1
|
Zhou J, Yang L, Chen X, Zhou M, Shi W, Deng S, Luo Z. Genome-Wide Identification and Characterization of the NF-YA Gene Family and Its Expression in Response to Different Nitrogen Forms in Populus × canescens. Int J Mol Sci 2022; 23:ijms231911217. [PMID: 36232523 PMCID: PMC9570100 DOI: 10.3390/ijms231911217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
The NF-YA gene family is a class of conserved transcription factors that play important roles in plant growth and development and the response to abiotic stress. Poplar is a model organism for studying the rapid growth of woody plants that need to consume many nutrients. However, studies on the response of the NF-YA gene family to nitrogen in woody plants are limited. In this study, we conducted a systematic and comprehensive bioinformatic analysis of the NF-YA gene family based on Populus × canescens genomic data. A total of 13 PcNF-YA genes were identified and mapped to 6 chromosomes. According to the amino acid sequence characteristics and genetic structure of the NF-YA domains, the PcNF-YAs were divided into five clades. Gene duplication analysis revealed five pairs of replicated fragments and one pair of tandem duplicates in 13 PcNF-YA genes. The PcNF-YA gene promoter region is rich in different cis-acting regulatory elements, among which MYB and MYC elements are the most abundant. Among the 13 PcNF-YA genes, 9 contained binding sites for P. × canescens miR169s. In addition, RT-qPCR data from the roots, wood, leaves and bark of P. × canescens showed different spatial expression profiles of PcNF-YA genes. Transcriptome data and RT-qPCR analysis showed that the expression of PcNF-YA genes was altered by treatment with different nitrogen forms. Furthermore, the functions of PcNF-YA genes in transgenic poplar were analyzed, and the potential roles of PcNF-YA genes in the response of poplar roots to different nitrogen forms were revealed, indicating that these genes regulate root growth and development.
Collapse
Affiliation(s)
- Jing Zhou
- Correspondence: ; Tel.: +86-10-62889368
| | | | | | | | | | | | | |
Collapse
|
2
|
MicroRNAs Mediated Plant Responses to Salt Stress. Cells 2022; 11:cells11182806. [PMID: 36139379 PMCID: PMC9496875 DOI: 10.3390/cells11182806] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 12/17/2022] Open
Abstract
One of the most damaging issues to cultivatable land is soil salinity. While salt stress influences plant growth and yields at low to moderate levels, severe salt stress is harmful to plant growth. Mineral shortages and toxicities frequently exacerbate the problem of salinity. The growth of many plants is quantitatively reduced by various levels of salt stress depending on the stage of development and duration of stress. Plants have developed various mechanisms to withstand salt stress. One of the key strategies is the utilization of microRNAs (miRNAs) that can influence gene regulation at the post-transcriptional stage under different environmental conditions, including salinity. Here, we have reviewed the miRNA-mediated adaptations of various plant species to salt stress and other abiotic variables. Moreover, salt responsive (SR)-miRNAs, their targets, and corresponding pathways have also been discussed. The review article concludes by suggesting that the utilization of miRNAs may be a vital strategy to generate salt tolerant crops ensuring food security in the future.
Collapse
|
3
|
Duarte KE, Basso MF, de Oliveira NG, da Silva JCF, de Oliveira Garcia B, Cunha BADB, Cardoso TB, Nepomuceno AL, Kobayashi AK, Santiago TR, de Souza WR, Molinari HBC. MicroRNAs expression profiles in early responses to different levels of water deficit in Setaria viridis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1607-1624. [PMID: 36389096 PMCID: PMC9530107 DOI: 10.1007/s12298-022-01226-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED Water deficit is a major constraint for crops of economic importance in almost all agricultural regions. However, plants have an active defense system to adapt to these adverse conditions, acting in the reprogramming of gene expression responsible for encoding microRNAs (miRNAs). These miRNAs promote the regulation to the target gene expression by the post-transcriptional (PTGS) and transcriptional gene silencing (TGS), modulating several pathways including defense response to water deficit. The broader knowledge of the miRNA expression profile and its regulatory networks in response to water deficit can provide evidence for the development of new biotechnological tools for genetic improvement of several important crops. In this study, we used Setaria viridis accession A10.1 as a C4 model plant to widely investigate the miRNA expression profile in early responses to different levels of water deficit. Ecophysiological studies in Setaria viridis under water deficit and after rewatering demonstrated a drought tolerant accession, capable of a rapid recovery from the stress. Deep small RNA sequencing and degradome studies were performed in plants submitted to drought to identify differentially expressed miRNA genes and their predicted targets, using in silico analysis. Our findings showed that several miRNAs were differentially modulated in response to distinctive levels of water deficit and after rewatering. The predicted mRNA targets mainly corresponded to genes related to cell wall remodeling, antioxidant system and drought-related transcription factors, indicating that these genes are rapidly regulated in early responses to drought stress. The implications of these modulations are extensively discussed, and higher-effect miRNAs are suggested as major players for potential use in genetic engineering to improve drought tolerance in economically important crops, such as sugarcane, maize, and sorghum. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01226-z.
