1
|
Wu L, Lu J, Lan T, Zhang D, Xu H, Kang Z, Peng F, Wang J. Stem cell therapies: a new era in the treatment of multiple sclerosis. Front Neurol 2024; 15:1389697. [PMID: 38784908 PMCID: PMC11111935 DOI: 10.3389/fneur.2024.1389697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Multiple Sclerosis (MS) is an immune-mediated condition that persistently harms the central nervous system. While existing treatments can slow its course, a cure remains elusive. Stem cell therapy has gained attention as a promising approach, offering new perspectives with its regenerative and immunomodulatory properties. This article reviews the application of stem cells in MS, encompassing various stem cell types, therapeutic potential mechanisms, preclinical explorations, clinical research advancements, safety profiles of clinical applications, as well as limitations and challenges, aiming to provide new insights into the treatment research for MS.
Collapse
Affiliation(s)
- Lei Wu
- Changchun University of Chinese Medicine, Changchun, China
| | - Jing Lu
- The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Tianye Lan
- The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Dongmei Zhang
- The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Hanying Xu
- Changchun University of Chinese Medicine, Changchun, China
| | - Zezheng Kang
- Changchun University of Chinese Medicine, Changchun, China
| | - Fang Peng
- Hunan Provincial People's Hospital, Changsha, China
| | - Jian Wang
- The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
2
|
Pateraki P, Latsoudis H, Papadopoulou A, Gontika I, Fragiadaki I, Mavroudi I, Bizymi N, Batsali A, Klontzas ME, Xagorari A, Michalopoulos E, Sotiropoulos D, Yannaki E, Stavropoulos-Giokas C, Papadaki HA. Perspectives for the Use of Umbilical Cord Blood in Transplantation and Beyond: Initiatives for an Advanced and Sustainable Public Banking Program in Greece. J Clin Med 2024; 13:1152. [PMID: 38398465 PMCID: PMC10889829 DOI: 10.3390/jcm13041152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
The umbilical cord blood (UCB) donated in public UCB banks is a source of hematopoietic stem cells (HSC) alternative to bone marrow for allogeneic HSC transplantation (HSCT). However, the high rejection rate of the donated units due to the strict acceptance criteria and the wide application of the haploidentical HSCT have resulted in significant limitation of the use of UCB and difficulties in the economic sustainability of the public UCB banks. There is an ongoing effort within the UCB community to optimize the use of UCB in the field of HSCT and a parallel interest in exploring the use of UCB for applications beyond HSCT i.e., in the fields of cell therapy, regenerative medicine and specialized transfusion medicine. In this report, we describe the mode of operation of the three public UCB banks in Greece as an example of an orchestrated effort to develop a viable UCB banking system by (a) prioritizing the enrichment of the national inventory by high-quality UCB units from populations with rare human leukocyte antigens (HLA), and (b) deploying novel sustainable applications of UCB beyond HSCT, through national and international collaborations. The Greek paradigm of the public UCB network may become an example for countries, particularly with high HLA heterogeneity, with public UCB banks facing sustainability difficulties and adds value to the international efforts aiming to sustainably expand the public UCB banking system.
Collapse
Affiliation(s)
- Patra Pateraki
- Law Directorate of the Health Region of Crete, Ministry of Health, Heraklion, 71500 Heraklion, Greece;
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
| | - Helen Latsoudis
- Institute of Computer Sciences, Foundation for Research and Technology–Hellas (FORTH), 70013 Heraklion, Greece;
| | - Anastasia Papadopoulou
- Gene and Cell Therapy Center, Department of Hematology-HCT Unit, George Papanikolaou Hospital, 57010 Thessaloniki, Greece;
| | - Ioanna Gontika
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Irene Fragiadaki
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Irene Mavroudi
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Nikoleta Bizymi
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Aristea Batsali
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Michail E. Klontzas
- Department of Radiology, School of Medicine, University of Crete, 71500 Heraklion, Greece;
- Department of Medical Imaging, University Hospital of Heraklion, 71500 Heraklion, Greece
| | - Angeliki Xagorari
- Public Cord Blood Bank, Department of Hematology, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (A.X.); (D.S.)
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank (HCBB), Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (E.M.); (C.S.-G.)
| | - Damianos Sotiropoulos
- Public Cord Blood Bank, Department of Hematology, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (A.X.); (D.S.)
| | - Evangelia Yannaki
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Catherine Stavropoulos-Giokas
- Hellenic Cord Blood Bank (HCBB), Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (E.M.); (C.S.-G.)
| | - Helen A. Papadaki
- Public Cord Blood Bank of Crete, Department of Hematology, University Hospital of Heraklion, 71500 Heraklion, Greece; (I.G.); (I.F.); (I.M.); (N.B.); (A.B.)
