1
|
He Y, Wang Y, Li X, Qi Y, Qu Z, Hu Y. Lycium Barbarum Polysaccharides Improves Cognitive Functions in ICV-STZ-Induced Alzheimer's Disease Mice Model by Improving the Synaptic Structural Plasticity and Regulating IRS1/PI3K/AKT Signaling Pathway. Neuromolecular Med 2024; 26:15. [PMID: 38653878 DOI: 10.1007/s12017-024-08784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
Lycium barbarum polysaccharide (LBP) have a certain curative effect on hypoglycemic and neuroprotective effects, but the specific mechanism is unclear and needs to be further explored. This study aimed to clarify the mechanisms of LBP in the treatment of ICV-STZ mice model of AD from the perspectives of insulin resistance, IRS1/PI3K/AKT signaling pathway, and synaptic protein expression. We used male C57BL/6J mice injected with STZ (3 mg/kg) in the lateral ventricle as an AD model. After treatment with LBP, the learning and memory abilities of ICV-STZ mice were enhanced, and the pathological changes in brain tissue were alleviated. LBP can regulate the expression of proteins related to the IRS1/PI3K/AKT signaling pathway and thereby reducing Aβ deposition and tau protein phosphorylation in the brain of ICV-STZ mice. In addition, LBP also can up-regulate the expression of synaptic proteins. The results indicated that LBP played a neuroprotective role by regulating the IRS1/PI3K/AKT pathway, inhibiting tau protein hyperphosphorylation and improving the expression levels of synapse-related proteins.
Collapse
Affiliation(s)
- Yingxi He
- Department of Phamacy, Shihezi University, Shihezi, China
- Key Laboratory of Xin Jiang Phytomedicine Resources Utilization, Ministry of Education, Shihezi, 832000, Xinjiang, China
| | - Yanyou Wang
- Department of Phamacy, Shihezi University, Shihezi, China
- Key Laboratory of Xin Jiang Phytomedicine Resources Utilization, Ministry of Education, Shihezi, 832000, Xinjiang, China
| | - Xia Li
- Department of Phamacy, Shihezi University, Shihezi, China
- Key Laboratory of Xin Jiang Phytomedicine Resources Utilization, Ministry of Education, Shihezi, 832000, Xinjiang, China
| | - Yanqiang Qi
- Department of Phamacy, Shihezi University, Shihezi, China
- Key Laboratory of Xin Jiang Phytomedicine Resources Utilization, Ministry of Education, Shihezi, 832000, Xinjiang, China
| | - Zuwei Qu
- Department of Phamacy, Shihezi University, Shihezi, China
- Key Laboratory of Xin Jiang Phytomedicine Resources Utilization, Ministry of Education, Shihezi, 832000, Xinjiang, China
| | - Yanli Hu
- Department of Phamacy, Shihezi University, Shihezi, China.
- Key Laboratory of Xin Jiang Phytomedicine Resources Utilization, Ministry of Education, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
2
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
3
|
Arefnezhad R, Nejabat A, Behjati F, Torkamanche M, Zarei H, Yekkehbash M, Afsharmanesh F, Niknam Z, Jamialahmadi T, Sahebkar A. Tanshinone IIA Against Cerebral Ischemic Stroke and Ischemia- Reperfusion Injury: A Review of the Current Documents. Mini Rev Med Chem 2024; 24:1701-1709. [PMID: 38482618 DOI: 10.2174/0113895575299721240227070032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 08/28/2024]
Abstract
Stroke is a well-known neurological disorder that carries significant morbidity and mortality rates worldwide. Cerebral Ischemic Stroke (CIS), the most common subtype of stroke, occurs when thrombosis or emboli form elsewhere in the body and travel to the brain, leading to reduced blood perfusion. Cerebral Ischemia/Reperfusion Injury (CIRI) is a common complication of CIS and arises when blood flow is rapidly restored to the brain tissue after a period of ischemia. The therapeutic approaches currently recognized for CIS, such as thrombolysis and thrombectomy, have notable side effects that limit their clinical application. Recently, there has been growing interest among researchers in exploring the potential of herbal agents for treating various disorders and malignancies. One such herbal agent with medicinal applications is tanshinone IIA, an active diterpene quinone extracted from Salvia miltiorrhiza Bunge. Tanshinone IIA has shown several pharmacological benefits, including anti-inflammatory, antioxidant, anti-apoptotic, and neuroprotective properties. Multiple studies have indicated the protective role of tanshinone IIA in CIS and CIRI. This literature review aims to summarize the current findings regarding the molecular mechanisms through which this herbal compound improves CIS and CIRI.
Collapse
Affiliation(s)
- Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | - Hooman Zarei
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | - Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
4
|
Tao P, Ji J, Gu S, Wang Q, Xu Y. Progress in the Mechanism of Autophagy and Traditional Chinese Medicine Herb Involved in Dementia. Front Pharmacol 2022; 12:825330. [PMID: 35242028 PMCID: PMC8886436 DOI: 10.3389/fphar.2021.825330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/24/2021] [Indexed: 12/17/2022] Open
Abstract
Dementias is a kind of neurodegenerative disease, which occurs among the aging population. Current therapeutic outcome for dementia is limited. The medical use of herbal plant has a rich history in traditional Chinese medicine practice for thousands of years. Herbal medicine (HM) may provide a positive effect for prevention and treatment in dementia. As an alternative treatment to dementia, there has been a growing interest in HM extracts in scientific community as a result of its promising study results, mainly in animal experiment. At the molecular level, HM extracts trigger autophagy and reduce generation of reactive oxygen species (ROS) while inhibiting inflammation and reduce neurotoxicity. Experiments both in vivo and in vitro have identified certain potential of HM extracts and natural products as an important regulator factor in mediating autophagy, which might contribute to the improvement of dementia. This brief review not only summarizes the mechanism of autophagy in dementia but also offers a general understanding of the therapeutic mechanism of HM extracts in treating dementia and evaluates the potential clinical practice of HM in general.