Collapse
Affiliation(s)
- Karoline Estefani Duarte
- Embrapa Agroenergy, Brasília, DF 70297-400 Brazil
- Federal University of ABC, Santo André, SP 09210-580 Brazil
| | - Marcos Fernando Basso
- Embrapa Agroenergy, Brasília, DF 70297-400 Brazil
- BIOMOL/BIOTEC Laboratory, Mato Grosso Cotton Institute (IMAmt), Rondonópolis, MT 78740-970 Brazil
| | | | | | - Bruno de Oliveira Garcia
- Embrapa Agroenergy, Brasília, DF 70297-400 Brazil
- Federal University of Lavras, Lavras, MG 37200-900 Brazil
| | | | | | | | | | - Thaís Ribeiro Santiago
- Embrapa Agroenergy, Brasília, DF 70297-400 Brazil
- University of Brasília, Brasília, DF 70910-900 Brazil
| | - Wagner Rodrigo de Souza
- Embrapa Agroenergy, Brasília, DF 70297-400 Brazil
- Federal University of ABC, Santo André, SP 09210-580 Brazil
| | | |
Collapse
|
4
|
Chen B, Ding Z, Zhou X, Wang Y, Huang F, Sun J, Chen J, Han W. Integrated Full-Length Transcriptome and MicroRNA Sequencing Approaches Provide Insights Into Salt Tolerance in Mangrove ( Sonneratia apetala Buch.-Ham.). Front Genet 2022; 13:932832. [PMID: 35899202 PMCID: PMC9310009 DOI: 10.3389/fgene.2022.932832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules that serve as key players in plant stress responses. Although stress-regulated miRNAs have been explored in various plants, they are not well studied in mangroves. Herein, we combined PacBio isoform sequencing (Iso-Seq) with BGISEQ short-read RNA-seq to probe the role of miRNAs in the salt stress response of the mangrove plant, Sonneratia apetala Buch.-Ham. A total of 1,702,463 circular consensus sequencing reads were generated that produced 295,501 nonredundant full-length transcripts from the leaves of a 1-year-old S. apetala. After sequencing nine small RNA libraries constructed from control and 1- and 28-day 300 mM NaCl treatments, we identified 143 miRNAs (114 known and 29 novel) from a total of >261 million short reads. With the criteria of |log2FC| ≥ 1 and q-value < 0.05, 42 and 70 miRNAs were differentially accumulated after 1- and 28-day salt treatments, respectively. These differential accumulated miRNAs potentially targeted salt-responsive genes encoding transcription factors, ion homeostasis, osmotic protection, and detoxificant-related proteins, reminiscent of their responsibility for salinity adaptation in S. apetala. Particularly, 62 miRNAs were Sonneratia specific under salt stress, of which 34 were co-expressed with their 131 predicted targets, thus producing 140 miRNA-target interactions. Of these, 82 miRNA-target pairs exhibited negative correlations. Eighteen miRNA targets were categorized for the 'environmental information processing' during KEGG analysis and were related to plant hormone signal transduction (ko04075), MAPK signaling pathway-plant (ko04016), and ABC transporters (ko02010). These results underscored miRNAs as possible contributors to mangrove success in severe environments and offer insights into an miRNA-mediated regulatory mechanism of salt response in S. apetala.
Collapse
Affiliation(s)
- Beibei Chen
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, China
| | - Zeyi Ding
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, China
| | - Xiang Zhou
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, China
| | - Yue Wang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Fei Huang
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, China
| | - Jiaxin Sun
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, China
| | - Jinhui Chen
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Weidong Han
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
5
|
The Intersection of Non-Coding RNAs Contributes to Forest Trees' Response to Abiotic Stress. Int J Mol Sci 2022; 23:ijms23126365. [PMID: 35742808 PMCID: PMC9223653 DOI: 10.3390/ijms23126365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/15/2022] [Accepted: 06/01/2022] [Indexed: 12/10/2022] Open
Abstract
Non-coding RNAs (ncRNAs) play essential roles in plants by modulating the expression of genes at the transcriptional or post-transcriptional level. In recent years, ncRNAs have been recognized as crucial regulators for growth and development in forest trees, and ncRNAs that respond to various abiotic stresses are now under intense study. In this review, we summarized recent advances in the understanding of abiotic stress-responsive microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) in forest trees. Furthermore, we analyzed the intersection of miRNAs, and epigenetic modified ncRNAs of forest trees in response to abiotic stress. In particular, the abiotic stress-related lncRNA/circRNA-miRNA-mRNA regulatory network of forest trees was explored.
Collapse
|
6
|
Identification and Comparative Analysis of Conserved and Species-Specific microRNAs in Four Populus Sections. FORESTS 2022. [DOI: 10.3390/f13060873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The conservation and diversity of microRNA (miRNA) families provide insights into the evolution of miRNA genes. However, there are few studies to explore the miRNA genes at the genus level in plants. Here, we identified 1194 miRNA loci in four Populus species P. deltoides, P. euphratica, P. tremula, and P. trichocarpa from Aigeiros, Turanga, Populus, and Tacamahaca sections, respectively, by combining de novo and homolog-based approaches. Our results indicated that a similar number of miRNA loci exist in each species (296–301 miRNA loci). Among the identified 143 miRNA families, 68 families are shared by the studied four species, and 31 families are species-specific, which might be related to local adaptation. Additionally, multiple miRNA-related single nucleotide polymorphisms (SNPs) were found, indicating that polymorphisms in pre-miRNA hairpins were likely to affect miRNA biogenesis. This study expanded the breadth and depth of miRNA annotations and provided valuable resources for further exploring the diversity and function of poplar miRNAs.
Collapse
|
7
|
Zhou J, Wu JT. Nitrate/ammonium-responsive microRNA-mRNA regulatory networks affect root system architecture in Populus × canescens. BMC PLANT BIOLOGY 2022; 22:96. [PMID: 35246022 PMCID: PMC8895855 DOI: 10.1186/s12870-022-03482-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/14/2022] [Indexed: 05/15/2023]
Abstract
BACKGROUND Nitrate (NO3-) and ammonium (NH4+) are the primary forms of inorganic nitrogen (N) taken up by plant roots, and a lack of these N sources commonly limits plant growth. To better understand how NO3- and NH4+ differentially affect root system architecture, we analyzed the expression profiles of microRNAs and their targets in poplar roots treated with three forms of nitrogen S1 (NO3-), S2 (NH4NO3, normal), and S3 (NH4+) via RNA sequencing. RESULTS The results revealed a total of 709 miRNAs. Among them, 57 significantly differentially expressed miRNAs and 28 differentially expressed miRNA-target pairs showed correlated expression profiles in S1 vs. S2. Thirty-six significantly differentially expressed miRNAs and 12 differentially expressed miRNA-target pairs showed correlated expression profiles in S3 vs. S2. In particular, NFYA3, a target of upregulated ptc-miR169i and ptc-miR169b, was downregulated in S1 vs. S2, while NFYA1, a target of upregulated ptc-miR169b, was downregulated in S3 vs. S2 and probably played an important role in the changes in root morphology observed when the poplar plants were treated with different N forms. Furthermore, the miRNA-target pairs ptc-miR169i/b-D6PKL2, ptc-miR393a-5p-AFB2, ptc-miR6445a-NAC14, ptc-miR172d-AP2, csi-miR396a-5p_R + 1_1ss21GA-EBP1, ath-miR396b-5p_R + 1-TPR4, and ptc-miR166a/b/c-ATHB-8 probably contributed to the changes in root morphology observed when poplar plants were treated with different N forms. CONCLUSIONS These results demonstrate that differentially expressed miRNAs and their targets play an important role in the regulation of the poplar root system architecture by different N forms.
