1
|
Xie W, Zhong YS, Li XJ, Kang YK, Peng QY, Ying HZ. Postbiotics in colorectal cancer: intervention mechanisms and perspectives. Front Microbiol 2024; 15:1360225. [PMID: 38450163 PMCID: PMC10914944 DOI: 10.3389/fmicb.2024.1360225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024] Open
Abstract
Colorectal cancer (CRC) is a common malignancy affecting the gastrointestinal tract worldwide. The etiology and progression of CRC are related to factors such as environmental influences, dietary structure, and genetic susceptibility. Intestinal microbiota can influence the integrity of the intestinal mucosal barrier and modulate intestinal immunity by secreting various metabolites. Dysbiosis of the intestinal microbiota can affect the metabolites of the microbial, leading to the accumulation of toxic metabolites, which can trigger chronic inflammation or DNA damage and ultimately lead to cellular carcinogenesis and the development of CRC. Postbiotics are preparations of inanimate microorganisms or their components that are beneficial to the health of the host, with the main components including bacterial components (e.g., exopolysaccharides, teichoic acids, surface layer protein) and metabolites (e.g., short-chain fatty acids, tryptophan metabolite, bile acids, vitamins and enzymes). Compared with traditional probiotics, it has a more stable chemical structure and higher safety. In recent years, it has been demonstrated that postbiotics are involved in regulating intestinal microecology and improving the progression of CRC, which provides new ideas for the prevention and diagnosis of CRC. In this article, we review the changes in intestinal microbiota in different states of the gut and the mechanisms of anti-tumor activity of postbiotic-related components, and discuss the potential significance of postbiotics in the diagnosis and treatment of CRC. This reviews the changes and pathogenesis of intestinal microbiota in the development of CRC, and summarizes the relevant mechanisms of postbiotics in resisting the development of CRC in recent years, as well as the advantages and limitations of postbiotics in the treatment process of CRC.
Collapse
Affiliation(s)
| | | | | | | | | | - Hua-Zhong Ying
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
2
|
Liu Y, Liu Q, Zhang C, Zhao J, Zhang H, Chen W, Zhai Q. Strain-specific effects of Akkermansia muciniphila on the regulation of intestinal barrier. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
3
|
Zhang Y, Zhang Y, Liu F, Mao Y, Zhang Y, Zeng H, Ren S, Guo L, Chen Z, Hrabchenko N, Wu J, Yu J. Mechanisms and applications of probiotics in prevention and treatment of swine diseases. Porcine Health Manag 2023; 9:5. [PMID: 36740713 PMCID: PMC9901120 DOI: 10.1186/s40813-022-00295-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/09/2022] [Indexed: 02/07/2023] Open
Abstract
Probiotics can improve animal health by regulating intestinal flora balance, improving the structure of the intestinal mucosa, and enhancing intestinal barrier function. At present, the use of probiotics has been a research hotspot in prevention and treatment of different diseases at home and abroad. This review has summarized the researchers and applications of probiotics in prevention and treatment of swine diseases, and elaborated the relevant mechanisms of probiotics, which aims to provide a reference for probiotics better applications to the prevention and treatment of swine diseases.
Collapse
Affiliation(s)
- Yue Zhang
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China ,grid.440622.60000 0000 9482 4676College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Yuyu Zhang
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Fei Liu
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Yanwei Mao
- grid.440622.60000 0000 9482 4676College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Yimin Zhang
- grid.440622.60000 0000 9482 4676College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Hao Zeng
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Sufang Ren
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Lihui Guo
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Zhi Chen
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Nataliia Hrabchenko
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Jiaqiang Wu
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China ,grid.440622.60000 0000 9482 4676College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China ,grid.410585.d0000 0001 0495 1805School of Life Sciences, Shandong Normal University, Jinan, 250014 China
| | - Jiang Yu
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| |
Collapse
|
4
|
Wang G, Yuan J, Luo J, Ocansey DKW, Zhang X, Qian H, Xu W, Mao F. Emerging role of protein modification in inflammatory bowel disease. J Zhejiang Univ Sci B 2022; 23:173-188. [PMID: 35261214 PMCID: PMC8913920 DOI: 10.1631/jzus.b2100114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/17/2021] [Indexed: 11/11/2022]
Abstract
The onset of inflammatory bowel disease (IBD) involves many factors, including environmental parameters, microorganisms, and the immune system. Although research on IBD continues to expand, the specific pathogenesis mechanism is still unclear. Protein modification refers to chemical modification after protein biosynthesis, also known as post-translational modification (PTM), which causes changes in the properties and functions of proteins. Since proteins can be modified in different ways, such as acetylation, methylation, and phosphorylation, the functions of proteins in different modified states will also be different. Transitions between different states of protein or changes in modification sites can regulate protein properties and functions. Such modifications like neddylation, sumoylation, glycosylation, and acetylation can activate or inhibit various signaling pathways (e.g., nuclear factor-κB (NF-κB), extracellular signal-regulated kinase (ERK), and protein kinase B (AKT)) by changing the intestinal flora, regulating immune cells, modulating the release of cytokines such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ), and ultimately leading to the maintenance of the stability of the intestinal epithelial barrier. In this review, we focus on the current understanding of PTM and describe its regulatory role in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Gaoying Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
- Clinical Laboratory, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China
| | - Jintao Yuan
- Clinical Laboratory, the People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang 212300, China
| | - Ji Luo
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
- Directorate of University Health Services, University of Cape Coast, Cape Coast 02630, Ghana
| | - Xu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Hui Qian
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Wenrong Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
5
|
Pandey M, Bhati A, Priya K, Sharma KK, Singhal B. Precision Postbiotics and Mental Health: the Management of Post-COVID-19 Complications. Probiotics Antimicrob Proteins 2021; 14:426-448. [PMID: 34806151 PMCID: PMC8606251 DOI: 10.1007/s12602-021-09875-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 01/14/2023]
Abstract
The health catastrophe originated by COVID-19 pandemic construed profound impact on a global scale. However, a plethora of research studies corroborated convincing evidence conferring severity of infection of SARS-CoV-2 with the aberrant gut microbiome that strongly speculated its importance for development of novel therapeutic modalities. The intense exploration of probiotics has been envisaged to promote the healthy growth of the host, and restore intestinal microecological balance through various metabolic and physiological processes. The demystifying effect of probiotics cannot be defied, but there exists a strong skepticism related to their safety and efficacy. Therefore, molecular signature of probiotics termed as "postbiotics" are of paramount importance and there is continuous surge of utilizing postbiotics for enhancing health benefits, but little is explicit about their antiviral effects. Therefore, it is worth considering their prospective role in post-COVID regime that pave the way for exploring the pastoral vistas of postbiotics. Based on previous research investigations, the present article advocates prospective role of postbiotics in alleviating the health burden of viral infections, especially SARS-CoV-2. The article also posits current challenges and proposes a futuristic model describing the concept of "precision postbiotics" for effective therapeutic and preventive interventions that can be used for management of this deadly disease.