Collapse
Affiliation(s)
- Pengyu Tao
- Basic Medical School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Ji
- Department of Nephrology, Yueyang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Simeng Gu
- Department of Psychology, Jiangsu University Medical School, Zhenjiang, China
| | - Qian Wang
- Postdoctoral Workstation, Department of Central Laboratory, Taian City Central Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| |
Collapse
|
5
|
Subedi L, Gaire BP. Tanshinone IIA: A phytochemical as a promising drug candidate for neurodegenerative diseases. Pharmacol Res 2021; 169:105661. [PMID: 33971269 DOI: 10.1016/j.phrs.2021.105661] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/02/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023]
Abstract
Tanshinones, lipophilic diterpenes isolated from the rhizome of Salvia miltiorrhiza, have diverse pharmacological activities against human ailments including neurological diseases. In fact, tanshinones have been used to treat heart diseases, stroke, and vascular diseases in traditional Chinese medicine. During the last decade, tanshinones have been the most widely studied phytochemicals for their neuroprotective effects against experimental models of cerebral ischemia and Alzheimer's diseases. Importantly, tanshinone IIA, mostly studied tanshinone for biological activities, is recently reported to attenuate blood-brain barrier permeability among stroke patients, suggesting tanshinone IIA as an appealing therapeutic candidate for neurological diseases. Tanshinone I and IIA are also effective in experimental models of Parkinson's disease, Multiple sclerosis, and other neuroinflammatory diseases. In addition, several experimental studies suggested the pleiotropic neuroprotective effects of tanshinones such as anti-inflammatory, antioxidant, anti-apoptotic, and BBB protectant further value aiding to tanshinone as an appealing therapeutic strategy in neurological diseases. Therefore, in this review, we aimed to compile the recent updates and cellular and molecular mechanisms of neuroprotection of tanshinone IIA in diverse neurological diseases.
Collapse
Affiliation(s)
- Lalita Subedi
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Bhakta Prasad Gaire
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Tanshinone IIA suppresses lipopolysaccharide-induced neuroinflammatory responses through NF-κB/MAPKs signaling pathways in human U87 astrocytoma cells. Brain Res Bull 2020; 164:136-145. [DOI: 10.1016/j.brainresbull.2020.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
|
7
|
Protective Effects of Active Compounds from Salviae miltiorrhizae Radix against Glutamate-Induced HT-22 Hippocampal Neuronal Cell Death. Processes (Basel) 2020. [DOI: 10.3390/pr8080914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress is considered one of the factors that cause dysfunction and damage of neurons, causing diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD), and Parkinson’s disease (PD).Recently, natural antioxidant sources have emerged as one of the main research areas for the discovery of potential neuroprotectants that can be used to treat neurological diseases. In this research, we assessed the neuroprotective effect of a 70% ethanol Salvia miltiorrhiza Radix (SMR) extract and five of its constituent compounds (tanshinone IIA, caffeic acid, salvianolic acid B, rosmarinic acid, and salvianic acid A) in HT-22 hippocampal cells. The experimental data showed that most samples were effective in attenuating the cytotoxicity caused by glutamate in HT-22 cells, except for rosmarinic acid and salvianolic acid B. Of the compounds tested, tanshinone IIA (TS-IIA) exerted the strongest effect in protecting HT-22 cells against glutamate neurotoxin. Treatment with 400 nM TS-IIA restored HT-22 cell viability almost completely. TS-IIA prevented glutamate-induced oxytosis by abating the accumulation of calcium influx, reactive oxygen species, and phosphorylation of mitogen-activated protein kinases. Moreover, TS-IIA inhibited glutamate-induced cytotoxicity by reducing the activation and phosphorylation of p53, as well as by stimulating Akt expression. This research suggested that TS-IIA is a potential neuroprotective component of SMR, with the ability to protect against neuronal cell death induced by excessive amounts of glutamate.
Collapse
|
8
|
Liu Y, Tong C, Tang Y, Cong P, Liu Y, Shi X, Shi L, Zhao Y, Jin H, Li J, Hou M. Tanshinone IIA alleviates blast-induced inflammation, oxidative stress and apoptosis in mice partly by inhibiting the PI3K/Akt/FoxO1 signaling pathway. Free Radic Biol Med 2020; 152:52-60. [PMID: 32131025 DOI: 10.1016/j.freeradbiomed.2020.02.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/25/2019] [Accepted: 02/28/2020] [Indexed: 01/13/2023]
Abstract
Although Tanshinone IIA (Tan IIA) has been associated with inflammation, oxidative stress and apoptosis, the effects of Tan IIA on lung blast injury remain uncertain. In this study, we explored the effects of Tan IIA on lung blast injury, studied its possible molecular mechanisms. Fifty C57BL/6 mice were randomly divided into the control, blast, blast + Tan IIA, blast + LY294002 (a PI3K inhibitor), or blast + Tan IIA + LY294002 groups. Serum and lung samples were collected 48 h after blast injury. The data showed that Tan IIA significantly inhibited blast-induced increases in the lung weight/body weight and wet/dry (W/D) weight ratios, decreased the CD44-and CD163-positive inflammatory cell infiltration in the lungs, reduced the IL-1β, TNF-α and IL-6 expression, and enhanced IL-10 expression. Tan IIA also significantly alleviated the increases in MDA5 and IRE-a and the decrease in SOD-1 and reversed the low Bcl-2 expression and the high Bax and Caspase-3 expressions. Additionally, Tan IIA significantly decreased p-PI3K and p-Akt expression and increased p-FoxO1 expression. More importantly, both LY294002 and Tan IIA pretreatment markedly protected against blast-induced inflammation, oxidative stress and apoptosis in lung blast injury. These results suggest that Tan IIA protects against lung blast injury, which may be partly mediated by inhibiting the PI3K/Akt/FoxO1 signaling pathway.
Collapse
Affiliation(s)
- Yunen Liu
- Department of Emergency Medicine, The General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Changci Tong
- Department of Emergency Medicine, The General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Yushan Tang
- College of Life Sciences, Chinese Medical University, Shenyang, l10001, China
| | - Peifang Cong
- Department of Emergency Medicine, The General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Ying Liu
- Department of Emergency Medicine, The General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Xiuyun Shi
- Department of Emergency Medicine, The General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Lin Shi
- Department of Emergency Medicine, The General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Yan Zhao
- Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China
| | - Hongxu Jin
- Department of Emergency Medicine, The General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China
| | - Jing Li
- Second Department of Cadre Ward, The General Hospital of Northern Theater Command, Shenyang, l10016, China
| | - Mingxiao Hou
- Department of Emergency Medicine, The General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Trauma PLA, No. 83 Road, Shenhe District, Shenyang, l10016, China.
| |
Collapse
|
9
|
Schartmann E, Schemmert S, Niemietz N, Honold D, Ziehm T, Tusche M, Elfgen A, Gering I, Brener O, Shah NJ, Langen KJ, Kutzsche J, Willbold D, Willuweit A. In Vitro Potency and Preclinical Pharmacokinetic Comparison of All-D-Enantiomeric Peptides Developed for the Treatment of Alzheimer's Disease. J Alzheimers Dis 2019; 64:859-873. [PMID: 29966196 PMCID: PMC6218115 DOI: 10.3233/jad-180165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Diffusible amyloid-β (Aβ) oligomers are currently presumed to be the most cytotoxic Aβ assembly and held responsible to trigger the pathogenesis of Alzheimer’s disease (AD). Thus, Aβ oligomers are a prominent target in AD drug development. Previously, we reported on our solely D-enantiomeric peptide D3 and its derivatives as AD drug candidates. Here, we compare one of the most promising D3 derivatives, ANK6, with its tandem version (tANK6), and its head-to-tail cyclized isoform (cANK6r). In vitro tests investigating the D-peptides’ potencies to inhibit Aβ aggregation, eliminate Aβ oligomers, and reduce Aβ-induced cytotoxicity revealed that all three D-peptides efficiently target Aβ. Subsequent preclinical pharmacokinetic studies of the three all-D-peptides in wildtype mice showed promising blood-brain barrier permeability with cANK6r yielding the highest levels in brain. The peptides’ potencies to lower Aβ toxicity and their remarkable brain/plasma ratios make them promising AD drug candidates.