Collapse
Affiliation(s)
- Jing Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Jiang-Ting Wu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| |
Collapse
|
8
|
Zhou J, Yang LY, Chen X, Shi WG, Deng SR, Luo ZB. Genome-Wide Identification and Characterization of Long Noncoding RNAs in Populus × canescens Roots Treated With Different Nitrogen Fertilizers. FRONTIERS IN PLANT SCIENCE 2022; 13:890453. [PMID: 35646010 PMCID: PMC9135444 DOI: 10.3389/fpls.2022.890453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/19/2022] [Indexed: 05/14/2023]
Abstract
Nitrate (NO3 -) and ammonium (NH4 +) are the primary forms of inorganic nitrogen acquired by plant roots. LncRNAs, as key regulators of gene expression, are a class of non-coding RNAs larger than 200 bp. However, knowledge about the regulatory role of lncRNAs in response to different nitrogen forms remains limited, particularly in woody plants. Here, we performed strand-specific RNA-sequencing of P. × canescens roots under three different nitrogen fertilization treatments. In total, 324 lncRNAs and 6,112 mRNAs were identified as showing significantly differential expression between the NO3 - and NH4NO3 treatments. Moreover, 333 lncRNAs and 6,007 mRNAs showed significantly differential expression between the NH4 + and NH4NO3 treatments. Further analysis suggested that these lncRNAs and mRNAs have different response mechanisms for different nitrogen forms. In addition, functional annotation of cis and trans target mRNAs of differentially expressed lncRNAs indicated that 60 lncRNAs corresponding to 49 differentially expressed cis and trans target mRNAs were involved in plant nitrogen metabolism and amino acid biosynthesis and metabolism. Furthermore, 42 lncRNAs were identified as putative precursors of 63 miRNAs, and 28 differentially expressed lncRNAs were potential endogenous target mimics targeted by 96 miRNAs. Moreover, ceRNA regulation networks were constructed. MSTRG.6097.1, MSTRG.13550.1, MSTRG.2693.1, and MSTRG.12899.1, as hub lncRNAs in the ceRNA networks, are potential candidate lncRNAs for studying the regulatory mechanism in poplar roots under different nitrogen fertilization treatments. The results provide a basis for obtaining insight into the molecular mechanisms of lncRNA responses to different nitrogen forms in woody plants.
Collapse
|
9
|
Wang Z, Li N, Yu Q, Wang H. Genome-Wide Characterization of Salt-Responsive miRNAs, circRNAs and Associated ceRNA Networks in Tomatoes. Int J Mol Sci 2021; 22:12238. [PMID: 34830118 PMCID: PMC8625345 DOI: 10.3390/ijms222212238] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022] Open
Abstract
Soil salinization is a major environmental stress that causes crop yield reductions worldwide. Therefore, the cultivation of salt-tolerant crops is an effective way to sustain crop yield. Tomatoes are one of the vegetable crops that are moderately sensitive to salt stress. Global market demand for tomatoes is huge and growing. In recent years, the mechanisms of salt tolerance in tomatoes have been extensively investigated; however, the molecular mechanism through which non-coding RNAs (ncRNAs) respond to salt stress is not well understood. In this study, we utilized small RNA sequencing and whole transcriptome sequencing technology to identify salt-responsive microRNAs (miRNAs), messenger RNAs (mRNAs), and circular RNAs (circRNAs) in roots of M82 cultivated tomato and Solanum pennellii (S. pennellii) wild tomato under salt stress. Based on the theory of competitive endogenous RNA (ceRNA), we also established several salt-responsive ceRNA networks. The results showed that circRNAs could act as miRNA sponges in the regulation of target mRNAs of miRNAs, thus participating in the response to salt stress. This study provides insights into the mechanisms of salt tolerance in tomatoes and serves as an effective reference for improving the salt tolerance of salt-sensitive cultivars.
Collapse
Affiliation(s)
- Zhongyu Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi 830091, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Qinghui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| |
Collapse
|
10
|
Fang L, Wang Y. MicroRNAs in Woody Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:686831. [PMID: 34531880 PMCID: PMC8438446 DOI: 10.3389/fpls.2021.686831] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/03/2021] [Indexed: 05/05/2023]
Abstract
MicroRNAs (miRNAs) are small (∼21-nucleotides) non-coding RNAs found in plant and animals. MiRNAs function as critical post-transcriptional regulators of gene expression by binding to complementary sequences in their target mRNAs, leading to mRNA destabilization and translational inhibition. Plant miRNAs have some distinct characteristics compared to their animal counterparts, including greater evolutionary conservation and unique miRNA processing methods. The lifecycle of a plant begins with embryogenesis and progresses through seed germination, vegetative growth, reproductive growth, flowering and fruiting, and finally senescence and death. MiRNAs participate in the transformation of plant growth and development and directly monitor progression of these processes and the expression of certain morphological characteristics by regulating transcription factor genes involved in cell growth and differentiation. In woody plants, a large and rapidly increasing number of miRNAs have been identified, but their biological functions are largely unknown. In this review, we summarize the progress of miRNA research in woody plants to date. In particular, we discuss the potential roles of these miRNAs in growth, development, and biotic and abiotic stresses responses in woody plants.
Collapse
Affiliation(s)
- Lisha Fang
- College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Yanmei Wang
- College of Forestry, Henan Agricultural University, Zhengzhou, China
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| |
Collapse
|
11
|
Zhou J, Wu JT. Physiological characteristics and miRNA sequencing of two root zones with contrasting ammonium assimilation patterns in Populus. Genes Genomics 2021; 44:39-51. [PMID: 34455578 DOI: 10.1007/s13258-021-01156-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND The net ammonium fluxes differ among the different root zones of Populus, but the physiological and microRNA regulatory mechanisms are unclear. OBJECTIVE To elucidate the physiological and miRNA regulatory mechanisms, we investigated the two root zones displaying significant differences in net NH4+ effluxes of P. × canescens. METHODS Populus plantlets were cultivated with 500 μM NH4Cl for 10 days. Six plants were randomly selected to determine the net NH4+ fluxes using a noninvasive microtest technique. High-throughput sequencing were used to determine the dynamic expression profile of miRNA among the different root zones of Populus. RESULTS Net NH4+ efflux in zone I (from 0 to 40 mm from the root apex) was - 19.64 pmol cm-2 s-1 and in zone II (from 40 to 80 mm) it was - 43.96 pmol cm-2 s-1. The expression of eleven miRNAs was significantly upregulated, whereas fifteen miRNAs were downregulated. Moreover, eighty-eight target genes of the significantly differentially expressed miRNAs were identified in root zone II compared with zone I. Particularly, ptc-miR171a/b/e and their target, SCL6, were found to be important for the difference in net NH4+ effluxes in the two root zones. Moreover, the expression of the target of ptc-miR169d, NFYA3 was upregulated in root zone II compared with root zone I, contributing to increased NH4+ efflux and decreased NH4+ assimilation in root zone II. CONCLUSION These results indicate that miRNAs regulate the expression levels of their target genes and thus play key roles in net NH4+ fluxes and NH4+ assimilation in different poplar root zones.