Collapse
Affiliation(s)
- Muskan Pandey
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India
| | - Archana Bhati
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India
| | - Kumari Priya
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India
| | - K K Sharma
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Barkha Singhal
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India.
| |
Collapse
|
6
|
Yang KM, Zhu C, Wang L, Cao ST, Yang XF, Gao KG, Jiang ZY. Early supplementation with Lactobacillus plantarum in liquid diet modulates intestinal innate immunity through toll-like receptor 4-mediated mitogen-activated protein kinase signaling pathways in young piglets challenged with Escherichia coli K88. J Anim Sci 2021; 99:6259343. [PMID: 33928383 DOI: 10.1093/jas/skab128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
This study was conducted to investigate the effects of early supplementation during 4 to 18 d of age with Lactobacillus plantarum (LP) in liquid diets on intestinal innate immune response in young piglets infected with enterotoxigenic Escherichia coli (ETEC) K88. Seventy-two barrow piglets at 4 d old were assigned to basal or LP-supplemented liquid diet (5 × 1010 CFU·kg-1). On day 15, piglets from each group were orally challenged with either ETEC K88 (1 × 108 CFU·kg-1) or the same amount of phosphate-buffered saline. The intestinal mucosa, mesenteric lymph node (MLN), and spleen samples were collected on day 18. Here, we found that LP pretreatment significantly decreased the mRNA relative expression of inflammatory cytokines (interleukin [IL]-1β, IL-8, and tumor necrosis factor-α), porcine β-defensin 2 (pBD-2), and mucins (MUC1 and MUC4) in the jejunal mucosa in piglets challenged with ETEC K88 (P < 0.05). Moreover, LP significantly decreased the ileal mucosa mRNA relative expression of IL-8 and MUC4 in young piglets challenged with ETEC K88 (P < 0.05). Furthermore, the piglets of the LP + ETEC K88 group had lower protein levels of IL-8, secretory immunoglobulin A, pBD-2, and MUC4 in the jejunal mucosa than those challenged with ETEC K88 (P < 0.05). Besides, LP supplementation reduced the percentage of gamma/delta T cells receptor (γδTCR) and CD172a+ (SWC3+) cells in MLN and the percentage of γδTCR cells in the spleen of young piglets after the ETEC K88 challenge. Supplementation with LP in liquid diets prevented the upregulated protein abundance of toll-like receptor (TLR) 4, phosphorylation-p38, and phosphorylation-extracellular signal-regulated protein kinases in the jejunal mucosa induced by ETEC K88 (P < 0.05). In conclusion, LP supplementation in liquid diet possesses anti-inflammatory activity and modulates the intestinal innate immunity during the early life of young piglets challenged with ETEC K88, which might be attributed to the suppression of TLR4-mediated mitogen-activated protein kinase signaling pathways. Early supplementation with LP in liquid diets regulates the innate immune response, representing a promising immunoregulation strategy for maintaining intestinal health in weaned piglets.
Collapse
Affiliation(s)
- Kuanmin M Yang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed in South China, Ministry of Agriculture and Rural Affairs, Guangdong, China. Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, China, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| | - Cui Zhu
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, P.R. China
| | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed in South China, Ministry of Agriculture and Rural Affairs, Guangdong, China. Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, China, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| | - Shuting T Cao
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed in South China, Ministry of Agriculture and Rural Affairs, Guangdong, China. Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, China, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| | - Xuefen F Yang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed in South China, Ministry of Agriculture and Rural Affairs, Guangdong, China. Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, China, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| | - Kaiguo G Gao
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed in South China, Ministry of Agriculture and Rural Affairs, Guangdong, China. Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, China, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| | - Zongyong Y Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed in South China, Ministry of Agriculture and Rural Affairs, Guangdong, China. Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, China, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
| |
Collapse
|
7
|
Nataraj BH, Ramesh C, Mallappa RH. Extractable surface proteins of indigenous probiotic strains confer anti-adhesion knack and protect against methicillin-resistant Staphylococcus aureus induced epithelial hyperpermeability in HT-29 cell line. Microb Pathog 2021; 158:104974. [PMID: 34015494 DOI: 10.1016/j.micpath.2021.104974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 11/28/2022]
Abstract
Probiotic intervention has been long believed to have beneficial effects on human health by curbing the intestinal colonization of pathogens. However, the application of live probiotics therapy may not be an ideal approach to circumvent the infections of superbug origin due to the risk of horizontal antibiotic resistance genes transfer. In this study, the anti-adhesion ability of extractable cell surface proteins from two indigenous potential probiotic strains (Lactiplantibacillus plantarum A5 and Limosilactobacillus fermentum Lf1) and two standard reference strains (Lactobacillus acidophilus NCFM and Lacticaseibacillus rhamnosus LGG) was evaluated against clinical isolates of Methicillin-Resistant Staphylococcus aureus (MRSA) on porcine gastric mucin and HT-29 cells. The surface proteins from the probiotic strains were extracted by treatment with 5 M lithium chloride. The surface protein quantification and SDS-PAGE profiling indicated that the yield and protein patterns were strain-specific. Surface proteins significantly hampered the mucoadhesion of MRSA isolates via protective, competitive, and displacement. Similarly, the treatment with surface proteins probiotic strains displayed anti-adhesion against MRSA isolates on HT-29 cells without affecting the viability of the cell line. Surface proteins treatment to the confluent monolayer of HT-29 cells maintained the epithelial integrity; however, MRSA isolates (109 cells/mL) showed considerable alteration in the epithelial integrity by exacerbating the FITC-dextran transflux. Contrarily, the co-treatment with surface proteins with MRSA isolates significantly lowered the FITC-dextran transflux across the differentiated HT-29 monolayer. Overall, the findings of this study suggest that probiotic-derived surface proteins could be the novel biotherapeutics to combat the MRSA colonization and their concomitant intestinal infections.
Collapse
Affiliation(s)
| | - Chette Ramesh
- Molecular Biology Unit, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Rashmi Hogarehalli Mallappa
- Molecular Biology Unit, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| |
Collapse
|
8
|
Nataraj BH, Ali SA, Behare PV, Yadav H. Postbiotics-parabiotics: the new horizons in microbial biotherapy and functional foods. Microb Cell Fact 2020; 19:168. [PMID: 32819443 PMCID: PMC7441679 DOI: 10.1186/s12934-020-01426-w] [Citation(s) in RCA: 260] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/13/2020] [Indexed: 12/20/2022] Open
Abstract
Probiotics have several health benefits by modulating gut microbiome; however, techno-functional limitations such as viability controls have hampered their full potential applications in the food and pharmaceutical sectors. Therefore, the focus is gradually shifting from viable probiotic bacteria towards non-viable paraprobiotics and/or probiotics derived biomolecules, so-called postbiotics. Paraprobiotics and postbiotics are the emerging concepts in the functional foods field because they impart an array of health-promoting properties. Although, these terms are not well defined, however, for time being these terms have been defined as here. The postbiotics are the complex mixture of metabolic products secreted by probiotics in cell-free supernatants such as enzymes, secreted proteins, short chain fatty acids, vitamins, secreted biosurfactants, amino acids, peptides, organic acids, etc. While, the paraprobiotics are the inactivated microbial cells of probiotics (intact or ruptured containing cell components such as peptidoglycans, teichoic acids, surface proteins, etc.) or crude cell extracts (i.e. with complex chemical composition)". However, in many instances postbiotics have been used for whole category of postbiotics and parabiotics. These elicit several advantages over probiotics like; (i) availability in their pure form, (ii) ease in production and storage, (iii) availability of production process for industrial-scale-up, (iv) specific mechanism of action, (v) better accessibility of Microbes Associated Molecular Pattern (MAMP) during recognition and interaction with Pattern Recognition Receptors (PRR) and (vi) more likely to trigger only the targeted responses by specific ligand-receptor interactions. The current review comprehensively summarizes and discussed various methodologies implied to extract, purify, and identification of paraprobiotic and postbiotic compounds and their potential health benefits.