Collapse
Affiliation(s)
- Elena Schartmann
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Sarah Schemmert
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Nicole Niemietz
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dominik Honold
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Tamar Ziehm
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Markus Tusche
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Anne Elfgen
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ian Gering
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Oleksandr Brener
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Nadim Joni Shah
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Neurology, Faculty of Medicine, JARA, RWTH Aachen University, Aachen, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Nuclear Medicine, Universitätsklinikum der RWTH Aachen, Aachen, Germany
| | - Janine Kutzsche
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dieter Willbold
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Correspondence to: Antje Willuweit, Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany. Tel.: +49 2461 6196358; E-mail: and Dieter Willbold, Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany. Tel.: +49 2461 612100; E-mail:
| | - Antje Willuweit
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Correspondence to: Antje Willuweit, Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany. Tel.: +49 2461 6196358; E-mail: and Dieter Willbold, Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany. Tel.: +49 2461 612100; E-mail:
| |
Collapse
|
10
|
Lin L, Jadoon SS, Liu SZ, Zhang RY, Li F, Zhang MY, Ai-Hua T, You QY, Wang P. Tanshinone IIA Ameliorates Spatial Learning and Memory Deficits by Inhibiting the Activity of ERK and GSK-3β. J Geriatr Psychiatry Neurol 2019; 32:152-163. [PMID: 30885037 DOI: 10.1177/0891988719837373] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Alzheimer disease (AD) is the most common type of dementia which is becoming a primary problem in the present society, but it lacks effective treatment methods and means of AD. Tanshinone IIA (Tan IIA) has been reported to have neuroprotective effects to restrain the Aβ25-35-mediated apoptosis. However, few studies try to understand how Aβ1-42 affects hyperphosphorylation of tau and how Tan IIA regulates this process at the molecular level. METHODS Fifty male Sprague-Dawley rats were randomly divided into 5 groups and infused through the lateral ventricle with Aβ1-42 except the control group. Then the rats were treated with Tan IIA through intragastric administration for 4 weeks. After the ability of learning and memory being measured, histomorphological examination and Western blot were used to detect the possible mechanism in the AD-associated model rats. RESULTS We observed that Aβ1-42 infusion could induce spatial learning and memory deficits in rats. Simultaneously, Aβ1-42 also could reduce the neuron in cornu ammonis 1 and dentate gyrus of hippocampus, as well as increase the levels of cleaved caspase 3, hyperphosphorylated tau at the sites Ser396, Ser404, and Thr205 with enhancing staining of black granules in brain. We also found that Aβ1-42 could increase the activity of extracellular signal-regulated protein kinase (ERK) and glycogen synthase kinase-3β (GSK-3β). Meanwhile, these phenomena could be ameliorated when Tan IIA was used. CONCLUSION We concluded that Tan IIA might have neuroprotective effect and improving learning and memory ability to be a viable candidate in AD therapy with mechanisms involving the ERK and GSK-3β signal pathway.
Collapse
Affiliation(s)
- Li Lin
- 1 Cell Molecular Biology Laboratory of Basic Medical College, Hubei University of Chinese Medicine, Wuhan, China.,2 Hubei Research Institute of Geriatrics, Collaborative Innovation Center of Hubei Province, Hubei University of Chinese Medicine, Wuhan, China
| | - Sarmad Sheraz Jadoon
- 1 Cell Molecular Biology Laboratory of Basic Medical College, Hubei University of Chinese Medicine, Wuhan, China.,3 Department of Pharmacology, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Shang-Zhi Liu
- 1 Cell Molecular Biology Laboratory of Basic Medical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Ru-Yi Zhang
- 3 Department of Pharmacology, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Fan Li
- 3 Department of Pharmacology, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Mei-Ya Zhang
- 3 Department of Pharmacology, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Tan Ai-Hua
- 1 Cell Molecular Biology Laboratory of Basic Medical College, Hubei University of Chinese Medicine, Wuhan, China.,2 Hubei Research Institute of Geriatrics, Collaborative Innovation Center of Hubei Province, Hubei University of Chinese Medicine, Wuhan, China
| | - Qiu-Yun You
- 3 Department of Pharmacology, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Ping Wang
- 2 Hubei Research Institute of Geriatrics, Collaborative Innovation Center of Hubei Province, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
11
|
Yang W, Zhang J, Shi L, Ji S, Yang X, Zhai W, Zong H, Qian Y. Protective effects of tanshinone IIA on SH-SY5Y cells against oAβ 1-42-induced apoptosis due to prevention of endoplasmic reticulum stress. Int J Biochem Cell Biol 2018; 107:82-91. [PMID: 30578955 DOI: 10.1016/j.biocel.2018.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/06/2018] [Accepted: 12/18/2018] [Indexed: 12/31/2022]
Abstract
Endoplasmic reticulum (ER) stress caused by β-amyloid protein (Aβ) may play an important role in the pathogenesis of Alzheimer disease (AD). Our previous data have indicated that tanshinone IIA (tan IIA) protected primary neurons from Aβ induced neurotoxicity. To further explore the neuroprotection of tan IIA, here we study the effects of tan IIA on the ER stress response in oligomeric Aβ1-42 (oAβ1-42)-induced SH-SY5Y cell injury. Our data showed that tan IIA pretreatment could increase cell viability and inhibit apoptosis caused by oAβ1-42. Furthermore, tan IIA markedly suppressed ER dilation and prevented oAβ1-42-induced abnormal expression of glucose regulated protein 78 (GRP78), initiation factor 2α (eIF2α), activating transcription factor 6 (ATF6), as well as inhibited the activation of C/EBP homologous protein (CHOP) and c-Jun N-terminal kinase (JNK) pathways. Moreover, tan IIA ameliorated oAβ1-42-induced Bcl-2/Bax ratio reduction, prevented cytochrome c translocation into cytosol from mitochondria, reduced oAβ1-42-induced cleavage of caspase-9 and caspase-3, suppressed caspase-3/7 activity, and increased mitochondrial membrane potential (MMP) and ATP content. Meanwhile, oAβ1-42-induced cell apoptosis and activation of ER stress can also be attenuated by the inhibitor of ER stress 4-phenylbutyric acid (4-PBA). Taken together, these data indicated that tan IIA protects SH-SY5Y cells against oAβ1-42-induced apoptosis through attenuating ER stress, modulating CHOP and JNK pathways, decreasing the expression of cytochrome c, cleaved caspase-9 and cleaved caspase-3, as well as increasing the ratio of Bcl-2/Bax, MMP and ATP content. Our results strongly suggested that tan IIA may be effective in treating AD associated with ER stress.