Collapse
Affiliation(s)
- Jing Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Jiang Ting Wu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| |
Collapse
|
12
|
Li H, Yu TT, Ning YS, Li H, Zhang WW, Yang HQ. Hydrogen Sulfide Alleviates Alkaline Salt Stress by Regulating the Expression of MicroRNAs in Malus hupehensis Rehd. Roots. FRONTIERS IN PLANT SCIENCE 2021; 12:663519. [PMID: 34381471 PMCID: PMC8350742 DOI: 10.3389/fpls.2021.663519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/06/2021] [Indexed: 06/13/2023]
Abstract
Malus hupehensis Rehd. var. pingyiensis Jiang (Pingyi Tiancha, PYTC) is an excellent apple rootstock and ornamental tree, but its tolerance to salt stress is weak. Our previous study showed that hydrogen sulfide (H2S) could alleviate damage in M. hupehensis roots under alkaline salt stress. However, the molecular mechanism of H2S mitigation alkaline salt remains to be elucidated. MicroRNAs (miRNAs) play important regulatory roles in plant response to salt stress. Whether miRNAs are involved in the mitigation of alkaline salt stress mediated by H2S remains unclear. In the present study, through the expression analysis of miRNAs and target gene response to H2S and alkaline salt stress in M. hupehensis roots, 115 known miRNAs (belonging to 37 miRNA families) and 15 predicted novel miRNAs were identified. In addition, we identified and analyzed 175 miRNA target genes. We certified the expression levels of 15 miRNAs and nine corresponding target genes by real-time quantitative PCR (qRT-PCR). Interestingly, H2S pretreatment could specifically induce the downregulation of mhp-miR408a expression, and upregulated mhp-miR477a and mhp-miR827. Moreover, root architecture was improved by regulating the expression of mhp-miR159c and mhp-miR169 and their target genes. These results suggest that the miRNA-mediated regulatory network participates in the process of H2S-mitigated alkaline salt stress in M. hupehensis roots. This study provides a further understanding of miRNA regulation in the H2S mitigation of alkaline salt stress in M. hupehensis roots.
Collapse
|
13
|
İbrahimova U, Kumari P, Yadav S, Rastogi A, Antala M, Suleymanova Z, Zivcak M, Tahjib-Ul-Arif M, Hussain S, Abdelhamid M, Hajihashemi S, Yang X, Brestic M. Progress in understanding salt stress response in plants using biotechnological tools. J Biotechnol 2021; 329:180-191. [PMID: 33610656 DOI: 10.1016/j.jbiotec.2021.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/06/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Salinization is a worldwide environmental problem, which is negatively impacting crop yield and thus posing a threat to the world's food security. Considering the rising threat of salinity, it is need of time, to understand the salt tolerant mechanism in plants and find avenues for the development of salinity resistant plants. Several plants tolerate salinity in a different manner, thereby halophytes and glycophytes evolved altered mechanisms to counter the stress. Therefore, in this review article, physiological, metabolic, and molecular aspects of the plant adaptation to salt stress have been discussed. The conventional breeding techniques for developing salt tolerant plants has not been much successful, due to its multigenic trait. The inflow of data from plant sequencing projects and annotation of genes led to the identification of many putative genes having a role in salt stress. The bioinformatics tools provided preliminary information and were helpful for making salt stress-specific databases. The microRNA identification and characterization led to unraveling the finer intricacies of the network. The transgenic approach finally paved a way for overexpressing some important genes viz. DREB, MYB, COMT, SOS, PKE, NHX, etc. conferred salt stress tolerance. In this review, we tried to show the effect of salinity on plants, considering ion homeostasis, antioxidant defense response, proteins involved, possible utilization of transgenic plants, and bioinformatics for coping with this stress factor. An overview of previous studies related to salt stress is presented in order to assist researchers in providing a potential solution for this increasing environmental threat.
Collapse
Affiliation(s)
- Ulkar İbrahimova
- Institute of Molecular Biology and Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev, Baku, AZ 1073, Azerbaijan
| | - Pragati Kumari
- Department of Life Science, Singhania University, Jhunjhunu, Rajasthan 333515, India; Scientist Hostel-S-02, Chauras campus, Srinagar Garhwal, Uttarakhand 246174, India
| | - Saurabh Yadav
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal (Central) University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznan, Poland.
| | - Michal Antala
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznan, Poland; Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovak Republic
| | - Zarifa Suleymanova
- Institute of Molecular Biology and Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev, Baku, AZ 1073, Azerbaijan
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovak Republic
| | - Md Tahjib-Ul-Arif
- Department of Biochemistry & Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Sajad Hussain
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | | | - Shokoofeh Hajihashemi
- Plant Biology Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Khuzestan, 47189-63616, Iran
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovak Republic.
| |
Collapse
|
14
|
Zhou J, Lu Y, Shi WG, Deng SR, Luo ZB. Physiological characteristics and RNA sequencing in two root zones with contrasting nitrate assimilation of Populus × canescens. TREE PHYSIOLOGY 2020; 40:1392-1404. [PMID: 32542375 DOI: 10.1093/treephys/tpaa071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 05/27/2023]
Abstract
Different root zones have distinct capacities for nitrate (NO3-) uptake in Populus species, but the underlying physiological and microRNA (miRNA) regulatory mechanisms remain largely unknown. To address this question, two root zones of Populus × canescens (Ait.) Smith. with contrasting capacities for NO3- uptake were investigated. The region of 0-40 mm (root zone I) to the root apex displayed net influxes, whereas the region of 40-80 mm (root zone II) exhibited net effluxes. Concentrations of NO3- and ammonium (NH4+) as well as nitrate reductase activity were lower in zone II than in zone I. Forty one upregulated and twenty three downregulated miRNAs, and 576 targets of these miRNAs were identified in zone II in comparison with zone I. Particularly, growth-regulating factor 4 (GRF4), a target of upregulated ptc-miR396g-5p and ptc-miR396f_L + 1R-1, was downregulated in zone II in comparison with zone I, probably contributing to lower NO3- uptake rates and assimilation in zone II. Furthermore, several miRNAs and their targets, members of C2H2 zinc finger family and APETALA2/ethylene-responsive element binding protein family, were found in root zones, which probably play important roles in regulating NO3- uptake. These results indicate that differentially expressed miRNA-target pairs play key roles in regulation of distinct NO3- uptake rates and assimilation in different root zones of poplars.