Collapse
Affiliation(s)
- Basavaprabhu H Nataraj
- Technofunctional Starters Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Pradip V Behare
- Technofunctional Starters Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Hariom Yadav
- Department of Internal Medicine-Molecular Medicine and Microbiology and Immunology, Wake Forest School of Medicine, Biotech Place, Room 2E-034, 575 North Patterson Ave, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
9
|
Guo Y, Du Y, Xie L, Pu Y, Yuan J, Wang Z, Zhang T, Wang B. Effects of Paeonol and Gastroretention Tablets of Paeonol on Experimental Gastric Ulcers and Intestinal Flora in Rats. Inflammation 2020; 43:2178-2190. [PMID: 32642910 DOI: 10.1007/s10753-020-01285-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Paeonol, a major ingredient isolated from Moutan Cort, has various pharmacological effects. Our previous studies have shown that paeonol can exert antioxidant and anti-inflammatory therapeutic effects on ethanol-induced experimental gastric ulcer (GU). Therefore, in this study, we designed two GU models in rats induced by pyloric ligation (PL) and acetic acid and evaluated the protective effects of paeonol and gastroretention tablets of paeonol (GRT-Ps; 24, 48, and 96 mg/kg) on GU in rats and the effect of paeonol (48 mg/kg) on the intestinal flora. In vivo experiments showed that paeonol or GRT-Ps remarkably reduced gastric mucosal damage in a dose-dependent manner in the different types of models and improved the superoxide dismutase (SOD) activity and the malondialdehyde (MDA) content. And in fact, the sustained-release effect of GRT-Ps is more conducive to the improvement of GU compared with the rapid clearance of free drugs. In the PL-induced model, gastric secretion parameters, that is, pH and total acid, showed significant differences compared with the model group. In addition, paeonol treatment can improve the richness and diversity of the intestinal flora and increase the amount of beneficial bacteria, such as Lactobacillus. Paeonol and its stable sustained-release tablet GRT-Ps can promote ulcer healing by inhibiting oxidative stress and regulating the intestinal flora. This study can provide basis for the clinical treatment of GU with paeonol. Graphical Abstract.
Collapse
Affiliation(s)
- Yilin Guo
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, China
| | - Yaoyao Du
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, China
| | - Lu Xie
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 185 Puan Road, Huangpu District, Shanghai, 200021, China
| | - Yiqiong Pu
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, China
| | - Jianlong Yuan
- Fujian Medical Products Administration, 156 Dongpu Road, Fuzhou, 350013, China
| | - Zhicheng Wang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Xuhui District, Shanghai, 200040, China.
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, China. .,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, China. .,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Pudong New District, Shanghai, 201203, China.
| |
Collapse
|
10
|
Liu Q, Yu Z, Tian F, Zhao J, Zhang H, Zhai Q, Chen W. Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier. Microb Cell Fact 2020; 19:23. [PMID: 32024520 PMCID: PMC7003451 DOI: 10.1186/s12934-020-1289-4] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
The gut microbiota can significantly affect the function of the intestinal barrier. Some intestinal probiotics (such as Lactobacillus, Bifidobacteria, a few Escherichia coli strains, and a new generation of probiotics including Bacteroides thetaiotaomicron and Akkermansia muciniphila) can maintain intestinal epithelial homeostasis and promote health. This review first summarizes probiotics' regulation of the intestinal epithelium via their surface compounds. Surface layer proteins, flagella, pili and capsular polysaccharides constitute microbial-associated molecular patterns and specifically bind to pattern recognition receptors, which can regulate signaling pathways to produce cytokines or inhibit apoptosis, thereby attenuating inflammation and enhancing the function of the gut epithelium. The review also explains the effects of metabolites (such as secreted proteins, organic acids, indole, extracellular vesicles and bacteriocins) of probiotics on host receptors and the mechanisms by which these metabolites regulate gut epithelial barrier function. Previous reviews summarized the role of the surface macromolecules or metabolites of gut microbes (including both probiotics and pathogens) in human health. However, these reviews were mostly focused on the interactions between these substances and the intestinal mucosal immune system. In the current review, we only focused on probiotics and discussed the molecular interaction between these bacteria and the gut epithelial barrier.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhiming Yu
- Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, Jiangsu, People's Republic of China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, Jiangsu, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China
| |
Collapse
|
11
|
Chang CH, Teng PY, Lee TT, Yu B. Effects of multi-strain probiotic supplementation on intestinal microbiota, tight junctions, and inflammation in young broiler chickens challenged with Salmonella enterica subsp. enterica. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:1797-1808. [PMID: 32054193 PMCID: PMC7649073 DOI: 10.5713/ajas.19.0427] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022]
Abstract
Objective This study assessed the effects of probiotics on cecal microbiota, gene expression of intestinal tight junction proteins, and immune response in the cecal tonsil of broiler chickens challenged with Salmonella enterica subsp. enterica. Methods One-day-old broiler chickens (n = 240) were randomly allocated to four treatments: negative control (Cont), multi-strain probiotic-treated group (Pro), Salmonella-infected group (Sal), and multi-strain probiotic-treated and Salmonella-infected group (ProSal). All chickens except those in the Cont and Pro groups were gavaged with 1×108 cfu/mL of S. enterica subsp. enterica 4 days after hatching. Results Our results indicated that body weight, weight gain, and feed conversion ratio of birds were significantly reduced (p<0.05) by Salmonella challenge. Chickens challenged with Salmonella decreased cecal microbial diversity. Chickens in the Sal group exhibited abundant Proteobacteria than those in the Cont, Pro, and ProSal groups. Salmonella infection downregulated gene expression of Occludin, zonula occludens-1 (ZO1), and Mucin 2 in the jejunum and Occludin and Claudin in the ileum. Moreover, the Sal group increased gene expression of interferon-γ (IFN-γ), interleukin-6 (IL-6), IL-1β, and lipopolysaccharide-induced tumor necrosis factor-alpha factor (LITAF) and reduced levels of transforming growth factor-β4 and IL-10 compared with the other groups (p<0.05). However, chickens receiving probiotic diets increased Lactobacillaceae abundance and reduced Enterobacteriaceae abundance in the ceca. Moreover, supplementation with probiotics increased the mRNA expression of Occludin, ZO1, and Mucin 2 in the ileum (p<0.05). In addition, probiotic supplementation downregulated the mRNA levels of IFN-γ (p<0.05) and LITAF (p = 0.075) and upregulated IL-10 (p = 0.084) expression in the cecal tonsil. Conclusion The administration of multi-strain probiotics modulated intestinal microbiota, gene expression of tight junction proteins, and immunomodulatory activity in broiler chickens.
Collapse
Affiliation(s)
- Chi Huan Chang
- Department of Animal Science, National Chung Hsing University, Taichung City 402, Taiwan
| | - Po Yun Teng
- Department of Animal Science, National Chung Hsing University, Taichung City 402, Taiwan
| | - Tzu Tai Lee
- Department of Animal Science, National Chung Hsing University, Taichung City 402, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan
| | - Bi Yu
- Department of Animal Science, National Chung Hsing University, Taichung City 402, Taiwan
| |
Collapse
|
12
|
Du W, Xu H, Mei X, Cao X, Gong L, Wu Y, Li Y, Yu D, Liu S, Wang Y, Li W. Probiotic Bacillus enhance the intestinal epithelial cell barrier and immune function of piglets. Benef Microbes 2018; 9:743-754. [DOI: 10.3920/bm2017.0142] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bacillus is widely used in the livestock industry. This study was designed to evaluate the effects of probiotic Bacillus amyloliquefaciens SC06 (Ba), originally isolated from soil, in piglets diet as an alternative to antibiotics (aureomycin), mainly on intestinal epithelial barrier and immune function. Ninety piglets were divided into three groups: G1 (containing 150 mg/kg aureomycin in the diet); G2 (containing 75 mg/kg aureomycin and 1×108 cfu/kg Ba in the diet); G3 (containing 2×108 cfu/kg Ba in the diet without any antibiotics). The results showed that, compared with the antibiotic group (G1), villus length, crypt depth and villus length/crypt depth ratio of intestine significantly increased in the G2 and G3 groups. In addition, intestinal villi morphology, goblet-cell number, mitochondria structure and tight junction proteins of intestinal epithelial cells in G2 and G3 were better than in G1. The relative gene expression of intestinal mucosal defensin-1, claudin3, claudin4, and human mucin-1 in G3 was significantly lower, while the expression of villin was significantly higher than in the antibiotic group. Probiotic Ba could significantly decrease serum interferon (IFN)-α, IFN-γ, interleukin (IL)-1β, and IL-4 levels, whereas increase tumour necrosis factor (TNF)-α and IL-6 secretion. Ba could also significantly decrease cytokines TNF-α, IFN-γ, IL-1β, and IL-4 level in liver, whereas it significantly increased IFN-α. Furthermore, replacing antibiotics with Ba also significantly down-regulated gene expression of TNF and IL-1α in intestinal mucosa, but up-regulated IL-6 and IL-8 transcription. Dietary addition of Ba could significantly reduce the gene expression of nuclear factor kappa beta (NFκB)-p50 and Toll-like receptor (TLR)6, while there was no significant difference for that of myeloid differentiation primary response 88, TNF receptor-associated factor-6, nucleotide-binding oligomerisation domain-containing protein 1, TLR2, TLR4, and TLR9. Taken together, our findings demonstrated that probiotic Ba could increase the intestinal epithelial cell barrier and immune function by improving intestinal mucosa structure, tight junctions and by activating the TLRs signalling pathway.