Collapse
Affiliation(s)
- Weina Yang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, China
| | - Jianshui Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, China
| | - Lili Shi
- Department of Human Anatomy, Xi'an Medical University, 1 Xinwang road, Xi'an, 710021, China
| | - Shengfeng Ji
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, China
| | - Xiaohua Yang
- Key Laboratory of Ministry of Health for Forensic Sciences, School of Forensic Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, China
| | - Wanying Zhai
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, China
| | - Hangfan Zong
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, China
| | - Yihua Qian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, China.
| |
Collapse
|
12
|
Dong W, Zhang Y, Chen X, Jia Y. High-Dose Tanshinone IIA Suppresses Migration and Proliferation While Promoting Apoptosis of Astrocytoma Cells Via Notch-1 Pathway. Neurochem Res 2018; 43:1855-1861. [PMID: 30066161 DOI: 10.1007/s11064-018-2601-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 12/18/2022]
Abstract
Malignant astrocytoma is the most common malignant tumor with strong invasion in the central nervous system. Tanshinone IIA is an effective compound to suppress cell proliferation and promote cell apoptosis. However, there is little research about the role of tanshinone IIA in the treatment of astrocytoma. This study aimed to investigate the effect of tanshinone IIA on migration, proliferation and apoptosis of astrocytoma cells. The efficacy of tanshinone IIA on migration, proliferation and apoptosis of astrocytoma cells were evaluated by flow cytometry and the assays of plate clone formation, CCK-8, wound healing and transwell migration. The protein molecule and signaling pathway were detected by western blot. High-dose tanshinone IIA suppressed migration and proliferation of astrocytoma cells while promoting apoptosis of astrocytoma cells. The western blot results showed that there were high Notch-1 protein expression and low c-Myc, MMP-9 and Bcl-2 activation in the high-dose tanshinone IIA group compared with the control group. High-dose tanshinone IIA suppresses astrocytoma cell proliferation, migration while promoting apoptosis through Notch-1 pathway. Tanshinone IIA may be used to develop new drugs for the treatment of astrocytoma.
Collapse
Affiliation(s)
- Wanliang Dong
- Neurology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuankun Zhang
- Vasculocardiology Deparment, Zhengzhou People's Hospital, Zhengzhou, Henan, China
| | - Xuemei Chen
- Department of Anatomy of the School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanjie Jia
- Neurology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
13
|
Liu X, Meng J. Tanshinone IIA ameliorates lipopolysaccharide-induced inflammatory response in bronchial epithelium cell line BEAS-2B by down-regulating miR-27a. Biomed Pharmacother 2018; 104:158-164. [DOI: 10.1016/j.biopha.2018.05.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/19/2018] [Accepted: 05/07/2018] [Indexed: 01/03/2023] Open
|
14
|
Song S, Lin F, Zhu P, Wu C, Zhao S, Han Q, Li X. Extract of Spatholobus suberctus Dunn ameliorates ischemia-induced injury by targeting miR-494. PLoS One 2017; 12:e0184348. [PMID: 28880896 PMCID: PMC5589225 DOI: 10.1371/journal.pone.0184348] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/22/2017] [Indexed: 11/28/2022] Open
Abstract
Cerebral stroke is a leading cause of death and permanent disability. The current therapeutic outcome of ischemic stroke (>85% of all strokes) is very poor, thus novel therapeutic drug is urgently needed. In vitro cell model of ischemia was established by oxygen-glucose deprivation (OGD) and in vivo animal model of ischemia was established by middle cerebral artery occlusion (MCAO). The effects of Spatholobus suberctus Dunn extract (SSCE) on OGD-induced cell injury, MCAO-induced neural injury and miR-494 level were all evaluated. The possible target genes were virtually screened utilizing bioinformatics and verified by luciferase assay. Subsequently, the effects of abnormally expressed miR-494 on OGD-induced cell injury and target gene expression were determined. Additionally, whether SSCE affected target gene expression through modulation of miR-494 was studied. Finally, the effects of aberrantly expressed Sox8 on OGD-induced injury and signaling pathways were estimated. SSCE reduced OGD-induced cell injury and ameliorated MCAO-induced neuronal injury, along with down-regulation of miR-494. Then, OGD-induced cell injury was increased by miR-494 overexpression but decreased by miR-494 silence. Sox8 was a target gene of miR-494, and SSCE could up-regulate Sox8 expression via down-regulating miR-494. Afterwards, OGD-induced cell injury was proved to be increased by Sox8 inhibition but reduced by Sox8 overexpression. Finally, OGD-induced inhibition of PI3K/AKT/mTOR and MAPK pathways was further inhibited by Sox8 silence but activated by Sox8 overexpression. SSCE ameliorates ischemia-induced injury both in vitro and in vivo by miR-494-mediated modulation of Sox8, involving activations of PI3K/AKT/mTOR and MAPK pathways.