Collapse
Affiliation(s)
- Jing Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yan Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Wen-Guang Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Shu-Rong Deng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Zhi-Bin Luo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
15
|
Fonini LS, Lazzarotto F, Barros PM, Cabreira-Cagliari C, Martins MAB, Saibo NJM, Turchetto-Zolet AC, Margis-Pinheiro M. Molecular evolution and diversification of the GRF transcription factor family. Genet Mol Biol 2020; 43:20200080. [PMID: 32706846 PMCID: PMC7380329 DOI: 10.1590/1678-4685-gmb-2020-0080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/12/2020] [Indexed: 12/02/2022] Open
Abstract
Abstract - Growth Regulating Factors (GRFs) comprise a transcription factor family with important functions in plant growth and development. They are characterized by the presence of QLQ and WRC domains, responsible for interaction with proteins and DNA, respectively. The QLQ domain is named due to the similarity to a protein interaction domain found in the SWI2/SNF2 chromatin remodeling complex. Despite the occurrence of the QLQ domain in both families, the divergence between them had not been further explored. Here, we show evidence for GRF origin and determined its diversification in angiosperm species. Phylogenetic analysis revealed 11 well-supported groups of GRFs in flowering plants. These groups were supported by gene structure, synteny, and protein domain composition. Synteny and phylogenetic analyses allowed us to propose different sets of probable orthologs in the groups. Besides, our results, together with functional data previously published, allowed us to suggest candidate genes for engineering agronomic traits. In addition, we propose that the QLQ domain of GRF genes evolved from the eukaryotic SNF2 QLQ domain, most likely by a duplication event in the common ancestor of the Charophytes and land plants. Altogether, our results are important for advancing the origin and evolution of the GRF family in Streptophyta.
Collapse
Affiliation(s)
- Leila Spagnolo Fonini
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil
| | - Fernanda Lazzarotto
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil
| | - Pedro M Barros
- Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Oeiras, Portugal
| | - Caroline Cabreira-Cagliari
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Marcelo Affonso Begossi Martins
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Nelson J M Saibo
- Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Oeiras, Portugal
| | - Andreia Carina Turchetto-Zolet
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Marcia Margis-Pinheiro
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| |
Collapse
|
16
|
Wang S, Liu S, Liu L, Li R, Guo R, Xia X, Wei C. miR477 targets the phenylalanine ammonia-lyase gene and enhances the susceptibility of the tea plant (Camellia sinensis) to disease during Pseudopestalotiopsis species infection. PLANTA 2020; 251:59. [PMID: 32025888 DOI: 10.1007/s00425-020-03353-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/30/2020] [Indexed: 05/14/2023]
Abstract
MAIN CONCLUSION: miR477 acts as a negative regulator in tea plant immunity against Pseudopestalotiopsis infection by repressing the expression of its target gene PAL. MicroRNA (miRNA)-mediated post-transcriptional regulation plays a fundamental role in various plant physiological processes, including responses to pathogens. Our previous research revealed that miR477 might be involved in the tea plant-Pseudopestalotiopsis interaction (data not shown). In the present study, the accumulation of miR477 significantly decreased in tea plants during Pseudopestalotiopsis species infection. Using miRNA and degradome data sets, the targeting of phenylalanine ammonia-lyase (PAL) by miR477 was validated by 5' RLM-RACE. GUS assay showed that the expression of PAL was post-transcriptionally regulated by miR477 and silenced by mRNA cleavage. A negative correlation between the expression of miR477 and PAL was found in tea plants infected by the pathogen. The transgenic lines overexpressing Csn-miR477 exhibited increased susceptibility to Pseudopestalotiopsis species, which was associated with reduced expression of PAL during infection. The degree of severity of the leaf lesions and the results of trypan blue staining showed that the plants overexpressing Csn-miR477 exhibited more severe damage upon pathogen infection than wild-type plants. In addition, more H2O2 and O2-, higher malondialdehyde (MDA) contents and less superoxide dismutase (SOD) and peroxidase (POD) activities were detected in the transgenic plants than in the wild-type plants after inoculation with Pseudopestalotiopsis species. Taken together, our results implied that Csn-miR477 might act as a negative regulator in pathogen-infected tea plants by inhibiting the expression of its target, PAL, and that Csn-miR477 is a candidate miRNA for improving the adaptation of tea plant to disease.
Collapse
Affiliation(s)
- Shuangshuang Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, People's Republic of China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, People's Republic of China
| | - Lu Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, People's Republic of China
| | - Rui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, People's Republic of China
| | - Rui Guo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, People's Republic of China
| | - Xiaobo Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, People's Republic of China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
17
|
Jiu S, Leng X, Haider MS, Dong T, Guan L, Xie Z, Li X, Shangguan L, Fang J. Identification of copper (Cu) stress-responsive grapevine microRNAs and their target genes by high-throughput sequencing. ROYAL SOCIETY OPEN SCIENCE 2019; 6:180735. [PMID: 30800341 PMCID: PMC6366190 DOI: 10.1098/rsos.180735] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/24/2018] [Indexed: 05/21/2023]
Abstract
MicroRNAs (miRNAs) are a class of single-stranded non-coding small RNAs (sRNAs) that are 20-24 nucleotides (nt) in length. Extensive studies have indicated that miRNAs play important roles in plant growth, development and stress responses. With more copper (Cu) and copper containing compounds used as bactericides and fungicides in plants, Cu stress has become one of the serious environmental problems that affect plant growth and development. In order to uncover the hidden response mechanisms of Cu stress, two small RNA libraries were constructed from Cu-treated and water-treated (Control) leaves of 'Summer Black' grapevine. Following high-throughput sequencing and filtering, a total of 158 known and 98 putative novel miRNAs were identified in the two libraries. Among these, 100 known and 47 novel miRNAs were identified as differentially expressed under Cu stress. Subsequently, the expression patterns of nine Cu-responsive miRNAs were validated by quantitative real-time PCR (qRT-PCR). There existed some consistency in expression levels of Cu-responsive miRNAs between high throughput sequencing and qRT-PCR assays. The targets prediction of miRNAs indicates that miRNA may regulate some transcription factors, including AP2, SBP, NAC, MYB and ARF during Cu stress. The target genes for two known and two novel miRNAs showed specific cleavage sites at the 10th and/or 11th nucleotide from the 5'-end of the miRNA corresponding to their miRNA complementary sequences. The findings will lay the foundation for exploring the role of the regulation of miRNAs in response to Cu stress and provide valuable gene information for breeding some Cu-tolerant grapevine cultivars.