Collapse
Affiliation(s)
- W. Du
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - H. Xu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - X. Mei
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - X. Cao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - L. Gong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - Y. Wu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - Y. Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - D. Yu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - S. Liu
- National Animal Husbandry Service, Building 20, Maizidian St, Chaoyang District, 100125 Beijing, China P.R
| | - Y. Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - W. Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| |
Collapse
|
13
|
do Carmo FLR, Rabah H, De Oliveira Carvalho RD, Gaucher F, Cordeiro BF, da Silva SH, Le Loir Y, Azevedo V, Jan G. Extractable Bacterial Surface Proteins in Probiotic-Host Interaction. Front Microbiol 2018; 9:645. [PMID: 29670603 PMCID: PMC5893755 DOI: 10.3389/fmicb.2018.00645] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/19/2018] [Indexed: 01/09/2023] Open
Abstract
Some Gram-positive bacteria, including probiotic ones, are covered with an external proteinaceous layer called a surface-layer. Described as a paracrystalline layer and formed by the self-assembly of a surface-layer-protein (Slp), this optional structure is peculiar. The surface layer per se is conserved and encountered in many prokaryotes. However, the sequence of the corresponding Slp protein is highly variable among bacterial species, or even among strains of the same species. Other proteins, including surface layer associated proteins (SLAPs), and other non-covalently surface-bound proteins may also be extracted with this surface structure. They can be involved a various functions. In probiotic Gram-positives, they were shown by different authors and experimental approaches to play a role in key interactions with the host. Depending on the species, and sometime on the strain, they can be involved in stress tolerance, in survival within the host digestive tract, in adhesion to host cells or mucus, or in the modulation of intestinal inflammation. Future trends include the valorization of their properties in the formation of nanoparticles, coating and encapsulation, and in the development of new vaccines.
Collapse
Affiliation(s)
- Fillipe L R do Carmo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.,STLO, Agrocampus Ouest, INRA, Rennes, France
| | - Houem Rabah
- STLO, Agrocampus Ouest, INRA, Rennes, France.,Pôle Agronomique Ouest, Rennes, France
| | | | - Floriane Gaucher
- STLO, Agrocampus Ouest, INRA, Rennes, France.,Bioprox, Levallois-Perret, France
| | - Barbara F Cordeiro
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Sara H da Silva
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Vasco Azevedo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gwénaël Jan
- STLO, Agrocampus Ouest, INRA, Rennes, France
| |
Collapse
|
14
|
Frohnmeyer E, Deptula P, Nyman TA, Laine PKS, Vihinen H, Paulin L, Auvinen P, Jokitalo E, Piironen V, Varmanen P, Savijoki K. Secretome profiling of Propionibacterium freudenreichii reveals highly variable responses even among the closely related strains. Microb Biotechnol 2018; 11:510-526. [PMID: 29488359 PMCID: PMC5902329 DOI: 10.1111/1751-7915.13254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 01/19/2018] [Indexed: 12/20/2022] Open
Abstract
This study compared the secretomes (proteins exported out of the cell) of Propionibacterium freudenreichii of different origin to identify plausible adaptation factors. Phylosecretomics indicated strain‐specific variation in secretion of adhesins/invasins (SlpA, InlA), cell‐wall hydrolysing (NlpC60 peptidase, transglycosylase), protective (RpfB) and moonlighting (DnaK, GroEL, GaPDH, IDH, ENO, ClpB) enzymes and/or proteins. Detailed secretome comparison suggested that one of the cereal strains (JS14) released a tip fimbrillin (FimB) in to the extracellular milieu, which was in line with the electron microscopy and genomic analyses, indicating the lack of surface‐associated fimbrial‐like structures, predicting a mutated type‐2 fimbrial gene cluster (fimB‐fimA‐srtC2) and production of anchorless FimB. Instead, the cereal strain produced high amounts of SlpB that tentatively mediated adherent growth on hydrophilic surface and adherence to hydrophobic material. One of the dairy strains (JS22), producing non‐covalently bound surface‐proteins (LspA, ClpB, AraI) and releasing SlpA and InlA into the culture medium, was found to form clumps under physiological conditions. The JS22 strain lacked SlpB and displayed a non‐clumping and biofilm‐forming phenotype only under conditions of increased ionic strength (300 mM NaCl). However, this strain cultured under the same conditions was not adherent to hydrophobic support, which supports the contributory role of SlpB in mediating hydrophobic interactions. Thus, this study reports significant secretome variation in P. freudenreichii and suggests that strain‐specific differences in protein export, modification and protein–protein interactions have been the driving forces behind the adaptation of this bacterial species.
Collapse
Affiliation(s)
- Esther Frohnmeyer
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki 00014, Finland
| | - Paulina Deptula
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki 00014, Finland
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, 0424 Oslo, Norway
| | - Pia K S Laine
- DNA Sequencing and Genomics Lab, Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Helena Vihinen
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Lars Paulin
- DNA Sequencing and Genomics Lab, Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Petri Auvinen
- DNA Sequencing and Genomics Lab, Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Vieno Piironen
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki 00014, Finland
| | - Pekka Varmanen
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki 00014, Finland
| | - Kirsi Savijoki
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
15
|
Meng J, Zhang QX, Lu RR. Surface layer protein from Lactobacillus acidophilus NCFM inhibit intestinal pathogen-induced apoptosis in HT-29 cells. Int J Biol Macromol 2017; 96:766-774. [DOI: 10.1016/j.ijbiomac.2016.12.085] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 09/29/2016] [Accepted: 12/31/2016] [Indexed: 12/18/2022]
|
16
|
Secretions of Bifidobacterium infantis and Lactobacillus acidophilus Protect Intestinal Epithelial Barrier Function. J Pediatr Gastroenterol Nutr 2017; 64:404-412. [PMID: 28230606 DOI: 10.1097/mpg.0000000000001310] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The secreted metabolites of probiotics are cytoprotective to intestinal epithelium and have been shown to attenuate inflammation and reduce gut permeability. The present study was designed to determine the protective effects of probiotic conditioned media (PCM) from Bifidobacterium infantis (BCM) and Lactobacillus acidophilus (LCM) on interleukin (IL)-1β-induced intestinal barrier compromise. METHODS The epithelial barrier was determined by measuring the transepithelial electrical resistance (TER) across a Caco-2 cell monolayer using a Transwell model. The paracellular permeability was determined by fluorescein isothiocyanate-labeled dextran flux. The expression of tight junction (TJ) proteins and nuclear factor-kappa B (NF-κB) p65 were determined using Western blot and the distribution of NF-κB p65 was determined by immunofluorescence staining. RESULTS BCM and LCM induced a dose-dependent increase in Caco-2 TER after 4 and 24 hours of incubation (P < 0.05). The maximal increase of Caco-2 TER occurred at 4 hours of treatment with a PCM concentration of 15%. Preincubation with BCM and LCM for 4 hours significantly prevented the decrease of Caco-2 TER induced by 24 hours of stimulation with 10 ng/mL IL-1β. BCM and LCM decreased paracellular permeability in both stimulated and unstimulated Caco-2 monolayers (P < 0.05). IL-1β stimulation decreased occludin expression and increased claudin-1 expression in Caco-2 cells (P < 0.05), which was prevented in cells treated with BCM or LCM. The changes of claudin-1 expression in H4 cells were similar to Caco-2 cells in response to PCM treatment and IL-1β stimulation; however, a similar response in occludin was not demonstrated. The IL-1β-induced nuclear translocation of NF-κB p65 in Caco-2 cells was prevented by pretreatment with both PCMs. CONCLUSIONS BCM and LCM protected the intestinal barrier against IL-1β stimulation by normalizing the protein expression of occludin and claudin-1 and preventing IL-1β-induced NF-κB activation in Caco-2 cells, which may be partly responsible for the preservation of intestinal permeability.