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| |
Collapse
|
3
|
Sahebdel F, Parvaneh Tafreshi A, Arefian E, Roussa E, Nadri S, Zeynali B. A Wnt/β-catenin signaling pathway is involved in early dopaminergic differentiation of trabecular meshwork-derived mesenchymal stem cells. J Cell Biochem 2022; 123:1120-1129. [PMID: 35533251 DOI: 10.1002/jcb.30269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 01/08/2023]
Abstract
Permanent degeneration and loss of dopaminergic (DA) neurons in substantia nigra is the main cause of Parkinson's disease. Considering the therapeutic application of stem cells in neurodegeneration, we sought to examine the neurogenic differentiation potential of the newly introduced neural crest originated mesenchymal stem cells (MSCs), namely, trabecular meshwork-derived mesenchymal stem cells (TM-MSCs) compared to two other sources of MSCs, adipose tissue-derived stem cells (ADSCs) and bone marrow-derived mesenchymal stem cells (BM-MSCs). The three types of cells were therefore cultured in the presence and absence of a neural induction medium followed by the analysis of their differentiation potentials. Our results showed that TM-MSCs exhibited enhanced neural morphologies as well as higher expressions of MAP2 as the general neuron marker and Nurr-1 as an early DA marker compared to the adipose tissue-derived mesenchymal stem cells (AD-MSCs) and bone marrow-derived stem cells (BMSCs). Also, analysis of Nurr-1 immunostaining showed more intense Nurr-1 stained nuclei in the neurally induced TM-MSCs compared to those in the AD-MSCs, BMSCs, and noninduced control TM-MSCs. To examine if Wnt/beta-catenin pathway drives TM-MSCs towards a DA fate, we treated them with the Wnt agonist (CHIR, 3 μM) and the Wnt antagonist (IWP-2, 3 μM). Our results showed that the expressions of Nurr-1 and MAP2, as well as the Wnt/beta-catenin target genes, c-Myc and Cyclin D1, were significantly increased in the CHIR-treated TM-MSCs, but significantly reduced in those treated with IWP-2. Altogether, we declare first a higher neural potency of TM-MSCs compared to the more commonly used MSCs, BMSCs and ADSCs, and second that Wnt/beta-catenin activation directs the neurally induced TM-MSCs towards a DA fate.
Collapse
Affiliation(s)
- Faezeh Sahebdel
- Developmental Biology Laboratory, Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Azita Parvaneh Tafreshi
- Developmental Biology Laboratory, Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.,Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Eleni Roussa
- Department of Molecular Embryology, Faculty of Medicine, Institute of Anatomy and Cell Biology, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Samad Nadri
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Bahman Zeynali
- Developmental Biology Laboratory, Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Baddam P, Bayona-Rodriguez F, Campbell SM, El-Hakim H, Graf D. Properties of the Nasal Cartilage, from Development to Adulthood: A Scoping Review. Cartilage 2022; 13:19476035221087696. [PMID: 35345900 PMCID: PMC9137313 DOI: 10.1177/19476035221087696] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/29/2022] [Accepted: 01/21/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Nasal septum cartilage is a hyaline cartilage that provides structural support to the nasal cavity and midface. Currently, information on its cellular and mechanical properties is widely dispersed and has often been inferred from studies conducted on other cartilage types such as the knee. A detailed understanding of nasal cartilage properties is important for several biological, clinical, and engineering disciplines. The objectives of this scoping review are to (1) consolidate actual existing knowledge on nasal cartilage properties and (2) identify gaps of knowledge and research questions requiring future investigations. DESIGN This scoping review incorporated articles identified using PROSPERO, Cochrane Library (CDSR and Central), WOS BIOSIS, WOS Core Collection, and ProQuest Dissertations and Theses Global databases. Following the screening process, 86 articles were considered. Articles were categorized into three groups: growth, extracellular matrix, and mechanical properties. RESULTS Most articles investigated growth properties followed by extracellular matrix and mechanical properties. NSC cartilage is not uniform. Nasal cartilage growth varies with age and location. Similarly, extracellular matrix composition and mechanical properties are location-specific within the NSC. Moreover, most articles included in the review investigate these properties in isolation and only very few articles demonstrate the interrelationship between multiple cartilage properties. CONCLUSIONS This scoping review presents a first comprehensive description of research on NSC properties with a focus on NSC growth, extracellular matrix and mechanical properties. It additionally identifies the needs (1) to understand how these various cartilage properties intersect and (2) for more granular, standardized assessment protocols to describe NSC.
Collapse
Affiliation(s)
- Pranidhi Baddam
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| | | | - Sandra M. Campbell
- John W. Scott Health Sciences Library, University of Alberta, Edmonton, AB, Canada
| | - Hamdy El-Hakim
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Daniel Graf
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Hasanzadeh E, Ebrahimi-Barough S, Mahmoodi N, Mellati A, Nekounam H, Basiri A, Asadpour S, Ghasemi D, Ai J. Defining the role of 17β-estradiol in human endometrial stem cells differentiation into neuron-like cells. Cell Biol Int 2020; 45:140-153. [PMID: 33049079 DOI: 10.1002/cbin.11478] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/30/2020] [Accepted: 10/11/2020] [Indexed: 01/12/2023]
Abstract
Human endometrial stem cells (hEnSCs) that can be differentiated into various neural cell types have been regarded as a suitable cell population for neural tissue engineering and regenerative medicine. Considering different interactions between hormones, growth factors, and other factors in the neural system, several differentiation protocols have been proposed to direct hEnSCs towards specific neural cells. The 17β-estradiol plays important roles in the processes of development, maturation, and function of nervous system. In the present research, the impact of 17β-estradiol (estrogen, E2) on the neural differentiation of hEnSCs was examined for the first time, based on the expression levels of neural genes and proteins. In this regard, hEnSCs were differentiated into neuron-like cells after exposure to retinoic acid (RA), epidermal growth factor (EGF), and also fibroblast growth factor-2 (FGF2) in the absence or presence of 17β-estradiol. The majority of cells showed a multipolar morphology. In all groups, the expression levels of nestin, Tuj-1 and NF-H (neurofilament heavy polypeptide) (as neural-specific markers) increased during 14 days. According to the outcomes of immunofluorescence (IF) and real-time PCR analyses, the neuron-specific markers were more expressed in the estrogen-treated groups, in comparison with the estrogen-free ones. These findings suggest that 17β-estradiol along with other growth factors can stimulate and upregulate the expression of neural markers during the neuronal differentiation of hEnSCs. Moreover, our findings confirm that hEnSCs can be an appropriate cell source for cell therapy of neurodegenerative diseases and neural tissue engineering.