Collapse
Affiliation(s)
- Songtao Jiu
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiangpeng Leng
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Muhammad Salman Haider
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| | - Tianyu Dong
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| | - Le Guan
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| | - Zhenqiang Xie
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| | - Xiaopeng Li
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| | - Lingfei Shangguan
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| | - Jinggui Fang
- Key Laboratory of Genetics and Fruit development, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
18
|
Yuan S, Zhao J, Li Z, Hu Q, Yuan N, Zhou M, Xia X, Noorai R, Saski C, Li S, Luo H. MicroRNA396-mediated alteration in plant development and salinity stress response in creeping bentgrass. HORTICULTURE RESEARCH 2019; 6:48. [PMID: 31069081 PMCID: PMC6491569 DOI: 10.1038/s41438-019-0130-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/05/2018] [Accepted: 01/09/2019] [Indexed: 05/19/2023]
Abstract
The conserved microRNA396 (miR396) is involved in plant growth, development, and abiotic stress response in multiple plant species through regulating its targets, Growth Regulating Factor (GRF) transcription factor genes. However, the role of miR396 has not yet been characterized in perennial monocot species. In addition, the molecular mechanism of miR396-mediated abiotic stress response remains unclear. To elucidate the role of miR396 in perennial monocot species, we generated transgenic creeping bentgrass (Agrostis stolonifera) overexpressing Osa-miR396c, a rice miRNA396 gene. Transgenic plants exhibited altered development, including less shoot and root biomass, shorter internodes, smaller leaf area, fewer leaf veins, and epidermis cells per unit area than those of WT controls. In addition, transgenics showed enhanced salt tolerance associated with improved water retention, increased chlorophyll content, cell membrane integrity, and Na+ exclusion during high salinity exposure. Four potential targets of miR396 were identified in creeping bentgrass and up-regulated in response to salt stress. RNA-seq analysis indicates that miR396-mediated salt stress tolerance requires the coordination of stress-related functional proteins (antioxidant enzymes and Na+/H+ antiporter) and regulatory proteins (transcription factors and protein kinases). This study establishes a miR396-associated molecular pathway to connect the upstream regulatory and downstream functional elements, and provides insight into the miRNA-mediated regulatory networks.
Collapse
Affiliation(s)
- Shuangrong Yuan
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC 29634-0318 USA
| | - Junming Zhao
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC 29634-0318 USA
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, 611130 Chengdu, Sichuan China
| | - Zhigang Li
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC 29634-0318 USA
| | - Qian Hu
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC 29634-0318 USA
| | - Ning Yuan
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC 29634-0318 USA
| | - Man Zhou
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC 29634-0318 USA
| | - Xiaoxia Xia
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC 29634-0318 USA
| | - Rooksie Noorai
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC 29634-0318 USA
| | - Christopher Saski
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC 29634-0318 USA
| | - Shigui Li
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, 611130 Chengdu, Sichuan China
| | - Hong Luo
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC 29634-0318 USA
| |
Collapse
|
19
|
MicroRNA156 amplifies transcription factor-associated cold stress tolerance in plant cells. Mol Genet Genomics 2018; 294:379-393. [DOI: 10.1007/s00438-018-1516-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/13/2018] [Indexed: 12/14/2022]
|
20
|
Integrated regulatory network reveals the early salt tolerance mechanism of Populus euphratica. Sci Rep 2017; 7:6769. [PMID: 28754917 PMCID: PMC5533726 DOI: 10.1038/s41598-017-05240-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/24/2017] [Indexed: 01/06/2023] Open
Abstract
Salinization is one of the major factors that threaten the existence of plants worldwide. Populus euphratica has been deemed to be a promising candidate for stress response research because of its high capacity to tolerate extreme salt stress. We carried out a genome-wide transcriptome analysis to identify the differentially expressed genes (DEGs) response to salt shock and elucidate the early salt tolerance mechanisms in P. euphratica. Both hierarchical clustering and DEG analysis demonstrated a predominant variation from time-course rather than NaCl intensity within 24 hours salt shock. Among the identified 1,678 salt-responsive DEGs, 74.1% (1,244) have not been reported before. We further created an integrated regulatory gene network of the salt response in P. euphratica by combining DEGs, transcription factors (TFs), Helitrons, miRNAs and their targets. The prominent pathways in this network are plant hormone transduction, starch and sucrose metabolism, RNA transport, protein processing in endoplasmic reticulum, etc. In addition, the network indicates calcium-related genes play key roles in P. euphratica response to salt shock. These results illustrated an overview of the systematic molecular response in P. euphratica under different intensities of salt shock and revealed the complex regulatory mechanism.
Collapse
|
21
|
Zhang J, Yuan H, Li M, Li Y, Wang Y, Ma X, Zhang Y, Tan F, Wu R. A High-Density Genetic Map of Tetraploid Salix matsudana Using Specific Length Amplified Fragment Sequencing (SLAF-seq). PLoS One 2016; 11:e0157777. [PMID: 27327501 PMCID: PMC4915623 DOI: 10.1371/journal.pone.0157777] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/03/2016] [Indexed: 01/20/2023] Open
Abstract
As a salt-tolerant arbor tree species, Salix matsudana plays an important role in afforestation and greening in the coastal areas of China. To select superior Salix varieties that adapt to wide saline areas, it is of paramount importance to understand and identify the mechanisms of salt-tolerance at the level of the whole genome. Here, we describe a high-density genetic linkage map of S. matsudana that represents a good coverage of the Salix genome. An intraspecific F1 hybrid population was established by crossing the salt-sensitive “Yanjiang” variety as the female parent with the salt-tolerant “9901” variety as the male parent. This population, along with its parents, was genotyped by specific length amplified fragment sequencing (SLAF-seq), leading to 277,333 high-quality SLAF markers. By marker analysis, we found that both the parents and offspring were tetraploid. The mean sequencing depth was 53.20-fold for “Yanjiang”, 47.41-fold for “9901”, and 11.02-fold for the offspring. Of the SLAF markers detected, 42,321 are polymorphic with sufficient quality for map construction. The final genetic map was constructed using 6,737 SLAF markers, covering 38 linkage groups (LGs). The genetic map spanned 5,497.45 cM in length, with an average distance of 0.82 cM. As a first high-density genetic map of S. matsudana constructed from salt tolerance-varying varieties, this study will provide a foundation for mapping quantitative trait loci that modulate salt tolerance and resistance in Salix and provide important references for molecular breeding of this important forest tree.