Collapse
|
17
|
Hollmann A, Delfederico L, Santos NC, Disalvo EA, Semorile L. Interaction of S-layer proteins of Lactobacillus kefir with model membranes and cells. J Liposome Res 2017; 28:117-125. [DOI: 10.1080/08982104.2017.1281950] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Axel Hollmann
- Laboratory of Molecular Microbiology, Institute of Basic and Applied Microbiology, National University of Quilmes, Bernal, Argentina,
- Laboratory of Biointerfaces and Biomimetic Systems- CITSE – National University of Santiago del Estero and CONICET, Argentina, and
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Lucrecia Delfederico
- Laboratory of Molecular Microbiology, Institute of Basic and Applied Microbiology, National University of Quilmes, Bernal, Argentina,
| | - Nuno C. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - E. Anibal Disalvo
- Laboratory of Biointerfaces and Biomimetic Systems- CITSE – National University of Santiago del Estero and CONICET, Argentina, and
| | - Liliana Semorile
- Laboratory of Molecular Microbiology, Institute of Basic and Applied Microbiology, National University of Quilmes, Bernal, Argentina,
| |
Collapse
|
18
|
Rokana N, Singh R, Mallappa RH, Batish VK, Grover S. Modulation of intestinal barrier function to ameliorate Salmonella infection in mice by oral administration of fermented milks produced with Lactobacillus plantarum MTCC 5690 - a probiotic strain of Indian gut origin. J Med Microbiol 2016; 65:1482-1493. [PMID: 27902414 DOI: 10.1099/jmm.0.000366] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Probiotic Lactobacillus plantarum MTCC 5690, a probiotic strain of Indian gut origin, and milk formulations produced with the same were explored in this study as biotherapeutics by evaluating their functional efficacy against Salmonella infection in mice. The efficacy of milk formulations (fermented/unfermented) of MTCC 5690 for enhancement of intestinal barrier function was determined by monitoring the permeability and histopathology of the intestine. Infected mice fed with probiotic Dahi, fermented probiotic drink and sweetened fermented probiotic drink maintained the health and integrity of the intestinal epithelium as compared to those fed with PBS, milk, unfermented probiotic milk and Dahi. Our relative expression data revealed that the changes caused by MTCC 5690 in intestinal barrier function components were established through modulation of the key regulatory receptors Toll-like receptor 2 and Toll-like receptor 4. The results suggest that fermented milks of MTCC 5690 could enhance the defences of the intestinal barrier in enteric infection condition and, therefore, can be explored as a dietary-based strategy to reduce Salmonella infection in the human gut.
Collapse
Affiliation(s)
- Namita Rokana
- Molecular Biology Unit, Indian Council of Agricultural Research (ICAR) - National Dairy Research Institute (NDRI), Karnal, Haryana 132001, India
| | - Rajbir Singh
- Molecular Biology Unit, Indian Council of Agricultural Research (ICAR) - National Dairy Research Institute (NDRI), Karnal, Haryana 132001, India
| | - Rashmi Hogarehalli Mallappa
- Molecular Biology Unit, Indian Council of Agricultural Research (ICAR) - National Dairy Research Institute (NDRI), Karnal, Haryana 132001, India
| | - Virender Kumar Batish
- Molecular Biology Unit, Indian Council of Agricultural Research (ICAR) - National Dairy Research Institute (NDRI), Karnal, Haryana 132001, India
| | - Sunita Grover
- Molecular Biology Unit, Indian Council of Agricultural Research (ICAR) - National Dairy Research Institute (NDRI), Karnal, Haryana 132001, India
| |
Collapse
|
19
|
Gough EK, Prendergast AJ, Mutasa KE, Stoltzfus RJ, Manges AR. Assessing the Intestinal Microbiota in the SHINE Trial. Clin Infect Dis 2016; 61 Suppl 7:S738-44. [PMID: 26602302 PMCID: PMC4657595 DOI: 10.1093/cid/civ850] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Advances in DNA sequencing technology now allow us to explore the dynamics and functions of the microbes that inhabit the human body, the microbiota. Recent studies involving experimental animal models suggest a role of the gut microbiota in growth. However, the specific changes in the human gut microbiota that contribute to growth remain unclear, and studies investigating the gut microbiota as a determinant of environmental enteric dysfunction (EED) and child stunting are lacking. In this article, we review the evidence for a link between the developing infant gut microbiota, infant feeding, EED, and stunting, and discuss the potential causal pathways relating these variables. We outline the analytic approaches we will use to investigate these relationships, by capitalizing on the longitudinal design and randomized interventions of the Sanitation Hygiene Infant Nutrition Efficacy trial in Zimbabwe.
Collapse
Affiliation(s)
- Ethan K Gough
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Andrew J Prendergast
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe Blizard Institute, Queen Mary University of London, United Kingdom
| | - Kuda E Mutasa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | | | - Amee R Manges
- School of Population and Public Health, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
20
|
Prado Acosta M, Ruzal SM, Cordo SM. S-layer proteins from Lactobacillus sp. inhibit bacterial infection by blockage of DC-SIGN cell receptor. Int J Biol Macromol 2016; 92:998-1005. [PMID: 27498415 DOI: 10.1016/j.ijbiomac.2016.07.096] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 12/18/2022]
Abstract
Many species of Lactobacillus sp. possess Surface(s) layer proteins in their envelope. Among other important characteristics S-layer from Lactobacillus acidophilus binds to the cellular receptor DC-SIGN (Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin; CD209), which is involved in adhesion and infection of several families of bacteria. In this report we investigate the activity of new S-layer proteins from the Lactobacillus family (Lactobacillus acidophilus, Lactobacillus brevis, Lactobacillus helveticus and Lactobacillus kefiri) over the infection of representative microorganisms important to human health. After the treatment of DC-SIGN expressing cells with these proteins, we were able to diminish bacterial infection by up to 79% in both gram negative and mycobacterial models. We discovered that pre-treatment of the bacteria with S-layers from Lactobacillus acidophilus and Lactobacillus brevis reduced bacteria viability but also prevent infection by the pathogenic bacteria. We also proved the importance of the glycosylation of the S-layer from Lactobacillus kefiri in the binding to the receptor and thus inhibition of infection. This novel characteristic of the S-layers proteins may contribute to the already reported pathogen exclusion activity for these Lactobacillus probiotic strains; and might be also considered as a novel enzymatic antimicrobial agents to inhibit bacterial infection and entry to host cells.