Collapse
Affiliation(s)
- Elham Hasanzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Mahmoodi
- Sina Trauma and Surgery Research Center, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Mellati
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Houra Nekounam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arefeh Basiri
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shiva Asadpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Diba Ghasemi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Ibrahim A, Rodriguez-Florez N, Gardner OFW, Zucchelli E, New SEP, Borghi A, Dunaway D, Bulstrode NW, Ferretti P. Three-dimensional environment and vascularization induce osteogenic maturation of human adipose-derived stem cells comparable to that of bone-derived progenitors. Stem Cells Transl Med 2020; 9:1651-1666. [PMID: 32639692 PMCID: PMC7695642 DOI: 10.1002/sctm.19-0207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 05/26/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
While human adipose‐derived stem cells (hADSCs) are known to possess osteogenic differentiation potential, the bone tissues formed are generally considered rudimentary and immature compared with those made by bone‐derived precursor cells such as human bone marrow‐derived mesenchymal stem cells (hBMSCs) and less commonly studied human calvarium osteoprogenitor cells (hOPs). Traditional differentiation protocols have tended to focus on osteoinduction of hADSCs through the addition of osteogenic differentiation media or use of stimulatory bioactive scaffolds which have not resulted in mature bone formation. Here, we tested the hypothesis that by reproducing the physical as well as biochemical bone microenvironment through the use of three‐dimensional (3D) culture and vascularization we could enhance osteogenic maturation in hADSCs. In addition to biomolecular characterization, we performed structural analysis through extracellular collagen alignment and mineral density in our bone tissue engineered samples to evaluate osteogenic maturation. We further compared bone formed by hADSCs, hBMSCs, and hOPs against mature human pediatric calvarial bone, yet not extensively investigated. Although bone generated by all three cell types was still less mature than native pediatric bone, a fibrin‐based 3D microenvironment together with vascularization boosted osteogenic maturation of hADSC making it similar to that of bone‐derived osteoprogenitors. This demonstrates the important role of vascularization and 3D culture in driving osteogenic maturation of cells easily available but constitutively less committed to this lineage and suggests a crucial avenue for recreating the bone microenvironment for tissue engineering of mature craniofacial bone tissues from pediatric hADSCs, as well as hBMSCs and hOPs.
Collapse
Affiliation(s)
- Amel Ibrahim
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Plastic Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Naiara Rodriguez-Florez
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Plastic Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,TECNUN Escuela de Ingenieros, Universidad de Navarra, San Sebastian, Spain
| | - Oliver F W Gardner
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Eleonora Zucchelli
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Sophie E P New
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Alessandro Borghi
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Plastic Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - David Dunaway
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Plastic Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Neil W Bulstrode
- Department of Plastic Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Patrizia Ferretti
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
7
|
Yang C, Chen Y, Zhong L, You M, Yan Z, Luo M, Zhang B, Yang B, Chen Q. Homogeneity and heterogeneity of biological characteristics in mesenchymal stem cells from human umbilical cords and exfoliated deciduous teeth. Biochem Cell Biol 2019; 98:415-425. [PMID: 31794246 DOI: 10.1139/bcb-2019-0253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have proven powerful potential for cell-based therapy both in regenerative medicine and disease treatment. Human umbilical cords and exfoliated deciduous teeth are the main sources of MSCs with no donor injury or ethical issues. The goal of this study was to investigate the differences in the biological characteristics of human umbilical cord mesenchymal stem cells (UCMSCs) and stem cells from human exfoliated deciduous teeth (SHEDs). UCMSCs and SHEDs were identified by flow cytometry. The proliferation, differentiation, migration, chemotaxis, paracrine, immunomodulatory, neurite growth-promoting capabilities, and acetaldehyde dehydrogenase (ALDH) activity were comparatively studied between these two MSCs in vitro. The results showed that both SHEDs and UCMSCs expressed cell surface markers characteristic of MSCs. Furthermore, SHEDs exhibited better capacity for proliferation, migration, promotion of neurite growth, and chondrogenic differentiation. Meanwhile, UCMSCs showed more outstanding adipogenic differentiation and chemotaxy. Additionally, there were no significant differences in osteogenic differentiation, immunomodulatory capacity, and the proportion of ALDHBright compartment. Our findings indicate that although both UCMSCs and SHEDs are mesenchymal stem cells and presented some similar biological characteristics, they also have differences in many aspects, which might be helpful for developing future clinical cellular therapies.