Collapse
Affiliation(s)
- Jian Zhang
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Jiangsu Riverine Institute of Agricultural Sciences, Rugao, Jiangsu, China
| | - Huwei Yuan
- National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Min Li
- Jiangsu Riverine Institute of Agricultural Sciences, Rugao, Jiangsu, China
| | - Yujuan Li
- Jiangsu Riverine Institute of Agricultural Sciences, Rugao, Jiangsu, China
| | - Ying Wang
- Jiangsu Riverine Institute of Agricultural Sciences, Rugao, Jiangsu, China
| | - Xiangjian Ma
- Jiangsu Riverine Institute of Agricultural Sciences, Rugao, Jiangsu, China
| | - Yuan Zhang
- Jiangsu Riverine Institute of Agricultural Sciences, Rugao, Jiangsu, China
| | - Feng Tan
- Jiangsu Riverine Institute of Agricultural Sciences, Rugao, Jiangsu, China
| | - Rongling Wu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Center for Statistical Genetics, Pennsylvania State University, Hershey, United States of America
- * E-mail: ;
| |
Collapse
|
22
|
Lu YB, Qi YP, Yang LT, Guo P, Li Y, Chen LS. Boron-deficiency-responsive microRNAs and their targets in Citrus sinensis leaves. BMC PLANT BIOLOGY 2015; 15:271. [PMID: 26538180 PMCID: PMC4634795 DOI: 10.1186/s12870-015-0642-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 10/08/2015] [Indexed: 05/22/2023]
Abstract
BACKGROUND MicroRNAs play important roles in the adaptive responses of plants to nutrient deficiencies. Most research, however, has focused on nitrogen (N), phosphorus (P), sulfur (S), copper (Cu) and iron (Fe) deficiencies, limited data are available on the differential expression of miRNAs and their target genes in response to deficiencies of other nutrient elements. In this study, we identified the known and novel miRNAs as well as the boron (B)-deficiency-responsive miRNAs from citrus leaves in order to obtain the potential miRNAs related to the tolerance of citrus to B-deficiency. METHODS Seedlings of 'Xuegan' [Citrus sinensis (L.) Osbeck] were supplied every other day with B-deficient (0 μM H3BO3) or -sufficient (10 μM H3BO3) nutrient solution for 15 weeks. Thereafter, we sequenced two small RNA libraries from B-deficient and -sufficient (control) citrus leaves, respectively, using Illumina sequencing. RESULTS Ninety one (83 known and 8 novel) up- and 81 (75 known and 6 novel) down-regulated miRNAs were isolated from B-deficient leaves. The great alteration of miRNA expression might contribute to the tolerance of citrus to B-deficiency. The adaptive responses of miRNAs to B-deficiency might related to several aspects: (a) attenuation of plant growth and development by repressing auxin signaling due to decreased TIR1 level and ARF-mediated gene expression by altering the expression of miR393, miR160 and miR3946; (b) maintaining leaf phenotype and enhancing the stress tolerance by up-regulating NACs targeted by miR159, miR782, miR3946 and miR7539; (c) activation of the stress responses and antioxidant system through down-regulating the expression of miR164, miR6260, miR5929, miR6214, miR3946 and miR3446; (d) decreasing the expression of major facilitator superfamily protein genes targeted by miR5037, thus lowering B export from plants. Also, B-deficiency-induced down-regulation of miR408 might play a role in plant tolerance to B-deficiency by regulating Cu homeostasis and enhancing superoxide dismutase activity. CONCLUSIONS Our study reveals some novel responses of citrus to B-deficiency, which increase our understanding of the adaptive mechanisms of citrus to B-deficiency at the miRNA (post-transcriptional) level.
Collapse
Affiliation(s)
- Yi-Bin Lu
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou, 350001, China.
| | - Lin-Tong Yang
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Peng Guo
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yan Li
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Li-Song Chen
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- The Higher Educational Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Fujian Key Laboratory for Plant Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
23
|
Omidbakhshfard MA, Proost S, Fujikura U, Mueller-Roeber B. Growth-Regulating Factors (GRFs): A Small Transcription Factor Family with Important Functions in Plant Biology. MOLECULAR PLANT 2015; 8:998-1010. [PMID: 25620770 DOI: 10.1016/j.molp.2015.01.013] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/21/2014] [Accepted: 01/13/2015] [Indexed: 05/18/2023]
Abstract
Growth-regulating factors (GRFs) are plant-specific transcription factors that were originally identified for their roles in stem and leaf development, but recent studies highlight them to be similarly important for other central developmental processes including flower and seed formation, root development, and the coordination of growth processes under adverse environmental conditions. The expression of several GRFs is controlled by microRNA miR396, and the GRF-miRNA396 regulatory module appears to be central to several of these processes. In addition, transcription factors upstream of GRFs and miR396 have been discovered, and gradually downstream target genes of GRFs are being unraveled. Here, we review the current knowledge of the biological functions performed by GRFs and survey available molecular data to illustrate how they exert their roles at the cellular level.
Collapse
Affiliation(s)
- Mohammad Amin Omidbakhshfard
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany; Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Sebastian Proost
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany; Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Ushio Fujikura
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany
| | - Bernd Mueller-Roeber
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany; Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
24
|
Cao X, Wu Z, Jiang F, Zhou R, Yang Z. Identification of chilling stress-responsive tomato microRNAs and their target genes by high-throughput sequencing and degradome analysis. BMC Genomics 2014; 15:1130. [PMID: 25519760 PMCID: PMC4377850 DOI: 10.1186/1471-2164-15-1130] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 12/11/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are a class of noncoding small RNAs (sRNAs) that are 20-24 nucleotides (nt) in length. Extensive studies have indicated that miRNAs play versatile roles in plants, functioning in processes such as growth, development and stress responses. Chilling is a common abiotic stress that seriously affects plants growth and development. Recently, chilling-responsive miRNAs have been detected in several plant species. However, little is known about the miRNAs in the model plant tomato. 'LA1777' (Solanum habrochaites) has been shown to survive chilling stress due to its various characteristics. RESULTS Here, two small RNA libraries and two degradome libraries were produced from chilling-treated (CT) and non-chilling-treated (NT) leaves of S. habrochaites seedlings. Following high-throughput sequencing and filtering, 161 conserved and 236 novel miRNAs were identified in the two libraries. Of these miRNAs, 192 increased in the response to chilling stress while 205 decreased. Furthermore, the target genes of the miRNAs were predicted using a degradome sequencing approach. It was found that 62 target genes were cleaved by 42 conserved miRNAs, while nine target genes were cleaved by nine novel miRNAs. Additionally, nine miRNAs and six target genes were validated by quantitative real-time PCR (qRT-PCR). Target gene functional analysis showed that most target genes played positive roles in the chilling response, primarily by regulating the expression of anti-stress proteins, antioxidant enzyme and genes involved in cell wall formation. CONCLUSIONS Tomato is an important model plant for basic biological research. In this study, numerous conserved and novel miRNAs involved in the chilling response were identified using high-throughput sequencing, and the target genes were analyzed by degradome sequencing. The work helps identify chilling-responsive miRNAs in tomato and increases the number of identified miRNAs involved in chilling stress. Furthermore, the work provides a foundation for further study of the regulation of miRNAs in the plant response to chilling stress.