Collapse
Affiliation(s)
- Shiqing Song
- Yantai Yuhuangding Hospital of Qingdao University Medical College, Yantai, Shandong, China
| | - Faliang Lin
- Yantai Yuhuangding Hospital of Qingdao University Medical College, Yantai, Shandong, China
| | - Pengyan Zhu
- Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Changyan Wu
- Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Shuling Zhao
- Yantai Yuhuangding Hospital of Qingdao University Medical College, Yantai, Shandong, China
| | - Qiao Han
- Yantai Blood Center, Yantai, Shandong, China
| | - Xiaomei Li
- Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| |
Collapse
|
15
|
Li M, Wang J, Ding L, Meng H, Wang F, Luo Z. Tanshinone IIA attenuates nerve transection injury associated with nerve regeneration promotion in rats. Neurosci Lett 2017; 659:18-25. [PMID: 28859867 DOI: 10.1016/j.neulet.2017.08.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 08/20/2017] [Accepted: 08/27/2017] [Indexed: 01/09/2023]
Abstract
Tanshinone IIA (Tan IIA) is the major pharmacological constituent of Salvia miltiorrhiza Bunge (Danshen) for the therapeutic purpose of preventing ischemic injury and treating cerebrovascular disease. The aim of the present study was to explore the potential neuroprotective effects of Tan IIA in sciatic nerve transection injury. We investigated the possible beneficial effects of Tan IIA in promoting nerve regeneration after nerve transection injury in rats. Nerve transection injury was induced in male Sprague-Dawley rats by left sciatic nerve transection. After neuroanastomosis, the rats were intraperitoneally (IP) injected with 6mg/kg, 15mg/kg, or 40mg/kg Tan IIA once daily for 12 weeks; the vehicle and positive control groups were injected with normal saline and mecobalamin (MeCbl, 100μg/kg), respectively. Axonal regeneration and functional recovery were evaluated by a range of morphological and functional measures 12 weeks after neuroanastomosis. The administration of 15mg/kg and 40mg/kg Tan IIA and MeCbl achieved better axonal regeneration with significant restoration of motor function as well as a marked decrease in Fluoro-Gold (FG)-labeled neurons and increased nerve regeneration. At 12 weeks post-surgery, 40mg/kg Tan IIA showed a better neuroprotective effect than 15mg/kg Tan IIA and MeCbl. There were no statistical differences between the 15mg/kg Tan IIA and MeCbl groups or the control and 6mg/kg Tan IIA groups. Our findings demonstrate that Tan IIA can alleviate nerve injury and promote nerve regeneration in a sciatic nerve transection model in rats, providing supportive evidence for Tan IIA as an effective potential therapeutic remedy for peripheral nerve injury.
Collapse
Affiliation(s)
- Mo Li
- Department of Orthopaedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| | - Jingyi Wang
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Lixiang Ding
- Department of Orthopaedic Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100020, China
| | - Hao Meng
- Department of Orthopaedic Surgery, Military General Hospital of Beijing PLA, Beijing 100700, China
| | - Feng Wang
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Zhuojing Luo
- Department of Orthopaedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
16
|
Tanshinone IIA Inhibits Glutamate-Induced Oxidative Toxicity through Prevention of Mitochondrial Dysfunction and Suppression of MAPK Activation in SH-SY5Y Human Neuroblastoma Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4517486. [PMID: 28690763 PMCID: PMC5485345 DOI: 10.1155/2017/4517486] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/17/2017] [Accepted: 05/02/2017] [Indexed: 01/27/2023]
Abstract
Glutamate excitotoxicity is associated with many neurological diseases, including cerebral ischemia and neurodegenerative diseases. Tanshinone IIA, a diterpenoid naphthoquinone from Salvia miltiorrhiza, has been shown to suppress presynaptic glutamate release, but its protective mechanism against glutamate-induced neurotoxicity is lacking. Using SH-SY5Y human neuroblastoma cells, we show here that excessive glutamate exposure decreases cell viability and proliferation and increases LDH release. Pretreatment with tanshinone IIA, however, prevents the decrease in cell viability and proliferation and the increase in LDH release induced by glutamate. Tanshinone IIA also attenuates glutamate-induced oxidative stress by reducing reactive oxygen species level and malondialdehyde and protein carbonyl contents and by enhancing activities and protein levels of superoxide dismutase and catalase. We then show that tanshinone IIA prevents glutamate-induced mitochondrial dysfunction by increasing mitochondrial membrane potential and ATP content and by reducing mitochondrial protein carbonyl content. Moreover, tanshinone IIA can inhibit glutamate-induced apoptosis through regulation of apoptosis-related protein expression and MAPK activation, including elevation of Bcl-2 protein level, decrease in Bax and cleaved caspase-3 levels, and suppression of JNK and p38 MAPK activation. Collectively, our findings demonstrate that tanshinone IIA protects SH-SY5Y cells against glutamate toxicity by reducing oxidative stress and regulating apoptosis and MAPK pathways.
Collapse
|
17
|
Che H, Du L, Cong P, Tao S, Ding N, Wu F, Xue C, Xu J, Wang Y. Cerebrosides from Sea Cucumber Protect Against Oxidative Stress in SAMP8 Mice and PC12 Cells. J Med Food 2017; 20:392-402. [DOI: 10.1089/jmf.2016.3789] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Hongxia Che
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Lei Du
- Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Suyuan Tao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Ning Ding
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Fengjuan Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
18
|
Yao NW, Lu Y, Shi LQ, Xu F, Cai XH. Neuroprotective effect of combining tanshinone IIA with low-dose methylprednisolone following acute spinal cord injury in rats. Exp Ther Med 2017; 13:2193-2202. [PMID: 28565827 PMCID: PMC5443198 DOI: 10.3892/etm.2017.4271] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 01/13/2017] [Indexed: 01/20/2023] Open
Abstract
The present study compared the potential neuroprotective effect of tanshinone IIA (TIIA) monotherapy, methylprednisolone (MP) monotherapy and combined treatment in an adult acute spinal cord injury (ASCI) rat model. The current study used the weight-drop method (Allen's Impactor) in the rat model and the mechanical scratch method in primary spinal cord neuron culture to determine whether the combined treatment was able to reduce the required dosage of MP in the treatment of ASCI to produce a similar or improved therapeutic effect. In vivo male Sprague Dawley rats (n=60) were randomly divided into 5 groups, of which 12 rats were selected for the sham group and T9-T11 laminectomies, leading to ASCI, were performed on 48 of the 60 rats using a 10 g ×25 mm weight-drop at the level of T10 spinal cord. Therefore, the ASCI group (n=12) included the 'laminectomy and weight-drop'. The remaining 36 ASCI model animals were subdivided into 3 groups (n=12 each group): TIIA group (30 mg/kg/day), MP group (30 mg/kg) and combined treatment group (TIIA 30 mg/kg/day + MP 20 mg/kg). Neuronal function following ASCI was evaluated using the Basso Beattie Bresnahan (BBB) locomotor rating scale. Levels of the anti-apoptotic factor B-cell lymphoma-2 (Bcl-2), the pro-apoptotic factors Bcl-2 associated protein X (Bax) and caspase-3, and the inflammatory associated factor nuclear factor-κB, were analyzed by western blot analysis. Immunohistochemistry was used to detect caspase-3. To investigate the underlying mechanism, the anti-oxidative effect of combination TIIA and MP treatment was assessed by measuring the activity of malondialdehyde (MDA) and superoxide dismutase (SOD) in ASCI. In agreement with the experiment in vivo, primary neurons were prepared from the spinal cord of one-day-old Sprague-Dawley rats' and co-cultured with astrocytes from the brain cortex. The injury of neurons was induced by mechanical scratch and levels of apoptosis factors were analyzed by western blot analysis. The results of the current study indicated that injured animals in the combined treatment group exhibited a significant increase in BBB scores (P<0.05). TIIA + MP combined treatment and MP treatment was observed to reduce the expression of pro-apoptotic factors and promote neuron survival in vivo and in vitro. Combined treatment may promote neuroprotection through reduced apoptosis and inflammation caused by ASCI, similar to MP alone. Combined treatment reversed the decrease of SOD and the increase of MDA level caused by ASCI. In addition, combined treatment decreased the expression of caspase-3 in the neurons following ASCI in rats, as indicated by immunofluorescence double labeling. Overall, the present study indicates that the combined treatment of TIIA and MP may protect the neurons by stimulating the rapid initiation of neuroprotection following ASCI and reduce the dosage of MP in the treatment of ASCI required to produce the same or improved neuroprotective effects in vivo and in vitro.