Collapse
Affiliation(s)
- Chao Yang
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
| | - Yu Chen
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
| | - Liwu Zhong
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
| | - Min You
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
| | - Zhiling Yan
- Department of Stomatology, Chengdu Women's and Children's Central Hospital, Chengdu, China
| | - Maowen Luo
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
| | - Bo Zhang
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
| | - Benyanzi Yang
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
| | - Qiang Chen
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China.,Center for Stem Cell Research & Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| |
Collapse
|
8
|
Hao Q, Gudapati V, Monsel A, Park JH, Hu S, Kato H, Lee JH, Zhou L, He H, Lee JW. Mesenchymal Stem Cell-Derived Extracellular Vesicles Decrease Lung Injury in Mice. THE JOURNAL OF IMMUNOLOGY 2019; 203:1961-1972. [PMID: 31451675 DOI: 10.4049/jimmunol.1801534] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 07/30/2019] [Indexed: 12/20/2022]
Abstract
Human mesenchymal stem cell (MSC) extracellular vesicles (EV) can reduce the severity of bacterial pneumonia, but little is known about the mechanisms underlying their antimicrobial activity. In the current study, we found that bacterial clearance induced by MSC EV in Escherichia coli pneumonia in C57BL/6 mice was associated with high levels of leukotriene (LT) B4 in the injured alveolus. More importantly, the antimicrobial effect of MSC EV was abrogated by cotreatment with a LTB4 BLT1 antagonist. To determine the role of MSC EV on LT metabolism, we measured the effect of MSC EV on a known ATP-binding cassette transporter, multidrug resistance-associated protein 1 (MRP1), and found that MSC EV suppressed MRP1 mRNA, protein, and pump function in LPS-stimulated Raw264.7 cells in vitro. The synthesis of LTB4 and LTC4 from LTA4 are competitive, and MRP1 is the efflux pump for LTC4 Inhibition of MRP1 will increase LTB4 production. In addition, administration of a nonspecific MRP1 inhibitor (MK-571) reduced LTC4 and subsequently increased LTB4 levels in C57BL/6 mice with acute lung injury, increasing overall antimicrobial activity. We previously found that the biological effects of MSC EV were through the transfer of its content, such as mRNA, microRNA, and proteins, to target cells. In the current study, miR-145 knockdown abolished the effect of MSC EV on the inhibition of MRP1 in vitro and the antimicrobial effect in vivo. In summary, MSC EV suppressed MRP1 activity through transfer of miR-145, thereby resulting in enhanced LTB4 production and antimicrobial activity through LTB4/BLT1 signaling.
Collapse
Affiliation(s)
- Qi Hao
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Varun Gudapati
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Antoine Monsel
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Jeong H Park
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Shuling Hu
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Hideya Kato
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Jae H Lee
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Li Zhou
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Hongli He
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| | - Jae W Lee
- Department of Anesthesiology, University of California San Francisco, San Francisco, CA 94143
| |
Collapse
|
9
|
Hill ABT, Bressan FF, Murphy BD, Garcia JM. Applications of mesenchymal stem cell technology in bovine species. Stem Cell Res Ther 2019; 10:44. [PMID: 30678726 PMCID: PMC6345009 DOI: 10.1186/s13287-019-1145-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have received a great deal of attention over the past 20 years mainly because of the results that showed regeneration potential and plasticity that were much stronger than expected in prior decades. Recent findings in this field have contributed to progress in the establishment of cell differentiation methods, which have made stem cell therapy more clinically attractive. In addition, MSCs are easy to isolate and have anti-inflammatory and angiogenic capabilities. The use of stem cell therapy is currently supported by scientific literature in the treatment of several animal health conditions. MSC may be administered for autologous or allogenic therapy following either a fresh isolation or a thawing of a previously frozen culture. Despite the fact that MSCs have been widely used for the treatment of companion and sport animals, little is known about their clinical and biotechnological potential in the economically relevant livestock industry. This review focuses on describing the key characteristics of potential applications of MSC therapy in livestock production and explores the themes such as the concept, culture, and characterization of mesenchymal stem cells; bovine mesenchymal stem cell isolation; applications and perspectives on commercial interests and farm relevance of MSC in bovine species; and applications in translational research.
Collapse
Affiliation(s)
- Amanda Baracho Trindade Hill
- Department of Preventive Veterinary Medicine and Animal Reproduction, São Paulo State University, Via de Acesso Professor Paulo Donato Castelane - Vila Industrial, s/n, Jaboticabal, SP, 14884-900, Brazil. .,Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint Hyacinthe, QC, J2S 7C6, Canada.