Collapse
Affiliation(s)
- Xue Cao
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 P.R. China
| | - Zhen Wu
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 P.R. China
| | - Fangling Jiang
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 P.R. China
| | - Rong Zhou
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 P.R. China
| | - Zeen Yang
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 P.R. China
| |
Collapse
|
25
|
Si J, Zhou T, Bo W, Xu F, Wu R. Genome-wide analysis of salt-responsive and novel microRNAs in Populus euphratica by deep sequencing. BMC Genet 2014. [PMID: 25079824 DOI: 10.1186/1471‐2156‐15‐s1‐s6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Populus euphratica is a representative model woody plant species for studying resistance to abiotic stresses such as drought and salt. Salt stress is one of the most common environmental factors that affect plant growth and development. MicroRNAs (miRNAs) are small, noncoding RNAs that have important regulatory functions in plant growth, development, and response to abiotic stress. RESULTS To investigate the miRNAs involved in the salt-stress response, we constructed four small cDNA libraries from P. euphratica plantlets treated with or without salt (300 mM NaCl, 3 days) in either the root or leaf. Using high-throughput sequencing to identify miRNAs, we found 164 conserved miRNAs belonging to 44 families. Of these, 136 novel miRNAs were from the leaf, and 128 novel miRNAs were from the root. In response to salt stress, 95 miRNAs belonging to 46 conserved miRNAs families changed significantly, with 56 miRNAs upregulated and 39 miRNAs downregulated in the leaf. A comparison of the leaf and root tissues revealed 155 miRNAs belonging to 63 families with significantly altered expression, including 84 upregulated and 71 downregulated miRNAs. Furthermore, 479 target genes in the root and 541 targets of novel miRNAs in the leaf were predicted, and functional information was annotated using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. CONCLUSIONS This study provides a novel visual field for understanding the regulatory roles of miRNAs in response to salt stress in Populus.
Collapse
|
26
|
Identification and expression analysis of salt-responsive genes using a comparative microarray approach in Salix matsudana. Mol Biol Rep 2014; 41:6555-68. [DOI: 10.1007/s11033-014-3539-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 06/19/2014] [Indexed: 10/25/2022]
|
27
|
Si J, Zhou T, Bo W, Xu F, Wu R. Genome-wide analysis of salt-responsive and novel microRNAs in Populus euphratica by deep sequencing. BMC Genet 2014; 15 Suppl 1:S6. [PMID: 25079824 PMCID: PMC4118626 DOI: 10.1186/1471-2156-15-s1-s6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background Populus euphratica is a representative model woody plant species for studying resistance to abiotic stresses such as drought and salt. Salt stress is one of the most common environmental factors that affect plant growth and development. MicroRNAs (miRNAs) are small, noncoding RNAs that have important regulatory functions in plant growth, development, and response to abiotic stress. Results To investigate the miRNAs involved in the salt-stress response, we constructed four small cDNA libraries from P. euphratica plantlets treated with or without salt (300 mM NaCl, 3 days) in either the root or leaf. Using high-throughput sequencing to identify miRNAs, we found 164 conserved miRNAs belonging to 44 families. Of these, 136 novel miRNAs were from the leaf, and 128 novel miRNAs were from the root. In response to salt stress, 95 miRNAs belonging to 46 conserved miRNAs families changed significantly, with 56 miRNAs upregulated and 39 miRNAs downregulated in the leaf. A comparison of the leaf and root tissues revealed 155 miRNAs belonging to 63 families with significantly altered expression, including 84 upregulated and 71 downregulated miRNAs. Furthermore, 479 target genes in the root and 541 targets of novel miRNAs in the leaf were predicted, and functional information was annotated using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. Conclusions This study provides a novel visual field for understanding the regulatory roles of miRNAs in response to salt stress in Populus.
Collapse
|
28
|
Kurtoglu KY, Kantar M, Budak H. New wheat microRNA using whole-genome sequence. Funct Integr Genomics 2014; 14:363-79. [PMID: 24395439 DOI: 10.1007/s10142-013-0357-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/06/2013] [Accepted: 12/22/2013] [Indexed: 11/25/2022]
Abstract
MicroRNAs are post-transcriptional regulators of gene expression, taking roles in a variety of fundamental biological processes. Hence, their identification, annotation and characterization are of great significance, especially in bread wheat, one of the main food sources for humans. The recent availability of 5× coverage Triticum aestivum L. whole-genome sequence provided us with the opportunity to perform a systematic prediction of a complete catalogue of wheat microRNAs. Using an in silico homology-based approach, stem-loop coding regions were derived from two assemblies, constructed from wheat 454 reads. To avoid the presence of pseudo-microRNAs in the final data set, transposable element related stem-loops were eliminated by repeat analysis. Overall, 52 putative wheat microRNAs were predicted, including seven, which have not been previously published. Moreover, with distinct analysis of the two different assemblies, both variety and representation of putative microRNA-coding stem-loops were found to be predominant in the intergenic regions. By searching available expressed sequences and small RNA library databases, expression evidence for 39 (out of 52) putative wheat microRNAs was provided. Expression of three of the predicted microRNAs (miR166, miR396 and miR528) was also comparatively quantified with real-time quantitative reverse transcription PCR. This is the first report on in silico prediction of a whole repertoire of bread wheat microRNAs, supported by the wet-lab validation.
Collapse
|
29
|
Ren Y, Chen L, Zhang Y, Kang X, Zhang Z, Wang Y. Identification and characterization of salt-responsive microRNAs in Populus tomentosa by high-throughput sequencing. Biochimie 2012; 95:743-50. [PMID: 23142627 DOI: 10.1016/j.biochi.2012.10.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/30/2012] [Indexed: 12/13/2022]
Abstract
Salt is one of the main environmental factors limiting plant growth and a better understanding of mechanisms of salt stress would aid efforts to bolster plant salt tolerance. MicroRNAs are well known for their important regulatory roles in response to abiotic stress in plants. In this study, high-throughput sequencing was employed to identify miRNAs in Populus tomentosa plantlets treated or not with salt (200 mM for 10 h). We found 141 conserved miRNAs belonging to 31 families, 29 non-conserved but previously-known miRNAs belonging to 26 families, and 17 novel miRNAs. Under salt stress, 19 miRNAs belonging to seven conserved miRNA families were significantly downregulated, and two miRNAs belonging to two conserved miRNA families were upregulated. Of seven non-conserved miRNAs with significantly altered expression, five were downregulated and two were upregulated. Furthermore, eight miRNAs were validated by qRT-PCR and their dynamic differential expressions were analyzed. In addition, 269 target genes of identified miRNAs were predicted and categorized by function. These results provide new insights into salt-responsive miRNAs in Populus.
Collapse
Affiliation(s)
- Yuanyuan Ren
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083 Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|