1
|
Muñoz-Vargas MA, López-Jaramillo J, González-Gordo S, Taboada J, Palma JM, Corpas FJ. Peroxisomal H 2O 2-generating sulfite oxidase (SOX) from pepper fruits is negatively modulated by NO and H 2S. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109591. [PMID: 39970565 DOI: 10.1016/j.plaphy.2025.109591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/21/2025]
Abstract
Nitric oxide and hydrogen sulfide are signal molecules that can exert regulatory functions in diverse plant processes including fruit ripening. Sulfite oxidase (SOX) is a peroxisomal enzyme that catalyzes the oxidation of sulfite (SO32-) to sulfate (SO42-) with the concomitant generation of H2O2. SOX requires the molybdenum cofactor (Moco) and it has been proposed that SOX functions as a mechanism of protection against sulfite toxicity. Based on the analysis of the pepper genome and fruit transcriptome (RNA-seq), a single gene encoding for a SOX, was identified in chromosome 2. The CaSOX gene expression analysis during fruit ripening, from green immature (G) to red ripe (R) indicates that its expression increased. In-gel analysis using non-denaturing PAGE of a 50-75% (NH4)2SO4 protein fraction allowed the detection of its SOX activity in green pepper fruits. In vitro assay of the SOX from pepper fruits showed that the SOX activity is differently regulated by NO and H2S. Mass spectrometric analysis of the nitrated recombinant pepper SOX enables us to corroborate that this enzyme undergoes inhibition by nitration in Tyr10. Protein modeling analysis also reveals that Cys70 and Cys163 are susceptible targets for S-nitrosation and persulfidation. These findings suggest that NO and H2S could function upstream of the peroxisomal H2O2-generating SOX, highlighting the intricate network of signaling molecules within this subcellular compartment.
Collapse
Affiliation(s)
- María A Muñoz-Vargas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture. Estación Experimental del Zaidín (Spanish National Research Council, CSIC), Granada, Spain
| | | | - Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture. Estación Experimental del Zaidín (Spanish National Research Council, CSIC), Granada, Spain
| | - Jorge Taboada
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture. Estación Experimental del Zaidín (Spanish National Research Council, CSIC), Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture. Estación Experimental del Zaidín (Spanish National Research Council, CSIC), Granada, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture. Estación Experimental del Zaidín (Spanish National Research Council, CSIC), Granada, Spain.
| |
Collapse
|
2
|
Yang X, Ye J, Niu F, Feng Y, Song X. Identification and verification of genes related to pollen development and male sterility induced by high temperature in the thermo-sensitive genic male sterile wheat line. PLANTA 2021; 253:83. [PMID: 33770279 DOI: 10.1007/s00425-021-03601-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Bioinformatic analysis identified the function of genes regulating wheat fertility. Barley stripe mosaic virus-induced gene silencing verified that the genes TaMut11 and TaSF3 are involved in pollen development and related to fertility conversion. Environment-sensitive genic male sterility is of vital importance to hybrid vigor in crop production and breeding. Therefore, it is meaningful to study the function of the genes related to pollen development and male sterility, which is still not fully understand currently. In this study, YanZhan 4110S, a new thermo-sensitive genic male sterility wheat line, and its near-isogenic line YanZhan 4110 were analyzed. Through comparative transcriptome basic bioinformatics and weighted gene co-expression network to further identify some hub genes, the genes TaMut11 and TaSF3 associated with pollen development and male sterility induced by high-temperature were identified in YanZhan 4110S. Further verification through barley stripe mosaic virus-induced gene silencing elucidated that the silencing of TaMut11 and TaSF3 caused pollen abortion, finally resulting in the declination of fertility. These findings provided data on the abortive mechanism in environment-sensitive genic male sterility wheat.