Collapse
Affiliation(s)
- Mariano Prado Acosta
- Laboratorio de Bacterias Gram Positivas, Departamento de Química Biológica-IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET, Argentina.
| | - Sandra M Ruzal
- Laboratorio de Bacterias Gram Positivas, Departamento de Química Biológica-IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET, Argentina
| | - Sandra M Cordo
- Laboratorio de Virología, Departamento de Química Biológica-IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET, Argentina.
| |
Collapse
|
21
|
Abstract
Kefir is a fermented dairy beverage produced by the actions of the microflora encased in the "kefir grain" on the carbohydrates in the milk. Containing many bacterial species already known for their probiotic properties, it has long been popular in Eastern Europe for its purported health benefits, where it is routinely administered to patients in hospitals and recommended for infants and the infirm. It is beginning to gain a foothold in the USA as a healthy probiotic beverage, mostly as an artisanal beverage, home fermented from shared grains, but also recently as a commercial product commanding shelf space in retail establishments. This is similar to the status of yogurts in the 1970s when yogurt was the new healthy product. Scientific studies into these reported benefits are being conducted into these health benefits, many with promising results, though not all of the studies have been conclusive. Our review provides an overview of kefir's structure, microbial profile, production, and probiotic properties. Our review also discusses alternative uses of kefir, kefir grains, and kefiran (the soluble polysaccharide produced by the organisms in kefir grains). Their utility in wound therapy, food additives, leavening agents, and other non-beverage uses is being studied with promising results.
Collapse
|
22
|
Production of bioactive conjugated linoleic acid by the multifunctional enolase from Lactobacillus plantarum. Int J Biol Macromol 2016; 91:524-35. [PMID: 27259647 DOI: 10.1016/j.ijbiomac.2016.05.105] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/28/2016] [Accepted: 05/29/2016] [Indexed: 11/22/2022]
Abstract
Lactobacillus plantarum α-enolase, a multifunctional-anchorless-surface protein belonging to the conserved family of enolases with a central role in glycolytic metabolism, was characterized to have a side role in the intricate metabolism of biohydrogenation of linoleic acid, catalyzing the formation of bioactive 9-cis-11-trans-CLA through dehydration and isomerization of 10-hydroxy-12-cis-octadecenoic acid. The identity of the enolase was confirmed through mass spectrometric analysis that showed the characteristic 442 amino acid sequence with a molecular mass of 48.03kDa. The enolase was not capable of using linoleic acid directly as a substrate but instead uses its hydroxyl derivative 10-hydroxi-12-cis-octadecenoic acid to finally form bioactive conjugated linoleic acid. Biochemical optimization studies were carried out to elucidate the conditions for maximum production of 9-cis-11-trans-CLA and maximum stability of α-enolase when catalyzing this reaction. Furthermore, through structural analysis of the protein, we propose the binding sites of substrate and product molecules that were characterized as two hydrophobic superficial pockets located at opposite ends of the enolase connected through a channel where the catalysis of dehydration and isomerization might occur. These results prove that multifunctional α-enolase also plays a role in cell detoxification from polyunsaturated fatty acids such as linoleic acid, along with the linoleate isomerase complex.
Collapse
|
23
|
Surface proteins of Propionibacterium freudenreichii are involved in its anti-inflammatory properties. J Proteomics 2015; 113:447-61. [DOI: 10.1016/j.jprot.2014.07.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/19/2014] [Accepted: 07/16/2014] [Indexed: 02/07/2023]
|
24
|
Liu Z, Kang L, Li C, Tong C, Huang M, Zhang X, Huang N, Moyer MP, Qin H, Wang J. Knockout of MIMP protein in lactobacillus plantarum lost its regulation of intestinal permeability on NCM460 epithelial cells through the zonulin pathway. BMC Gastroenterol 2014; 14:171. [PMID: 25277875 PMCID: PMC4287571 DOI: 10.1186/1471-230x-14-171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 09/29/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Previous studies indicated that the micro integral membrane protein located within the media place of the integral membrane protein of Lactobacillus plantarum CGMCC 1258 had protective effects against the intestinal epithelial injury. In our study, we mean to establish micro integral membrane protein -knockout Lactobacillus plantarum (LPKM) to investigate the change of its protective effects and verify the role of micro integral membrane protein on protection of normal intestinal barrier function. METHODS Binding assay and intestinal permeability were performed to verify the protective effects of micro integral membrane protein on intestinal permeability in vitro and in vivo. Molecular mechanism was also determined as the zonulin pathway. Clinical data were also collected for further verification of relationship between zonulin level and postoperative septicemia. RESULTS LPKM got decreased inhibition of EPEC adhesion to NCM460 cells. LPKM had lower ability to alleviate the decrease of intestinal permeability induced by enteropathogenic-e.coli, and prevent enteropathogenic-e.coli -induced increase of zonulin expression. Overexpression of zonulin lowered the intestinal permeability regulated by Lactobacillus plantarum. There was a positive correlation between zonulin level and postoperative septicemia. Therefore, micro integral membrane protein could be necessary for the protective effects of Lactobacillus plantarum on intestinal barrier. CONCLUSION MIMP might be a positive factor for Lactobacillus plantarum to protect the intestinal epithelial cells from injury, which could be related to the zonulin pathway.
Collapse
Affiliation(s)
- Zhihua Liu
- Department of Colorectal Surgery, Gastrointestinal Institute of Sun Yat-Sen University, the Sixth Affiliated Hospital of Sun Yat-Sen University (Guangdong Gastrointestinal Hospital), 26 Yuancun Erheng Road, Guangzhou, Guangdong 510655, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Basic and clinical research on the regulation of the intestinal barrier by Lactobacillus and its active protein components: a review with experience of one center. Mol Biol Rep 2014; 41:8037-46. [PMID: 25185994 DOI: 10.1007/s11033-014-3701-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/23/2014] [Indexed: 12/15/2022]
Abstract
Probiotics got protective effects on the intestinal barrier. Our present study is to review the basic and clinical progress on the regulation of the intestinal barrier by Lactobacillus and its active protein components, combing the study of our center. Our study have isolated the active component of micro integral membrane protein (MIMP) within the media place of the integral membrane protein of Lactobacillus plantarum, which was verified about the protective effects against the intestinal epithelial dysfunction. On the other hand, we also found the effects of perioperative use of probiotics in the prevention and treatment of postoperative intestinal barrier dysfunction, and reduction of the postoperative infective complications. In this review, we would like to report the founding of our center, involving in the basic and clinical research progress of regulation of intestinal barrier by Lactobacillus and its active protein component MIMP. Furthermore, we may also promote our following studies about the MIMP and its clinical verification.