| | - Fabiana Fernandes Bressan
- Campus Fernando Costa, University of São Paulo, Av. Duque de Caxias Norte, 225 - Zona Rural, Pirassununga, SP, 13635-900, Brazil
| | - Bruce D Murphy
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint Hyacinthe, QC, J2S 7C6, Canada
| | - Joaquim Mansano Garcia
- Department of Preventive Veterinary Medicine and Animal Reproduction, São Paulo State University, Via de Acesso Professor Paulo Donato Castelane - Vila Industrial, s/n, Jaboticabal, SP, 14884-900, Brazil
| |
Collapse
|
10
|
Coculture of conjunctiva derived mesenchymal stem cells (CJMSCs) and corneal epithelial cells to reconstruct the corneal epithelium. Biologicals 2018; 54:39-43. [DOI: 10.1016/j.biologicals.2018.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/26/2018] [Accepted: 04/25/2018] [Indexed: 11/21/2022] Open
|
11
|
Hasanzadeh E, Amoabediny G, Haghighipour N, Gholami N, Mohammadnejad J, Shojaei S, Salehi-Nik N. The stability evaluation of mesenchymal stem cells differentiation toward endothelial cells by chemical and mechanical stimulation. In Vitro Cell Dev Biol Anim 2017; 53:818-826. [PMID: 28702926 DOI: 10.1007/s11626-017-0165-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/21/2017] [Indexed: 12/21/2022]
Abstract
Adipose-derived mesenchymal stem cells (ADSCs) are adult multipotent cells able to differentiate into several cell lineages. Vascular endothelial growth factor (VEGF) and the shear stress associated with blood flow are considered as the most important chemical and mechanical cues that play major roles in endothelial differentiation. However, the stability of endothelial-specific gene expression has not been completely addressed yet. ADSCs in passage 3 were cultured inside the tubular silicon tubes and then exposed to VEGF or shear stress produced in a perfusion bioreactor. To investigate the differentiation, the expression levels of Flk-1, von Willebrand factor (vWF), and vascular endothelial-cadherin (VE-cadherin) were studied using Real-Time PCR. For studying the endothelial differentiation stability, mRNA levels of the genes were evaluated in certain time intervals after completion of the tests so as to determine whether the expression level of each gene in different time points was stable and remained constant or not. Application of VEGF and shear stress caused an elevation in endothelial cells' specific genes. Although there are some changes following the days after application of mechanical and chemical stimuli, the gene expression results depicted significantly higher gene expression between sequential chemically and mechanically incited groups. In conclusion, stress alone can be a differentiating factor, by itself. Our results verified the efficient stable differentiation ability of the chemical and mechanical factors.
Collapse
Affiliation(s)
- Elham Hasanzadeh
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), University of Tehran, Tehran, Iran
- Department of Life Sciences Engineering, Faculty of New Sciences & Technologies, University of Tehran, P.O. Box 1316943551, Tehran, Iran
| | - Ghassem Amoabediny
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
- Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran.
| | - Nooshin Haghighipour
- National Cell Bank of Iran, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran.
| | - Nasim Gholami
- Department of Life Sciences Engineering, Faculty of New Sciences & Technologies, University of Tehran, P.O. Box 1316943551, Tehran, Iran
- National Cell Bank of Iran, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Javad Mohammadnejad
- Department of Life Sciences Engineering, Faculty of New Sciences & Technologies, University of Tehran, P.O. Box 1316943551, Tehran, Iran
| | - Shahrokh Shojaei
- Faculty of Biomedical Engineering, Islamic Azad University Tehran Central Branch, Tehran, Iran
| | - Nasim Salehi-Nik
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
- National Cell Bank of Iran, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| |
Collapse
|
12
|
Ran X, Xiao CH, Xiang GM, Ran XZ. Regulation of Embryonic Stem Cell Self-Renewal and Differentiation by MicroRNAs. Cell Reprogram 2017; 19:150-158. [PMID: 28277752 DOI: 10.1089/cell.2016.0048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNAs) are posttranscriptional regulators of gene expression. They play an important role in various cellular processes such as apoptosis, differentiation, secretion, and proliferation. Embryonic stem cells (ESCs) are derived from the inner cell mass of the blastocyst stage of the embryo. miRNAs are critical factors for the self-renewal and differentiation of ESCs. In this review, we will focus on the role of miRNAs in the self-renewal and directional differentiation of ESCs. We will present the current knowledge on key points related to miRNA biogenesis and their function in ESCs.
Collapse
Affiliation(s)
- Xi Ran
- 1 Department of Medical Laboratory, Xinqiao Hospital, Third Military Medical University , Chongqing, China .,2 State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, College of Preventive Medicine, Third Military Medical University , Chongqing, China
| | - Chun-Hong Xiao
- 3 Qingdao First Sanatorium of Jinan Military Command , Qingdao, China
| | - Gui-Ming Xiang
- 1 Department of Medical Laboratory, Xinqiao Hospital, Third Military Medical University , Chongqing, China
| | - Xin-Ze Ran
- 2 State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, College of Preventive Medicine, Third Military Medical University , Chongqing, China
| |
Collapse
|
13
|
Tavakoli R, Vakilian S, Langroudi L, Arefian E, Sahmani M, Soleimani M, Jamshidi-Adegani F. The role of miR-17-92 cluster in the expression of tumor suppressor genes in unrestricted somatic stem cells. Biologicals 2017; 46:143-147. [PMID: 28222938 DOI: 10.1016/j.biologicals.2017.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/02/2017] [Accepted: 02/08/2017] [Indexed: 01/20/2023] Open
Abstract
The miR-17-92 cluster consisted of seven miRNAs (mir-17-5p, -17-3p, -18a, -19a, -20a, -19b-1, and -92a-1). Previous studies have shown this cluster has been over-expressed in several cancers. The aim of this study was to evaluate the over-expression impacts of miR-17-92 on stem cells. In the current work, the effect of miR-17-92 cluster which was cloned in Lentiviral vector has been investigated on unrestricted somatic stem cells (USSCs). Tumor suppressor genes (p53, p15, RBL1, SMAD2, SMAD4, and MAPK-1) expression, especially p53, was considerably reduced. These data show the potential of miR-17-92 for oncogenesis regulation in stem cells. In conclusion, the role of miR-17-92 in USSCs may provide a better understanding of its function in tumorigenesis and for the possible use in cell therapy of the anti-mir-17-92 cluster.