Collapse
Affiliation(s)
- Xuetong Yang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiali Ye
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fuqiang Niu
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yi Feng
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiyue Song
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
3
|
The Versatile Roles of Sulfur-Containing Biomolecules in Plant Defense-A Road to Disease Resistance. PLANTS 2020; 9:plants9121705. [PMID: 33287437 PMCID: PMC7761819 DOI: 10.3390/plants9121705] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 01/03/2023]
Abstract
Sulfur (S) is an essential plant macronutrient and the pivotal role of sulfur compounds in plant disease resistance has become obvious in recent decades. This review attempts to recapitulate results on the various functions of sulfur-containing defense compounds (SDCs) in plant defense responses to pathogens. These compounds include sulfur containing amino acids such as cysteine and methionine, the tripeptide glutathione, thionins and defensins, glucosinolates and phytoalexins and, last but not least, reactive sulfur species and hydrogen sulfide. SDCs play versatile roles both in pathogen perception and initiating signal transduction pathways that are interconnected with various defense processes regulated by plant hormones (salicylic acid, jasmonic acid and ethylene) and reactive oxygen species (ROS). Importantly, ROS-mediated reversible oxidation of cysteine residues on plant proteins have profound effects on protein functions like signal transduction of plant defense responses during pathogen infections. Indeed, the multifaceted plant defense responses initiated by SDCs should provide novel tools for plant breeding to endow crops with efficient defense responses to invading pathogens.
Collapse
|
4
|
Xia Z, Xu Z, Wei Y, Wang M. Overexpression of the Maize Sulfite Oxidase Increases Sulfate and GSH Levels and Enhances Drought Tolerance in Transgenic Tobacco. FRONTIERS IN PLANT SCIENCE 2018; 9:298. [PMID: 29593762 PMCID: PMC5857591 DOI: 10.3389/fpls.2018.00298] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/21/2018] [Indexed: 05/10/2023]
Abstract
Sulfite oxidase (SO) plays a pivotal role in sulfite metabolism. In our previous study, sulfite-oxidizing function of the SO from Zea mays (ZmSO) was characterized. To date, the knowledge of ZmSO's involvement in abiotic stress response is scarce. In this study, we aimed to investigate the role of ZmSO in drought stress. The transcript levels of ZmSO were relatively high in leaves and immature embryos of maize plants, and were up-regulated markedly by PEG-induced water stress. Overexpression of ZmSO improved drought tolerance in tobacco. ZmSO-overexpressing transgenic plants showed higher sulfate and glutathione (GSH) levels but lower hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents under drought stress, indicating that ZmSO confers drought tolerance by enhancing GSH-dependent antioxidant system that scavenged ROS and reduced membrane injury. In addition, the transgenic plants exhibited more increased stomatal response than the wild-type (WT) to water deficit. Interestingly, application of exogenous GSH effectively alleviated growth inhibition in both WT and transgenic plants under drought conditions. qPCR analysis revealed that the expression of several sulfur metabolism-related genes was significantly elevated in the ZmSO-overexpressing lines. Taken together, these results imply that ZmSO confers enhanced drought tolerance in transgenic tobacco plants possibly through affecting stomatal regulation, GSH-dependent antioxidant system, and sulfur metabolism-related gene expression. ZmSO could be exploited for developing drought-tolerant maize varieties in molecular breeding.
Collapse
Affiliation(s)
- Zongliang Xia
- College of Life Science, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Zhengzhou, China
- *Correspondence: Zongliang Xia,
| | - Ziwei Xu
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Yangyang Wei
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Meiping Wang
- Library of Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
5
|
Xia Z, Zhang X, Li J, Su X, Liu J. Overexpression of a tobacco J-domain protein enhances drought tolerance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 83:100-6. [PMID: 25128645 DOI: 10.1016/j.plaphy.2014.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 07/27/2014] [Indexed: 05/05/2023]
Abstract
DnaJ proteins constitute a DnaJ/Hsp40 family and are important regulators involved in diverse cellular functions. To date, the molecular mechanisms of DnaJ proteins involved in response to drought stress in plants are largely unknown. In this study, a putative DnaJ ortholog from Nicotiana tabacum (NtDnaJ1), which encodes a putative type-I J-protein, was isolated. The transcript levels of NtDnaJ1 were higher in aerial tissues and were markedly up-regulated by drought stress. Over-expression of NtDnaJ1 in Arabidopsis plants enhanced their tolerance to osmotic or drought stress. Quantitative determination of H2O2 accumulation has shown that H2O2 content increased in wild-type and transgenic seedlings under osmotic stress, but was significantly lower in both transgenic lines compared with the wild-type. Expression analysis of stress-responsive genes in NtDnaJ1-transgenic Arabidopsis revealed that there was significantly increased expression of genes involved in the ABA-dependent signaling pathway (AtRD20, AtRD22 and AtAREB2) and antioxidant genes (AtSOD1, AtSOD2, and AtCAT1). Collectively, these data demonstrate that NtDnaJ1 could be involved in drought stress response and its over-expression enhances drought tolerance possibly through regulating expression of stress-responsive genes. This study may facilitate our understandings of the biological roles of DnaJ protein-mediated abiotic stress in higher plants and accelerate genetic improvement of crop plants tolerant to environmental stresses.