Collapse
|
26
|
Hirao LA, Grishina I, Bourry O, Hu WK, Somrit M, Sankaran-Walters S, Gaulke CA, Fenton AN, Li JA, Crawford RW, Chuang F, Tarara R, Marco ML, Bäumler AJ, Cheng H, Dandekar S. Early mucosal sensing of SIV infection by paneth cells induces IL-1β production and initiates gut epithelial disruption. PLoS Pathog 2014; 10:e1004311. [PMID: 25166758 PMCID: PMC4148401 DOI: 10.1371/journal.ppat.1004311] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/30/2014] [Indexed: 02/06/2023] Open
Abstract
HIV causes rapid CD4+ T cell depletion in the gut mucosa, resulting in immune deficiency and defects in the intestinal epithelial barrier. Breakdown in gut barrier integrity is linked to chronic inflammation and disease progression. However, the early effects of HIV on the gut epithelium, prior to the CD4+ T cell depletion, are not known. Further, the impact of early viral infection on mucosal responses to pathogenic and commensal microbes has not been investigated. We utilized the SIV model of AIDS to assess the earliest host-virus interactions and mechanisms of inflammation and dysfunction in the gut, prior to CD4+ T cell depletion. An intestinal loop model was used to interrogate the effects of SIV infection on gut mucosal immune sensing and response to pathogens and commensal bacteria in vivo. At 2.5 days post-SIV infection, low viral loads were detected in peripheral blood and gut mucosa without CD4+ T cell loss. However, immunohistological analysis revealed the disruption of the gut epithelium manifested by decreased expression and mislocalization of tight junction proteins. Correlating with epithelial disruption was a significant induction of IL-1β expression by Paneth cells, which were in close proximity to SIV-infected cells in the intestinal crypts. The IL-1β response preceded the induction of the antiviral interferon response. Despite the disruption of the gut epithelium, no aberrant responses to pathogenic or commensal bacteria were observed. In fact, inoculation of commensal Lactobacillus plantarum in intestinal loops led to rapid anti-inflammatory response and epithelial tight junction repair in SIV infected macaques. Thus, intestinal Paneth cells are the earliest responders to viral infection and induce gut inflammation through IL-1β signaling. Reversal of the IL-1β induced gut epithelial damage by Lactobacillus plantarum suggests synergistic host-commensal interactions during early viral infection and identify these mechanisms as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Lauren A. Hirao
- Department of Medical Microbiology & Immunology, University of California, Davis, Davis, California, United States of America
| | - Irina Grishina
- Department of Medical Microbiology & Immunology, University of California, Davis, Davis, California, United States of America
| | - Olivier Bourry
- Department of Medical Microbiology & Immunology, University of California, Davis, Davis, California, United States of America
| | - William K. Hu
- Department of Medical Microbiology & Immunology, University of California, Davis, Davis, California, United States of America
| | - Monsicha Somrit
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California, United States of America
| | - Sumathi Sankaran-Walters
- Department of Medical Microbiology & Immunology, University of California, Davis, Davis, California, United States of America
| | - Chris A. Gaulke
- Department of Medical Microbiology & Immunology, University of California, Davis, Davis, California, United States of America
| | - Anne N. Fenton
- Department of Medical Microbiology & Immunology, University of California, Davis, Davis, California, United States of America
| | - Jay A. Li
- Department of Medical Microbiology & Immunology, University of California, Davis, Davis, California, United States of America
| | - Robert W. Crawford
- Department of Medical Microbiology & Immunology, University of California, Davis, Davis, California, United States of America
| | - Frank Chuang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California, United States of America
| | - Ross Tarara
- Department of Primate Medicine, California National Primate Center, Davis, California, United States of America
| | - Maria L. Marco
- Department of Food Science and Technology, University of California, Davis, Davis, California, United States of America
| | - Andreas J. Bäumler
- Department of Medical Microbiology & Immunology, University of California, Davis, Davis, California, United States of America
| | - Holland Cheng
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California, United States of America
| | - Satya Dandekar
- Department of Medical Microbiology & Immunology, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
27
|
Shi CZ, Chen HQ, Liang Y, Xia Y, Yang YZ, Yang J, Zhang JD, Wang SH, Liu J, Qin HL. Combined probiotic bacteria promotes intestinal epithelial barrier function in interleukin-10-gene-deficient mice. World J Gastroenterol 2014; 20:4636-4647. [PMID: 24782616 PMCID: PMC4000500 DOI: 10.3748/wjg.v20.i16.4636] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/17/2013] [Accepted: 01/02/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the protective effects of combinations of probiotic (Bifico) on interleukin (IL)-10-gene-deficient (IL-10 KO) mice and Caco-2 cell monolayers.
METHODS: IL-10 KO mice were used to assess the benefits of Bifico in vivo. IL-10 KO and control mice received approximately 1.5 × 108 cfu/d of Bifico for 4 wk. Colons were then removed and analyzed for epithelial barrier function by Ussing Chamber, while an ELISA was used to evaluate proinflammatory cytokines. The colon epithelial cell line, Caco-2, was used to test the benefit of Bifico in vitro. Enteroinvasive Escherichia coli (EIEC) and the probiotic mixture Bifico, or single probiotic strains, were applied to cultured Caco-2 monolayers. Barrier function was determined by measuring transepithelial electrical resistance and tight junction protein expression.
RESULTS: Treatment of IL-10 KO mice with Bifico partially restored body weight, colon length, and epithelial barrier integrity to wild-type levels. In addition, IL-10 KO mice receiving Bifico treatment had reduced mucosal secretion of tumor necrosis factor-α and interferon-γ, and attenuated colonic disease. Moreover, treatment of Caco-2 monolayers with Bifico or single-strain probiotics in vitro inhibited EIEC invasion and reduced the secretion of proinflammatory cytokines.
CONCLUSION: Bifico reduced colon inflammation in IL-10 KO mice, and promoted and improved epithelial-barrier function, enhanced resistance to EIEC invasion, and decreased proinflammatory cytokine secretion.
Collapse
|
28
|
Bekele TL, Keith P, Adelina R, Vyvyan S, Victoria D. Oral <i>Lactobacillus plantarum</i> NCIMB 8825 Inhibits Adhesion, Invasion and Metabolism of <i>Neisseria meningitidis</i> Serogroup B and Affords Anti-Inflammatory and Cytotoxic Protection to Nasopharyngeal Epithelial Cells. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/aim.2014.42013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Lactobacillus plantarum isolated from kefir protects vero cells from cytotoxicity by type-II shiga toxin from Escherichia coli O157:H7. J DAIRY RES 2012. [PMID: 23186804 DOI: 10.1017/s0022029912000659] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Kefir is a fermented-milk beverage originating and widely consumed in the Caucasus as well as in Eastern Europe and is a source of bacteria with potential probiotic properties. Enterohaemorrhagic Escherichia coli producing Shiga toxin is commonly associated with food-transmitted diseases; the most prevalent serotype causing epidemics is Esch. coli O157:H7. The aim of this study was to evaluate the antagonism of Lactobacillus plantarum isolated from kefir against the action on Vero cells of supernatants of the Esch. coli O157:H7 strain 69160 expressing the type-II Shiga toxin (Stx2) and to study the role of the Lactobacillus cell wall in that inhibition. Spent culture supernatants of Esch. coli O157:H7 strain 69160 led to cytotoxic effects on cultured eukaryotic cells as evidenced by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide-cleavage assay or by lactate-dehyrogenase release. Lb. plantarum CIDCA 83114 reduced the cytotoxic activity of Stx present in strain-69160 supernatants, and this protection was markedly higher than those of Lactobacillus kefir CIDCA 83113 and 8348 and Lb. delbrueckii subsp. bulgaricus CIDCA 333. This antagonism of cytotoxicity was mimicked by Lb. plantarum cell walls but was reduced after heating or protease treatments, thus indicating a protein or peptide as being involved in the protection mechanism. The cell surface of the lactobacilli bound the subunit B of Stx thereby decreasing the cytotoxicity. These interactions could constitute the first step in preventing the damage induced by Esch. coli O157:H7 supernatants, thus representing a valuable means of potentially mitigating the noxious effects of this food pathogen.