Collapse
Affiliation(s)
| | | | | | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mehdi Sahmani
- Department of Clinical Biochemistry, Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Jamshidi-Adegani
- Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Science, Qazvin, Iran.
| |
Collapse
|
14
|
Uzbas F, May ID, Parisi AM, Thompson SK, Kaya A, Perkins AD, Memili E. Molecular physiognomies and applications of adipose-derived stem cells. Stem Cell Rev Rep 2016; 11:298-308. [PMID: 25504377 DOI: 10.1007/s12015-014-9578-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Adipose-derived stromal/stem cells (ASC) are multipotent with abilities to differentiate into multiple lineages including connective tissue and neural cells. Despite unlimited opportunity and needs for human and veterinary regenerative medicine, applications of adipose-derived stromal/stem cells are at present very limited. Furthermore, the fundamental biological factors regulating stemness in ASC and their stable differentiation into other tissue cells are not fully understood. The objective of this review was to provide an update on the current knowledge of the nature and isolation, molecular and epigenetic determinants of the potency, and applications of adipose-derived stromal/stem cells, as well as challenges and future directions. The first quarter of the review focuses on the nature of ASC, namely their definition, origin, isolation and sorting methods and multilineage differentiation potential, often with a comparison to mesenchymal stem cells of bone marrow. Due to the indisputable role of epigenetic regulation on cell identities, epigenetic modifications (DNA methylation, chromatin remodeling and microRNAs) are described broadly in stem cells but with a focus on ASC. The final sections provide insights into the current and potential applications of ASC in human and veterinary regenerative medicine.
Collapse
Affiliation(s)
- F Uzbas
- Helmholtz Zentrum München, Institute of Stem Cell Research, Neuherberg, München, 85764, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Abdel-Kawi SH, Hashem KS. Possible Therapeutic Effect of Stem Cell in Atherosclerosis in Albino Rats. A Histological and Immunohistochemical Study. Int J Stem Cells 2015; 8:200-8. [PMID: 26634068 PMCID: PMC4651284 DOI: 10.15283/ijsc.2015.8.2.200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Atherosclerosis is the leading cause of death worldwide. there are no effective approaches to regressing atherosclerosis due to not fully understood mechanisms. Recently, stem cell-based therapies have held promises to various diseases, including vascular diseases. AIM The present study aimed at investigating the possible effect of cord blood mesenchymal stem cell (MSC) therapy on atherosclerosis. MATERIAL AND METHODS Eighty adult male albino rats were divided into control group (I), atherogenic group (II): subjected to high cholesterol fed diet (200~300 mg/kg body weight) for 12 weeks and 1.8 million units of vitamin D / kg of diet for 6 weeks. Stem cell therapy group (III): injected with stem cells in the tail vein following confirmation of atherosclerosis. Histological, Immunohistochemical and morphometric studies were performed were conducted. RESULTS Atherogenic group (II) showed increased aortic thickness, intimal proliferation, smooth muscle proliferation and migration. Increased area % of collagen fibers, iNOS and vimentin immunoreactions were recorded and proved morphometrically. All findings regressed on stem cell therapy. CONCLUSION A definite therapeutic effect of mesenchymal stem cells was found on atherosclerosis.
Collapse
Affiliation(s)
- Samraa H Abdel-Kawi
- Department of Histology, Faculty of Medicine, Beni-Suef University, Beni-suef, Egypt
| | - Khalid S Hashem
- Department of Biochemistry, Faculty of Veterinary, Beni-Suef University, Beni-suef, Egypt
| |
Collapse
|
16
|
MiR-371-373 cluster acts as a tumor-suppressor-miR and promotes cell cycle arrest in unrestricted somatic stem cells. Tumour Biol 2015; 36:7765-74. [PMID: 25941115 DOI: 10.1007/s13277-015-3519-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/27/2015] [Indexed: 12/20/2022] Open
Abstract
Recent advances in small RNA research have implicated microRNAs (miRNAs) as important regulators of proliferation and development. The miR-371-373 cluster is prominently expressed in human embryonic stem cells (ESCs) and rapidly decreases after cell differentiation. MiR-371-373 cluster was investigated as one of the key factors of stem cell maintenance and pluripotency in unrestricted somatic stem cells (USSCs) using a lentivirus system. Gene expression showed a dual effect on proliferation, which revealed a transient cell cycle progression and consequent repression in pluripotency factors and cell cycle genes. Cell proliferation analysis with CFU, MTT, and DNA content assays further confirmed the dual effect of cluster after prolonged exposure. Analyzing the course of action, it seems that miR-371-373 cluster acts as an onco/tumor suppressor-miR. MiR371-373 cluster acts by modulating the function of these factors and limiting the excessive cell cycle propagation upon oncogenic stimuli to protect cells from replicative stress, but also activate CDK inhibitors and transcriptional repressors of the retinoblastoma family to cause cell cycle arrest. In contrast to the previous studies, we believe that miR-371-373 cluster functions as a self-renewal miRNA to induce and maintain the pluripotent state but also to potentially inhibit dysregulated proliferation through cell cycle arrest. It seems that miR-371-373 cluster presents with a dual effect in this cellular context which may possess different actions in various cells. This not only expands the basic knowledge of the cluster but may offer a great chance for therapeutic interventions.