Collapse
Affiliation(s)
- Zongliang Xia
- Henan Agricultural University, Zhengzhou 450002, PR China.
| | - Xiaoquan Zhang
- Henan Agricultural University, Zhengzhou 450002, PR China
| | - Junqi Li
- Henan Agricultural University, Zhengzhou 450002, PR China
| | - Xinhong Su
- Henan Tobacco Company, Zhengzhou 450008, PR China
| | - Jianjun Liu
- Zhengzhou Branch, Henan Tobacco Company, Zhengzhou 450001, PR China
| |
Collapse
|
6
|
Xia Z, Wei Y, Sun K, Wu J, Wang Y, Wu K. The maize AAA-type protein SKD1 confers enhanced salt and drought stress tolerance in transgenic tobacco by interacting with Lyst-interacting protein 5. PLoS One 2013; 8:e69787. [PMID: 23894539 PMCID: PMC3722157 DOI: 10.1371/journal.pone.0069787] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 06/12/2013] [Indexed: 01/12/2023] Open
Abstract
ATPase associated with various cellular activities (AAA) proteins are important regulators involved in diverse cellular functions. To date, the molecular mechanisms of AAA proteins involved in response to salt and drought stresses in plants are largely unknown. In this study, a putative SKD1 (suppressor of K(+) transport growth defect 1) ortholog from Zea mays (ZmSKD1), which encodes a putative AAA protein, was isolated. The transcript levels of ZmSKD1 were higher in aerial tissues and were markedly up-regulated by salt or drought stress. Over-expression of ZmSKD1 in tobacco plants enhanced their tolerances not only to salt but to drought. Moreover, reactive oxygen species accumulations in ZmSKD1 transgenic lines were relative less than those in wild-type plants during salt or PEG-induced water stress. The interaction between ZmSKD1 and NtLIP5 (Lyst-Interacting Protein 5 homolog from Nicotiana tabacum) was confirmed by both yeast two-hybrid and immuno-precipitation assays; moreover, the α-helix-rich domain in the C-terminus of ZmSKD1 was identified to be required for its interaction with NtLIP5 using truncation mutations. Collectively, these data demonstrate that ZmSKD1could be involved in salt and drought stress responses and its over-expression enhances salt or drought stress tolerance possibly through interacting with LIP5 in tobacco. This study may facilitate our understandings of the biological roles of SKD1-mediated ESCRT pathway under stress conditions in higher plants and accelerate genetic improvement of crop plants tolerant to environmental stresses.
Collapse
Affiliation(s)
- Zongliang Xia
- College of Life Science, Henan Agricultural University, Zhengzhou, PR China
- Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crops in Henan Province, Zhengzhou, PR China
| | - Yangyang Wei
- College of Life Science, Henan Agricultural University, Zhengzhou, PR China
- Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crops in Henan Province, Zhengzhou, PR China
| | - Kaile Sun
- College of Life Science, Henan Agricultural University, Zhengzhou, PR China
- Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crops in Henan Province, Zhengzhou, PR China
| | - Jianyu Wu
- College of Life Science, Henan Agricultural University, Zhengzhou, PR China
- Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crops in Henan Province, Zhengzhou, PR China
| | - Yongxia Wang
- Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crops in Henan Province, Zhengzhou, PR China
| | - Ke Wu
- College of Life Science, Henan Agricultural University, Zhengzhou, PR China
| |
Collapse
|
7
|
Xia Z, Cao R, Sun K, Zhang H. The movement protein of barley yellow dwarf virus-GAV self-interacts and forms homodimers in vitro and in vivo. Arch Virol 2012; 157:1233-9. [PMID: 22437255 DOI: 10.1007/s00705-012-1288-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 02/14/2012] [Indexed: 10/28/2022]
Abstract
The 17-kDa movement protein (MP) of the GAV strain of barley yellow dwarf virus (BYDV-GAV) can bind the viral RNA and target to the nucleus. However, much less is known about the active form of the MP in planta. In this study, the ability of the MP to self-interact was analyzed by yeast two-hybrid assay and bimolecular fluorescence complementation. The BYDV-GAV MP has a strong potential to self-interact in vitro and in vivo, and self-interaction was mediated by the N-terminal domain spanning the second α-helix (residues 17-39). Chemical cross-linking and heterologous MP expression from a pea early browning virus (PEBV) vector further showed that MP self-interacts to form homodimers in vitro and in planta. Interestingly, the N-terminal domain necessary for MP self-interaction has previously been identified as important for nuclear targeting. Based on these findings, a functional link between MP self-interaction and nuclear targeting is discussed.