Collapse
|
30
|
S-layer proteins of Lactobacillus acidophilus inhibits JUNV infection. Biochem Biophys Res Commun 2012; 422:590-5. [PMID: 22595457 PMCID: PMC7124250 DOI: 10.1016/j.bbrc.2012.05.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 05/08/2012] [Indexed: 01/30/2023]
Abstract
It has been previously described that S-layer binds to the C-type lectin DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN, CD209). It was also shown that DC-SIGN is a cell-surface adhesion factor that enhances viral entry of several virus families. Among those, Junin virus (JUNV) entry is enhanced in cells expressing DC-SIGN and for that reason surface-layer protein (S-layer) of Lactobacillus acidophilus ATCC 4365 was evaluated as a possible JUNV inhibitor. Experiments using 3T3 cells stably expressing DC-SIGN, showed an almost complete inhibition of JUNV infection when they were treated with S-layer in a similar extend as the inhibition shown by mannan. However no inhibition effect was observed in 3T3 wild type cells or in 3T3 cells expressing liver/lymph node-specific ICAM-3 grabbing nonintegrin (L-SIGN or DC-SIGNR or CD209L). Treatments with S-layer during different times in the infection demonstrated that inhibition was only observed when S-layer was presented in early stages of the viral infection. This inhibition does not involve the classic recognition of mannose by this C-type lectin as the S-layer showed no evidence to be glycosylated. In fact, the highly basic nature of the S-layer (pI > 9.5) seems to be involved in electrostatic interactions between DC-SIGN and S-layer, since high pH abolished the inhibitory effect on infection cause by the S-layer. In silico analysis predicts a Ca2+-dependant carbohydrate recognition domain in the SlpA protein. This novel characteristic of the S-layer, a GRAS status protein, contribute to the pathogen exclusion reported for this probiotic strain and may be applied as an antiviral agent to inhibit several kinds of viruses.
Collapse
|
31
|
Involvement of the mannose receptor and p38 mitogen-activated protein kinase signaling pathway of the microdomain of the integral membrane protein after enteropathogenic Escherichia coli infection. Infect Immun 2012; 80:1343-50. [PMID: 22290149 DOI: 10.1128/iai.05930-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The microdomain of the integral membrane protein (MIMP) has been shown to adhere to mucin and to antagonize the adhesion of enteropathogenic Escherichia coli (EPEC) to epithelial cells; however, the mechanism has not been fully elucidated. In this study, we further identified the receptor of MIMP on NCM460 cells and investigated the mechanism (the p38 mitogen-activated protein kinase [MAPK] pathway) following the interaction of MIMP and its corresponding receptor, mannose receptor. We first identified the target receptor of MIMP on the surfaces of NCM460 cells using immunoprecipitation-mass spectrometry technology. We also verified the mannose receptor and examined the degradation and activation of the p38 MAPK signaling pathway. The results indicated that MIMP adhered to NCM460 cells by binding to the mannose receptor and inhibited the phosphorylation of p38 MAPK stimulated after EPEC infection via inhibition of the Toll-like receptor 5 pathway. These findings indicated that MIMPs relieve the injury of NCM460 cells after enteropathogenic E. coli infection through the mannose receptor and inhibition of the p38 MAPK signaling pathway, both of which may therefore be potential therapeutic targets for intestinal diseases, such as inflammatory bowel disease.
Collapse
|
32
|
Koo OK, Amalaradjou MAR, Bhunia AK. Recombinant probiotic expressing Listeria adhesion protein attenuates Listeria monocytogenes virulence in vitro. PLoS One 2012; 7:e29277. [PMID: 22235279 PMCID: PMC3250429 DOI: 10.1371/journal.pone.0029277] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 11/23/2011] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Listeria monocytogenes, an intracellular foodborne pathogen, infects immunocompromised hosts. The primary route of transmission is through contaminated food. In the gastrointestinal tract, it traverses the epithelial barrier through intracellular or paracellular routes. Strategies to prevent L. monocytogenes entry can potentially minimize infection in high-risk populations. Listeria adhesion protein (LAP) aids L. monocytogenes in crossing epithelial barriers via the paracellular route. The use of recombinant probiotic bacteria expressing LAP would aid targeted clearance of Listeria from the gut and protect high-risk populations from infection. METHODOLOGY/PRINCIPAL FINDINGS The objective was to investigate the ability of probiotic bacteria or LAP-expressing recombinant probiotic Lactobacillus paracasei (Lbp(LAP)) to prevent L. monocytogenes adhesion, invasion, and transwell-based transepithelial translocation in a Caco-2 cell culture model. Several wild type probiotic bacteria showed strong adhesion to Caco-2 cells but none effectively prevented L. monocytogenes infection. Pre-exposure to Lbp(LAP) for 1, 4, 15, or 24 h significantly (P<0.05) reduced adhesion, invasion, and transepithelial translocation of L. monocytogenes in Caco-2 cells, whereas pre-exposure to parental Lb. paracasei had no significant effect. Similarly, Lbp(LAP) pre-exposure reduced L. monocytogenes translocation by as much as 46% after 24 h. Lbp(LAP) also prevented L. monocytogenes-mediated cell damage and compromise of tight junction integrity. Furthermore, Lbp(LAP) cells reduced L. monocytogenes-mediated cell cytotoxicity by 99.8% after 1 h and 79% after 24 h. CONCLUSIONS/SIGNIFICANCE Wild type probiotic bacteria were unable to prevent L. monocytogenes infection in vitro. In contrast, Lbp(LAP) blocked adhesion, invasion, and translocation of L. monocytogenes by interacting with host cell receptor Hsp60, thereby protecting cells from infection. These data show promise for the use of recombinant probiotics in preventing L. monocytogenes infection in high-risk populations.
Collapse
Affiliation(s)
- Ok Kyung Koo
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana, United States of America
| | - Mary Anne Roshni Amalaradjou
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana, United States of America
| | - Arun K. Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana, United States of America
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
33
|
Nayak KC. Comparative study on factors influencing the codon and amino acid usage in Lactobacillus sakei 23K and 13 other lactobacilli. Mol Biol Rep 2011; 39:535-45. [DOI: 10.1007/s11033-011-0768-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 04/27/2011] [Indexed: 11/24/2022]
|
34
|
Beganović J, Frece J, Kos B, Leboš Pavunc A, Habjanič K, Šušković J. Functionality of the S-layer protein from the probiotic strain Lactobacillus helveticus M92. Antonie van Leeuwenhoek 2011; 100:43-53. [DOI: 10.1007/s10482-011-9563-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 02/04/2011] [Indexed: 11/27/2022]
|
35
|
Li J, Zhou R, He WC, Xia B. Effects of recombinant human intestinal trefoil factor on trinitrobenzene sulphonic acid induced colitis in rats. Mol Biol Rep 2010; 38:4787-92. [PMID: 21153768 DOI: 10.1007/s11033-010-0616-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Accepted: 11/25/2010] [Indexed: 12/19/2022]
Abstract
Intestinal trefoil factor (ITF) has been proved to be effective in treatment of ulcerative colitis. However, the mechanisms of it remain unclear. In this study, we observed the effects of combined treatment with 5-aminosalicylic acid (5-ASA) and recombinant human ITF (rhITF) on the expression of Myeloperoxidase (MPO), nuclear factor-κB (NF-κB) and epidermal growth factor (EGF) in trinitrobenzene sulphonic acid (TNBS) induced colitis in rats. Forty Sprague-Dawley (SD) male rats which were induced to distal colitis by the colonic administration of TNBS, were randomly divided into four groups and colonically treated with normal saline (A), 5-ASA (B), rhITF (C), respectively. The macroscopic and histological changes of the colon, activities of MPO, expressions of serum EGF and tissue NF-κB were detected. The results showed that manifestation, colonic damage score and MPO activities of the rats treated with 5-ASA or/and rhITFs were improved, serum EGF production was augmented and expression of tissue NF-κB was down-regulated. Single usage of 5-ASA or rhITF had no significant difference, but combined using of them had more significant and noticeable effects compared to any single treatment. It could be concluded that topical treatment with 5-ASA and rhITF had beneficial effects in treating TNBS-induced colitis of rats and combined treatment was better than single treatment. It was possibly related to suppression of neutrophil infiltration, down-regulation expression of NF-κB and up-regulation expression of EGF.
Collapse
Affiliation(s)
- Jin Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Provincial Center of Clinical Study for Intestinal & Colonrectal Disease, Donghu Road 169, Wuhan 430071, Hubei Province, People's Republic of China.
| | | | | | | |
Collapse
|