Collapse
|
17
|
Li C, Wei G, Gu Q, Wang Q, Tao S, Xu L. Proliferation and differentiation of rat osteoporosis mesenchymal stem cells (MSCs) after telomerase reverse transcriptase (TERT) transfection. Med Sci Monit 2015; 21:845-54. [PMID: 25796354 PMCID: PMC4381855 DOI: 10.12659/msm.893144] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background The aim of this study was to determine whether MSC are excellent materials for MSCs transplantation in the treatment of osteoporosis. Material/Methods We studied normal, osteoporosis, and TERT-transfected MSC from normal and osteoporosis rats to compare the proliferation and osteogenic differentiation using RT-PCR and Western blot by constructing an ovariectomized rat model of osteoporosis (OVX). The primary MSC from model rats were extracted and cultured to evaluate the proliferation and differentiation characteristics. Results MSCs of osteoporosis rats obviously decreased in proliferation ability and osteogenic differentiation compared to that of normal rats. In contrast, in TERT-transfected MSC, the proliferation and differentiation ability, and especially the ability of osteogenic differentiation, were significantly higher than in osteoporosis MSC. Conclusions TERT-transfected MSCs can help osteoporosis patients in whom MSC proliferation and osteogenic differentiation ability are weak, with an increase in both bone mass and bone density, becoming an effective material for autologous transplantation of MSCs in further treatment of osteoporosis. However, studies are still needed to prove the in vivo effect, biological safety, and molecular mechanism of TERT-osteoporosis treatment. Additionally, because the results are from an animal model, more research is needed in generalizing rat model findings to human osteoporosis patients.
Collapse
Affiliation(s)
- Chao Li
- Department of Orthopaedics, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Guojun Wei
- Department of Orthopaedics, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Qun Gu
- Department of Orthopaedics, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Qiang Wang
- Department of Orthopaedics, Affiliated Hospital of School of Medicine of Ningbo University, Ningbo, Zhejiang, China (mainland)
| | - Shuqin Tao
- Department of Orthopaedics, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Liang Xu
- Department of Orthopaedics, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| |
Collapse
|
18
|
Placenta-based therapies for the treatment of epidermolysis bullosa. Cytotherapy 2015; 17:786-795. [PMID: 25795271 DOI: 10.1016/j.jcyt.2015.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/03/2015] [Indexed: 12/30/2022]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a severe blistering skin disease caused by mutations in the COL7A1 gene. These mutations lead to decreased or absent levels of collagen VII at the dermal-epidermal junction. Over the past decade, significant progress has been made in the treatment of RDEB, including the use of hematopoietic cell transplantation, but a cure has been elusive. Patients still experience life-limiting and life-threatening complications as a result of painful and debilitating wounds. The continued suffering of these patients drives the need to improve existing therapies and develop new ones. In this Review, we will discuss how recent advances in placenta-based, umbilical cord blood-based and amniotic membrane-based therapies may play a role in the both the current and future treatment of RDEB.
Collapse
|
19
|
Chatzistamatiou TK, Papassavas AC, Michalopoulos E, Gamaloutsos C, Mallis P, Gontika I, Panagouli E, Koussoulakos SL, Stavropoulos-Giokas C. Optimizing isolation culture and freezing methods to preserve Wharton's jelly's mesenchymal stem cell (MSC) properties: an MSC banking protocol validation for the Hellenic Cord Blood Bank. Transfusion 2014; 54:3108-20. [PMID: 24894363 DOI: 10.1111/trf.12743] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/03/2014] [Accepted: 04/11/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND Mesenchymal stem or stromal cells (MSCs) are a heterogeneous population that can be isolated from many tissues including umbilical cord Wharton's jelly (UC-WJ). Although initially limited in studies such as a hematopoietic stem cell transplantation adjuvant, an increasing number of clinical trials consider MSCs as a potential anti-inflammatory or a regenerative medicine agent. It has been proposed that creating a repository of MSCs would increase their availability for clinical applications. The aim of this study was to assess the optimal isolation and cryopreservation procedures to facilitate WJ MSC banking. STUDY DESIGN AND METHODS Cells were isolated from UC-WJ using enzymatic digestion or plastic adhesion methods. Their isolation efficacy, growth kinetics, immunophenotype, and differentiation potential were studied, as well as the effects of freezing. Flow cytometry for common MSC markers was performed on all cases and differentiation was shown with histocytochemical staining. Finally, the isolation efficacy on cryopreserved WJ tissue fragments was tested. RESULTS MSC isolation was successful using both isolation methods on fresh UC-WJ tissue. However, UC-WJ MSC isolation from frozen tissue fragments was impossible. Flow cytometry analysis revealed that only MSC markers were expressed on the surface of the isolated cells while differentiation assays showed that they were capable of trilinear differentiation. All the above characteristics were also preserved in isolated UC-WJ MSCs over the cryopreservation study period. CONCLUSION These data showed that viable MSCs can only be isolated from fresh UC-WJ tissue, setting the foundation for clinical-grade banking.