Collapse
Affiliation(s)
- Zongliang Xia
- Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crops in Henan Province, College of Life Science, Henan Agricultural University, Zhengzhou 450002, People's Republic of China.
| | | | | | | |
Collapse
|
8
|
Xia Z, Sun K, Wang M, Wu K, Zhang H, Wu J. Overexpression of a maize sulfite oxidase gene in tobacco enhances tolerance to sulfite stress via sulfite oxidation and CAT-mediated H2O2 scavenging. PLoS One 2012; 7:e37383. [PMID: 22693572 PMCID: PMC3365070 DOI: 10.1371/journal.pone.0037383] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/18/2012] [Indexed: 01/24/2023] Open
Abstract
Sulfite oxidase (SO) plays an important role in sulfite metabolism. To date, the molecular mechanisms of sulfite metabolism in plants are largely unknown. Previously, a full-length cDNA of the putative sulfite oxidase gene from maize (ZmSO) was cloned, and its response to SO(2)/sulfite stress at the transcriptional level was characterized. In this study, the recombinant ZmSO protein was purified from E. coli. It exhibited sulfite-dependent activity and had strong affinity for the substrate sulfite. Over-expression (OE) of ZmSO in tobacco plants enhanced their tolerance to sulfite stress. The plants showed much less damage, less sulfite accumulation, but greater amounts of sulfate. This suggests that tolerance of transgenic plants to sulfite was enhanced by increasing SO expression levels. Interestingly, H(2)O(2) accumulation levels by histochemical detection and quantitative determination in the OE plants were much less than those in the wild-type upon sulfite stress. Furthermore, reductions of catalase levels detected in the OE lines were considerably less than in the wild-type plants. This indicates that SO may play an important role in protecting CAT from inhibition by excess sulfite. Collectively, these data demonstrate that transgenic tobacco plants over-expressing ZmSO enhance tolerance to excess sulfite through sulfite oxidation and catalase-mediated hydrogen peroxide scavenging. This is the first SO gene from monocots to be functionally characterized.
Collapse
Affiliation(s)
- Zongliang Xia
- College of Life Science, Henan Agricultural University, Zhengzhou, People’s Republic of China
- Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crops in Henan Province, Zhengzhou, People’s Republic of China
| | - Kaile Sun
- College of Life Science, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Meiping Wang
- College of Life Science, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Ke Wu
- College of Life Science, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Hua Zhang
- College of Life Science, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Jianyu Wu
- College of Life Science, Henan Agricultural University, Zhengzhou, People’s Republic of China
- Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crops in Henan Province, Zhengzhou, People’s Republic of China
| |
Collapse
|
9
|
Senthil-Kumar M, Mysore KS. New dimensions for VIGS in plant functional genomics. TRENDS IN PLANT SCIENCE 2011; 16:656-65. [PMID: 21937256 DOI: 10.1016/j.tplants.2011.08.006] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/07/2011] [Accepted: 08/22/2011] [Indexed: 05/18/2023]
Abstract
Virus-induced gene silencing (VIGS) is an efficient tool for gene function studies. It has been used to perform both forward and reverse genetics to identify plant genes involved in several plant processes. However, this technology has not yet been used to its full potential. This can be attributed to several of its limitations such as inability to silence genes during seed germination and the non-stable nature of silencing. However, several recent studies have shown that these limitations can now be overcome. In this review, we will discuss the limitations of VIGS and suitable solutions. In addition, we also describe the recent improvements and future prospects of using VIGS in plant biology.
Collapse
Affiliation(s)
- Muthappa Senthil-Kumar
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | | |
Collapse
|