Collapse
Affiliation(s)
- Nian-Wei Yao
- Department of Orthopedics, The Third Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China.,Department of Orthopedics, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei 430070, P.R. China.,College of Acupuncture and Orthopedics, Hubei University of Traditional Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Yuan Lu
- Department of Neurology, Nantong First People's Hospital, Nantong, Jiangsu 226000, P.R. China
| | - Li-Qi Shi
- Department of Orthopedics, Yuyao Hospital of Traditional Chinese Medicine, Ningbo, Zhejiang 315000, P.R. China
| | - Feng Xu
- Department of Orthopedics, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei 430070, P.R. China
| | - Xian-Hua Cai
- Department of Orthopedics, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
19
|
Synergistic effect of tanshinone IIA and mesenchymal stem cells on preventing learning and memory deficits via anti-apoptosis, attenuating tau phosphorylation and enhancing the activity of central cholinergic system in vascular dementia. Neurosci Lett 2017; 637:175-181. [DOI: 10.1016/j.neulet.2016.11.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 11/20/2022]
|
20
|
Zhu J, Liao S, Zhou L, Wan L. Tanshinone IIA attenuates Aβ25–35-induced spatial memory impairment via upregulating receptors for activated C kinase1 and inhibiting autophagy in hippocampus. J Pharm Pharmacol 2016; 69:191-201. [PMID: 27882565 DOI: 10.1111/jphp.12650] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/18/2016] [Indexed: 12/31/2022]
Abstract
Abstract
Objectives
Tanshinone IIA (Tan IIA) may exert significant protective effects against the neurotoxicity induced by β-amyloid protein (Aβ). This study was designed to investigate the possible neuroprotective mechanism of Tan IIA on Aβ25–35-induced spatial memory impairment in mice.
Methods
After 3 weeks of preventive treatment (Tan IIA or oil), all male Kunming mice were subjected to Aβ25–35 (10 μl, intracerebroventricularly (i.c.v.)) to establish the spatial memory impairment model. The Morris water maze (MWM), haematoxylin and eosin staining, real-time PCR and Western blot were performed to determine the ability of spatial memory, neuronal damage and expression of extracellular signal-regulated kinase (ERK), receptors for activated C kinase1 (RACK1) and autophagy-related genes. Additionally, ShRACK1 was used to decrease the level of RACK1 in the hippocampus to test Beclin1 in hippocampus by real-time PCR and Western blot.
Key findings
Tanshinone IIA (Tan IIA, 80 mg/kg) administration notably protected mice from Aβ25-35-induced spatial memory impairment and neurotoxicity, increased pERK/ERK and the expression of RACK1, and reduced the elevated levels of BECLIN1 and LC3-II/I in the hippocampus. In addition, ShRACK1 i.c.v markedly upregulated BECLIN1 level, but not altered Beclin1 mRNA expression in the hippocampus.
Conclusions
Tanshinone IIA may exert neuroprotective effects via upregulating RACK1 and inhibiting autophagy in the hippocampus of mice.
Collapse
Affiliation(s)
- Jiejun Zhu
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Shiping Liao
- Functional Laboratory, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Liming Zhou
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
- Sichuan University ‘985 Project – Science and Technology Innovation Platform for Novel Drug Development’, Sichuan University, Chengdu, Sichuan, China
| | - Lihong Wan
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
- Sichuan University ‘985 Project – Science and Technology Innovation Platform for Novel Drug Development’, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Wang ZY, Liu JG, Li H, Yang HM. Pharmacological Effects of Active Components of Chinese Herbal Medicine in the Treatment of Alzheimer's Disease: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1525-1541. [PMID: 27848250 DOI: 10.1142/s0192415x16500853] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disorder associated with dementia, not only severely decreases the quality of life for its victims, but also brings a heavy economic burden to the family and society. Unfortunately, few chemical drugs designed for clinical applications have reached the expected preventive or therapeutic effect so far, and combined with their significant side-effects, there is therefore an urgent need for new strategies to be developed for AD treatment. Traditional Chinese Medicine has accumulated many experiences in the treatment of dementia during thousands of years of practice; modern pharmacological studies have confirmed the therapeutic effects of many active components derived from Chinese herbal medicines (CHM). Ginsenoside Rg1, extracted from Radix Ginseng, exerts a [Formula: see text]-secretase inhibitor effect so as to decrease A[Formula: see text] aggregation. It can also inhibit the apoptosis of neuron cells. Tanshinone IIA, extracted from Radix Salviae miltiorrhizae, and baicalin, extracted from Radix Scutellariae[Formula: see text] can inhibit the oxidative stress injury in neuronal cells. Icariin, extracted from Epimedium brevicornum, can decrease A[Formula: see text] levels and the hyperphosphorylation of tau protein, and can also inhibit oxidative stress and apoptosis. Huperzine A, extracted from Huperzia serrata, exerts a cholinesterase inhibitor effect. Evodiamine, extracted from Fructus Evodiae, and curcumin, extracted from Rhizoma Curcumae Longae, exert anti-inflammatory actions. Curcumin can act on A[Formula: see text] and tau too. Due to the advantages of multi-target effects and fewer side effects, Chinese medicine is more appropriate for long-term use. In this present review, the pharmacological effects of commonly used active components derived from Chinese herbal medicines in the treatment of AD are discussed.