Collapse
|
20
|
Jamshidi-Adegani F, Langroudi L, Shafiee A, Mohammadi-Sangcheshmeh A, Ardeshirylajimi A, Barzegar M, Azadmanesh K, Naderi M, Arefian E, Soleimani M. Mir-302 cluster exhibits tumor suppressor properties on human unrestricted somatic stem cells. Tumour Biol 2014; 35:6657-64. [PMID: 24705778 DOI: 10.1007/s13277-014-1844-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/12/2014] [Indexed: 02/03/2023] Open
Abstract
Many studies have reported that miR-302-367 cluster acts in different ways in various cell types. For instance, this cluster is shown to have a potential role in stemness regulation in embryonic stem cells (ESCs). On the other hand, this cluster inhibits the tumorigenicity of human pluripotent stem cells by coordinated suppression of CDK2 and CDK4/6 cell cycle pathways. Indeed, this cluster has a significant posttranscriptional impact on cell cycle progression. Previous reports have shown the participation of miR-302-367 cluster in cell cycle regulation of hESCs, MCF7, HepG2, and Teta-2 embryonal teratocarcinoma cells, but its effect on unrestricted somatic stem cells (USSCs) as a new source of human somatic stem cells from the umbilical cord blood remains to be elucidated. Therefore, in this study, we aimed to investigate the effect of miR-302-367 cluster on cell proliferation by MTT assay, cell cycle analysis, and colony formation assay. In addition, the expression of candidate cell cycle regulatory performance and tumor suppressor genes was determined. In this study, for the first time, we found that miR-302-367 cluster not only did not reprogram human USSCs into a pluripotent ESC-like state, but also inhibited the proliferation of human USSCs. Moreover, analyzing the cell cycle curve revealed a significant apoptotic phase upon viral introduction of miR-302-367. Our gene expression study revealed the overexpression of candidate genes after transduction of USSCs with miR-302-367 cluster. In conclusion, the controversial role of miR-302-367 in different cell types may provide better understanding for its role in stemness level and its antitumorigenicity potential in different contexts.
Collapse
|
21
|
Fink KD, Rossignol J, Crane AT, Davis KK, Bombard MC, Bavar AM, Clerc S, Lowrance SA, Song C, Lescaudron L, Dunbar GL. Transplantation of umbilical cord-derived mesenchymal stem cells into the striata of R6/2 mice: behavioral and neuropathological analysis. Stem Cell Res Ther 2013; 4:130. [PMID: 24456799 PMCID: PMC3854759 DOI: 10.1186/scrt341] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/09/2013] [Indexed: 12/31/2022] Open
Abstract
Introduction Huntington’s disease (HD) is an autosomal dominant disorder caused by an expanded CAG repeat on the short arm of chromosome 4 resulting in cognitive decline, motor dysfunction, and death, typically occurring 15 to 20 years after the onset of motor symptoms. Neuropathologically, HD is characterized by a specific loss of medium spiny neurons in the caudate and the putamen, as well as subsequent neuronal loss in the cerebral cortex. The transgenic R6/2 mouse model of HD carries the N-terminal fragment of the human HD gene (145 to 155 repeats) and rapidly develops some of the behavioral characteristics that are analogous to the human form of the disease. Mesenchymal stem cells (MSCs) have shown the ability to slow the onset of behavioral and neuropathological deficits following intrastriatal transplantation in rodent models of HD. Use of MSCs derived from umbilical cord (UC) offers an attractive strategy for transplantation as these cells are isolated from a noncontroversial and inexhaustible source and can be harvested at a low cost. Because UC MSCs represent an intermediate link between adult and embryonic tissue, they may hold more pluripotent properties than adult stem cells derived from other sources. Methods Mesenchymal stem cells, isolated from the UC of day 15 gestation pups, were transplanted intrastriatally into 5-week-old R6/2 mice at either a low-passage (3 to 8) or high-passage (40 to 50). Mice were tested behaviorally for 6 weeks using the rotarod task, the Morris water maze, and the limb-clasping response. Following behavioral testing, tissue sections were analyzed for UC MSC survival, the immune response to the transplanted cells, and neuropathological changes. Results Following transplantation of UC MSCs, R6/2 mice did not display a reduction in motor deficits but there appeared to be transient sparing in a spatial memory task when compared to untreated R6/2 mice. However, R6/2 mice receiving either low- or high-passage UC MSCs displayed significantly less neuropathological deficits, relative to untreated R6/2 mice. Conclusions The results from this study demonstrate that UC MSCs hold promise for reducing the neuropathological deficits observed in the R6/2 rodent model of HD.
Collapse
|
22
|
The Necessity of a Systematic Approach for the Use of MSCs in the Clinical Setting. Stem Cells Int 2013; 2013:892340. [PMID: 23864866 PMCID: PMC3705875 DOI: 10.1155/2013/892340] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 05/26/2013] [Accepted: 06/05/2013] [Indexed: 12/16/2022] Open
Abstract
Cell therapy has emerged as a potential therapeutic strategy in regenerative disease. Among different cell types, mesenchymal stem/stromal cells have been wildly studied in vitro, in vivo in animal models and even used in clinical trials. However, while clinical applications continue to increase markedly, the understanding of their physiological properties and interactions raises many questions and drives the necessity of more caution and supervised strategy in their use.
Collapse
|
23
|
Induction of differentiation by down-regulation of Nanog and Rex-1 in cord blood derived unrestricted somatic stem cells. Mol Biol Rep 2013; 40:4429-37. [DOI: 10.1007/s11033-013-2533-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 04/29/2013] [Indexed: 01/02/2023]
|