-455:482-489. [PMID: 23567168 DOI: 10.1016/j.scitotenv.2013.03.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/01/2013] [Accepted: 03/13/2013] [Indexed: 06/02/2023]
Abstract
The zebra mussel Dreissena polymorpha is a Caspian Sea bivalve that colonized freshwater bodies worldwide during the XX century. To analyze the impact of seasonal and environmental variations on the physiology and metabolism of this invasive species, we developed a custom microarray using 4057 publicly available DNA sequences from Dreissena and other related genera. Transcriptome profiles were analyzed using half-body samples from a relatively clean site (Riba-Roja, low Ebro River, N.E. Spain), at three different stages of the annual cycle: Pre-spawning (February), spawning (June), and gonad resorption (September). Transcripts from a total of 745 unique sequences showed significant changes among these three groups of samples. Functional characterization of these transcripts based on their closest known homologues showed that genes involved in stress defense (oxidative and infection) were overrepresented in September, whereas genes related to reproductive functions were overrepresented in the spawning and pre-spawning periods. This transcriptomic information can help to identify developmental stages at which the organism is more vulnerable for future control strategies. These data will also contribute to the implementation of gene expression-based assays for pollution monitoring in water bodies harboring stable zebra mussel populations.
Collapse
Affiliation(s)
- Anna Navarro
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | | | | | | |
Collapse
|
14
|
Zhang Y, Zhang R, Zou J, Hu X, Wang S, Zhang L, Bao Z. Identification and characterization of four ferritin subunits involved in immune defense of the Yesso scallop (Patinopecten yessoensis). FISH & SHELLFISH IMMUNOLOGY 2013; 34:1178-1187. [PMID: 23428517 DOI: 10.1016/j.fsi.2013.01.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/21/2013] [Accepted: 01/27/2013] [Indexed: 06/01/2023]
Abstract
As a primary iron storage protein, ferritin plays a vital role in iron homeostasis and innate immunity. In this study, four ferritin subunits (PyFer1, PyFer2, PyFer3, and PyFer4) were cloned from the Yesso scallop, Patinopecten yessoensis, by rapid amplification of cDNA ends (RACE) following in silico transcriptome analysis. The full-length cDNAs of the four ferritins are 895, 920, 891, and 1400 bp in length, respectively, and each contains a putative iron response element (IRE) in its 5' UTR. Meanwhile, multiple A+U-destabilizing elements (TATT or ATTTA) are present in the 3' UTRs of PyFer2 and PyFer4. The open reading frames of the four ferritins are 522, 516, 516, and 519 bp, encoding 173, 171, 171, and 172 amino acids, respectively. These proteins have typical ferritin structures, with four long α-helices, one short α-helix and an L-loop. All of the predicted proteins possess both the ferroxidase center of mammalian H ferritins (E25, Y32, E59, E60, H63, E105, and Q139) and the iron nucleation site of mammalian L ferritins (H116, D129, and E132), and the recombinant proteins possess apparent ferroxidase activity. Quantitative real-time PCR analysis revealed that the expression of the four PyFers was significantly elevated at the D-shaped stage and was relatively high in the adult mantle and hepatopancreas. Furthermore, the four PyFers were significantly up-regulated by iron or bacterial challenge, and all four purified recombinant PyFers were able to inhibit the growth of the scallop pathogen Vibrio anguillarum. These results suggest that these PyFers are likely to play important roles in many fundamental biological processes in P. yessoensis, including immune defense, iron homeostasis, and shell development.
Collapse
Affiliation(s)
- Yueyue Zhang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Bai Z, Yuan Y, Yue G, Li J. Molecular cloning and copy number variation of a ferritin subunit (Fth1) and its association with growth in freshwater pearl mussel Hyriopsis cumingii. PLoS One 2011; 6:e22886. [PMID: 21818403 PMCID: PMC3144951 DOI: 10.1371/journal.pone.0022886] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 07/06/2011] [Indexed: 11/24/2022] Open
Abstract
Iron is one of the most important minor elements in the shells of bivalves. This study was designed to investigate the involvement of ferritin, the principal protein for iron storage, in shell growth. A novel ferritin subunit (Fth1) cDNA from the freshwater pearl mussel (Hyriopsis cumingii) was isolated and characterized. The complete cDNA contained 822 bp, with an open reading frame (ORF) of 525 bp, a 153 bp 5′ untranslated region (UTR) and a 144 bp 3′ UTR. The complete genomic DNA was 4125 bp, containing four exons and three introns. The ORF encoded a protein of 174 amino acids without a signal sequence. The deduced ferritin contained a highly conserved motif for the ferroxidase center comprising seven residues of a typical vertebrate heavy-chain ferritin. It contained one conserved iron associated residue (Try27) and iron-binding region signature 1 residues. The mRNA contained a 27 bp iron-responsive element with a typical stem-loop structure in the 5′-UTR position. Copy number variants (CNVs) of Fth1 in two populations (PY and JH) were detected using quantitative real-time PCR. Associations between CNVs and growth were also analyzed. The results showed that the copy number of the ferritin gene of in the diploid genome ranged from two to 12 in PY, and from two to six in JH. The copy number variation in PY was higher than that in JH. In terms of shell length, mussels with four copies of the ferritin gene grew faster than those with three copies (P<0.05), suggesting that CNVs in the ferritin gene are associated with growth in shell length and might be a useful molecular marker in selective breeding of H. cumingii.
Collapse
Affiliation(s)
- Zhiyi Bai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Yiming Yuan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Genhua Yue
- Molecular Population Genetics Group, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai Ocean University, Shanghai, China
- E-Institute of Shanghai Universities, Shanghai Ocean University, Shanghai, China
- * E-mail:
| |
Collapse
|