Collapse
Affiliation(s)
- Zhi-Yong Wang
- * Geriatric Department, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, P.R. China.,† Graduate School, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Jian-Gang Liu
- * Geriatric Department, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, P.R. China
| | - Hao Li
- * Geriatric Department, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, P.R. China
| | - Hui-Ming Yang
- ‡ Geriatric Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, P.R. China
| |
Collapse
|
22
|
Han N, Kim YJ, Park SM, Kim SM, Lee JS, Jung HS, Lee EJ, Kim TK, Kim TN, Kwon MJ, Lee SH, Kim MK, Rhee BD, Park JH. Repeated Glucose Deprivation/Reperfusion Induced PC-12 Cell Death through the Involvement of FOXO Transcription Factor. Diabetes Metab J 2016; 40:396-405. [PMID: 27766247 PMCID: PMC5069396 DOI: 10.4093/dmj.2016.40.5.396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/23/2015] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Cognitive impairment and brain damage in diabetes is suggested to be associated with hypoglycemia. The mechanisms of hypoglycemia-induced neural death and apoptosis are not clear and reperfusion injury may be involved. Recent studies show that glucose deprivation/reperfusion induced more neuronal cell death than glucose deprivation itself. The forkhead box O (FOXO) transcription factors are implicated in the regulation of cell apoptosis and survival, but their role in neuronal cells remains unclear. We examined the role of FOXO transcription factors and the involvement of the phosphatidylinositol 3-kinase (PI3K)/Akt and apoptosis-related signaling pathways in PC-12 cells exposed to repeated glucose deprivation/reperfusion. METHODS PC-12 cells were exposed to control (Dulbecco's Modified Eagle Medium [DMEM] containing 25 mM glucose) or glucose deprivation/reperfusion (DMEM with 0 mM glucose for 6 hours and then DMEM with 25 mM glucose for 18 hours) for 5 days. MTT assay and Western blot analysis were performed for cell viability, apoptosis, and the expression of survival signaling pathways. FOXO3/4',6-diamidino-2-phenylindole staining was done to ascertain the involvement of FOXO transcription factors in glucose deprivation/reperfusion conditions. RESULTS Compared to PC-12 cells not exposed to hypoglycemia, cells exposed to glucose deprivation/reperfusion showed a reduction of cell viability, decreased expression of phosphorylated Akt and Bcl-2, and an increase of cleaved caspase-3 expression. Of note, FOXO3 protein was localized in the nuclei of glucose deprivation/reperfusion cells but not in the control cells. CONCLUSION Repeated glucose deprivation/reperfusion caused the neuronal cell death. Activated FOXO3 via the PI3K/Akt pathway in repeated glucose deprivation/reperfusion was involved in genes related to apoptosis.
Collapse
Affiliation(s)
- Na Han
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Onhospital, Busan, Korea
| | - You Jeong Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inje University College of Medicine, Busan, Korea
| | - Su Min Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inje University College of Medicine, Busan, Korea
| | - Seung Man Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inje University College of Medicine, Busan, Korea
| | - Ji Suk Lee
- Paik Institute for Clinical Research, Molecular Therapy Lab, Inje University, Busan, Korea
| | - Hye Sook Jung
- Paik Institute for Clinical Research, Molecular Therapy Lab, Inje University, Busan, Korea
| | - Eun Ju Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inje University College of Medicine, Busan, Korea
| | - Tae Kyoon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inje University College of Medicine, Busan, Korea
| | - Tae Nyun Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inje University College of Medicine, Busan, Korea
| | - Min Jeong Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inje University College of Medicine, Busan, Korea
| | - Soon Hee Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inje University College of Medicine, Busan, Korea
| | - Mi-kyung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inje University College of Medicine, Busan, Korea
- Paik Institute for Clinical Research, Molecular Therapy Lab, Inje University, Busan, Korea
| | - Byoung Doo Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inje University College of Medicine, Busan, Korea
| | - Jeong Hyun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Inje University College of Medicine, Busan, Korea
- Paik Institute for Clinical Research, Molecular Therapy Lab, Inje University, Busan, Korea
| |
Collapse
|
23
|
Sodium Tanshinone IIA Sulfonate Attenuates Scopolamine-Induced Cognitive Dysfunctions via Improving Cholinergic System. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9852536. [PMID: 27556046 PMCID: PMC4983342 DOI: 10.1155/2016/9852536] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/20/2016] [Accepted: 06/29/2016] [Indexed: 01/03/2023]
Abstract
Sodium Tanshinone IIA sulfonate (STS) is a derivative of Tanshinone IIA (Tan IIA). Tan IIA has been reported to possess neuroprotective effects against Alzheimer's disease (AD). However, whether STS possesses effect on AD remains unclear. This study aims to estimate whether STS could protect against scopolamine- (SCOP-) induced learning and memory deficit in Kunming mice. Morris water maze results showed that oral administration of STS (10 mg/kg and 20 mg/kg) and Donepezil shortened escape latency, increased crossing times of the original position of the platform, and increased the time spent in the target quadrant. STS decreased the activity of acetylcholinesterase (AChE) and increased the activity of choline acetyltransferase (ChAT) in the hippocampus and cortex of SCOP-treated mice. Oxidative stress results showed that STS increased the activity of superoxide dismutase (SOD) and decreased the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) in hippocampus and cortex. In addition, western blot was carried out to detect the expression of apoptosis related proteins (Bcl-2, Bax, and Caspase-3). STS upregulated the protein expression of Bcl-2 and downregulated the proteins expression of Bax and Caspase-3. These results indicated that STS might become a promising therapeutic candidate for attenuating AD-like pathological dysfunction.
Collapse
|
24
|
Upregulation effects of Tanshinone IIA on the expressions of NeuN, Nissl body, and IκB and downregulation effects on the expressions of GFAP and NF-κB in the brain tissues of rat models of Alzheimer's disease. Neuroreport 2016; 26:758-66. [PMID: 26164608 DOI: 10.1097/wnr.0000000000000419] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study aimed to observe the effects of Tanshinone IIA(Tan IIA) treatment on the expression levels of brain tissue NeuN, Nissl body, IκB, GFAP and NF-κB in Alzheimer's disease (AD) rats to explore the possible anti-inflammatory and neuroprotective mechanisms of Tan IIA. Thirty healthy male Sprague-Dawley rats were randomized into three groups: Sham group, AD+vehicle control group, and AD+Tan IIA group. The models of AD were established by injecting Aβ1-42 into the hippocampus of rats. Tagged position and the expression levels of Aβ1-42 were observed by immunohistochemistry staining to prove the success of the model of AD. Brain tissues of all groups were collected after Tan IIA treatment and paraffin sections were prepared to assess pathological changes and expression levels of GFAP, IκB and NF-κB by both immunohistochemistry and western blotting. After Aβ1-42 injection, the expression levels of GFAP and NF-κB were significantly stronger in the AD+vehicle control group than those in the AD+Tan IIA group and the sham group (P<0.05), the IκB expression level and the number of neurons and Nissl bodies of AD+vehicle control group was reduced compared with the sham or the AD+Tan IIA group (P<0.05). In conclusion, Aβ induces a cerebral tissue inflammation reaction. Tan IIA treatment can suppress the proliferation of astrocytes in an AD model, lower the level of NF-κB, and increase the level of NeuN, Nissl body, IκB, thus exerting anti-inflammatory and neuroprotective effects.
Collapse
|
25
|
Fu Z, Yang J, Wei Y, Li J. Effects of piceatannol and pterostilbene against β-amyloid-induced apoptosis on the PI3K/Akt/Bad signaling pathway in PC12 cells. Food Funct 2016; 7:1014-23. [DOI: 10.1039/c5fo01124h] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Piceatannol and pterostilbene both showed protective effect against Aβ-induced apoptosis in PC12 cells, however, with different PI3K/Akt signaling pathways.
Collapse
Affiliation(s)
- Zheng Fu
- Center for Viticulture and Enology
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| | - Jiufang Yang
- Center for Viticulture and Enology
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| | - Yangji Wei
- Center for Viticulture and Enology
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| | - Jingming Li
- Center for Viticulture and Enology
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| |
Collapse
|
26
|
Abstract
Tanshinone IIA is a pharmacologically active compound isolated from Danshen (Salvia miltiorrhiza), a traditional Chinese herbal medicine for the management of cardiac diseases and other disorders. But its underlying molecular mechanisms of action are still unclear. The present investigation utilized a data mining approach based on network pharmacology to uncover the potential protein targets of Tanshinone IIA. Network pharmacology, an integrated multidisciplinary study, incorporates systems biology, network analysis, connectivity, redundancy, and pleiotropy, providing powerful new tools and insights into elucidating the fine details of drug-target interactions. In the present study, two separate drug-target networks for Tanshinone IIA were constructed using the Agilent Literature Search (ALS) and STITCH (search tool for interactions of chemicals) methods. Analysis of the ALS-constructed network revealed a target network with a scale-free topology and five top nodes (protein targets) corresponding to Fos, Jun, Src, phosphatidylinositol-4, 5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA), and mitogen-activated protein kinase kinase 1 (MAP2K1), whereas analysis of the STITCH-constructed network revealed three top nodes corresponding to cytochrome P450 3A4 (CYP3A4), cytochrome P450 A1 (CYP1A1), and nuclear factor kappa B1 (NFκB1). The discrepancies were probably due to the differences in the divergent computer mining tools and databases employed by the two methods. However, it is conceivable that all eight proteins mediate important biological functions of Tanshinone IIA, contributing to its overall drug-target network. In conclusion, the current results may assist in developing a comprehensive understanding of the molecular mechanisms and signaling pathways of in a simple, compact, and visual manner.
Collapse
Affiliation(s)
- Shao-Jun Chen
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo 315100, China.
| |
Collapse
|
27
|
Ceramides in Alzheimer's Disease: Key Mediators of Neuronal Apoptosis Induced by Oxidative Stress and Aβ Accumulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:346783. [PMID: 26090071 PMCID: PMC4458271 DOI: 10.1155/2015/346783] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD), the most common chronic and progressive neurodegenerative disorder, is characterized by extracellular deposits of amyloid β-peptides (Aβ) and intracellular deposits of hyperphosphorylated tau (phospho-tau) protein. Ceramides, the major molecules of sphingolipid metabolism and lipid second messengers, have been associated with AD progression and pathology via Aβ generation. Enhanced levels of ceramides directly increase Aβ through stabilization of β-secretase, the key enzyme in the amyloidogenic processing of Aβ precursor protein (APP). As a positive feedback loop, the generated oligomeric and fibrillar Aβ induces a further increase in ceramide levels by activating sphingomyelinases that catalyze the catabolic breakdown of sphingomyelin to ceramide. Evidence also supports important role of ceramides in neuronal apoptosis. Ceramides may initiate a cascade of biochemical alterations, which ultimately leads to neuronal death by diverse mechanisms, including depolarization and permeabilization of mitochondria, increased production of reactive oxygen species (ROS), cytochrome c release, Bcl-2 depletion, and caspase-3 activation, mainly by modulating intracellular signalling, particularly along the pathways related to Akt/PKB kinase and mitogen-activated protein kinases (MAPKs). This review summarizes recent findings related to the role of ceramides in oxidative stress-driven neuronal apoptosis and interplay with Aβ in the cascade of events ending in neuronal degeneration.
Collapse
|
28
|
Yu H, Yao L, Zhou H, Qu S, Zeng X, Zhou D, Zhou Y, Li X, Liu Z. Neuroprotection against Aβ25–35-induced apoptosis by Salvia miltiorrhiza extract in SH-SY5Y cells. Neurochem Int 2014; 75:89-95. [DOI: 10.1016/j.neuint.2014.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/09/2014] [Accepted: 06/04/2014] [Indexed: 12/30/2022]
|
29
|
Hügel HM, Jackson N. Danshen diversity defeating dementia. Bioorg Med Chem Lett 2014; 24:708-16. [DOI: 10.1016/j.bmcl.2013.12.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/03/2013] [Accepted: 12/10/2013] [Indexed: 10/25/2022]
|
30
|
DU S, Yao Q, Tan P, Xie G, Ren C, Sun Q, Zhang X, Zheng R, Yang K, Yuan Y, Yuan Q. Protective effect of tanshinone IIA against radiation-induced ototoxicity in HEI-OC1 cells. Oncol Lett 2013; 6:901-906. [PMID: 24137434 PMCID: PMC3796387 DOI: 10.3892/ol.2013.1486] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 06/28/2013] [Indexed: 11/24/2022] Open
Abstract
Radiotherapy is a highly efficient treatment method for nasopharyngeal carcinoma that is often accompanied by significant ototoxic side-effects. The inner ear hair cells are particularly prone to serious injury following radiotherapy. Tanshinone IIA is a transcription factor inhibitor that is extracted from the traditional herbal medicine, Salvia miltiorrhiza Bunge. The present study investigated the effects of tanshinone IIA treatment on radiation-induced toxicity in the HEI-OC1 hair cell line. Using an MTT assay and flow cytometry, the radiation-induced weakening of the cells was observed to be alleviated when the cells were pre-treated with tanshinone IIA. Radiation exposure promoted p65/nuclear factor (NF)-κB nuclear translocation and activated the p53/p21 pathway, two processes which play a significant role in radiation-induced cell apoptosis. However, pre-treatment of the cells with tanshinone IIA inhibited p65/NF-κB nuclear translocation and p53/p21 pathway activation. These results demonstrate that tanshinone IIA is capable of protecting cochlear cells from radiation-induced injury through the suppression of p65/NF-κB nuclear translocation and the p53/p21 signaling pathway.
Collapse
Affiliation(s)
- Shasha DU
- Department of Radiation Oncology, Institute of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Edaravone Ameliorates Oxidative Damage Associated with Aβ25-35 Treatment in PC12 Cells. J Mol Neurosci 2013; 50:494-503. [DOI: 10.1007/s12031-013-9973-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/29/2013] [Indexed: 12/31/2022]
|
32
|
Tian XH, Wu JH. Tanshinone derivatives: a patent review (January 2006 – September 2012). Expert Opin Ther Pat 2012; 23:19-29. [DOI: 10.1517/13543776.2013.736494] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|