1
|
Wilmot L, Miller C, Patil I, Kelly AL, Jimenez-Flores R. The relevance of a potential bioactive ingredient: The milk fat globule membrane. J Dairy Sci 2024:S0022-0302(24)01227-X. [PMID: 39414020 DOI: 10.3168/jds.2024-25412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024]
Abstract
The milk fat globule membrane (MFGM) is the surrounding membrane of the triacyl glyceride-dense fat globules in milk. The native MFGM is a tri-layer structure formed during the biosynthesis of lipids in the rough endoplasmic reticulum of lactocytes within the mammary gland. It is composed of a phospholipid tri-layer, cholesterol, many proteins, glycosylated proteins, and various lipids (Brink and Lönnerdal, 2020). The 2 main sources of MFGM are cream derived during butter production and whey derived from cheese manufacturing. The use of MFGM ingredients in nutritional products, especially in infant nutrition, has received great attention in recent years. Today, there is a range of commercially available MFGM-enriched ingredients from various suppliers across the globe. The basic components of the tri-layer, phospholipids, and proteins have been shown to exert bioactive effects in various models including in humans. It is not yet known how the differences in composition of such complex ingredients impact the bioactive potential of MFGM within the dairy matrix. The MFGM becomes more complex as a result of processing as it loses its native tri-layer structure and MFGM fragments are formed. This review aims to bring to light the underlying mechanisms for the bioactive effects of MFGM ingredients on human health.
Collapse
Affiliation(s)
- Leia Wilmot
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Celeste Miller
- Department of Food Science and Technology, Parker Food Science & Technology, The Ohio State University, Columbus, Ohio, USA
| | - Isha Patil
- Department of Food Science and Technology, Parker Food Science & Technology, The Ohio State University, Columbus, Ohio, USA
| | - Alan L Kelly
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Rafael Jimenez-Flores
- Department of Food Science and Technology, Parker Food Science & Technology, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
2
|
Malinczak CA, Burns Naas LA, Clark A, Conze D, DiNovi M, Kaminski N, Kruger C, Lönnerdal B, Lukacs NW, Merker R, Peterson R. Workshop report: A study roadmap to evaluate the safety of recombinant human lactoferrin expressed in Komagataella phaffii intended as an ingredient in conventional foods - Recommendations of a scientific expert panel. Food Chem Toxicol 2024; 190:114817. [PMID: 38880466 DOI: 10.1016/j.fct.2024.114817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Human milk lactoferrin (hmLF) is a glycoprotein with well-known effects on immune function. Helaina Inc. has used a glycoengineered yeast, Komatagaella phaffii, to produce recombinant human lactoferrin (Helaina rhLF, Effera™) that is structurally similar to hmLF with intended uses as a food ingredient. However, earlier FDA reviews of rhLF were withdrawn due to insufficient safety data and unanswered safety questions the experts and FDA raised about the immunogenicity/immunotoxicity risks of orally ingested rhLF. Helaina organized a panel of leading scientists to build and vet a safety study roadmap containing the studies and safety endpoints needed to address these questions. Panelists participated in a one-day virtual workshop in June 2023 and ensuing discussions through July 2023. Relevant workshop topics included physicochemical properties of LF, regulatory history of bovine LF and rhLF as food ingredients in the FDA's generally recognized as safe (GRAS) program, and synopses of publicly available studies on the immunogenicity/alloimmunization, immunotoxicology, iron homeostasis, and absorption, distribution, metabolism, and excretion of rhLF. Panelists concluded that the safety study roadmap addresses the unanswered safety questions and the intended safe use of rhLF as a food ingredient for adults and agreed on broad applications of the roadmap to assess the safety and support GRAS of other recombinant milk proteins with immunomodulatory functions.
Collapse
Affiliation(s)
| | | | | | | | | | - Norbert Kaminski
- Department of Pharmacology & Toxicology, Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA.
| | | | - Bo Lönnerdal
- Department of Internal Medicine, University of California, Davis, CA, USA.
| | - Nicholas W Lukacs
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, USA.
| | | | | |
Collapse
|
3
|
Vishwanath-Deutsch R, Dallas DC, Besada-Lombana P, Katz L, Conze D, Kruger C, Clark AJ, Peterson R, Malinczak CA. A review of the safety evidence on recombinant human lactoferrin for use as a food ingredient. Food Chem Toxicol 2024; 189:114727. [PMID: 38735359 DOI: 10.1016/j.fct.2024.114727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Published studies on the glycosylation, absorption, distribution, metabolism, excretion, and safety outcomes of orally ingested recombinant human lactoferrin (rhLF) were reviewed in the context of unanswered safety questions, including alloimmunization, allergenicity, and immunotoxicity potential of rhLF during repeated exposure. The primary objective was to summarize current safety data of rhLF produced in transgenic host expression systems. Overall, results from animal and human studies showed that rhLF was well tolerated and safe. Animal data showed no significant toxicity-related outcomes among any safety or tolerability endpoints. The no observed adverse effect levels (NOAEL) were at the highest level tested in both iron-desaturated and -saturated forms of rhLF. Although one study reported outcomes of rhLF on immune parameters, no animal studies directly assessed immunogenicity or immunotoxicity from a safety perspective. Data from human studies were primarily reported as adverse events (AE). They showed no or fewer rhLF-related AE compared to control and no evidence of toxicity, dose-limiting toxicities, or changes in iron status in various subpopulations. However, no human studies evaluated the immunomodulatory potential of rhLF as a measure of safety. Following this review, a roadmap outlining preclinical and clinical studies with relevant safety endpoints was developed to address the unanswered safety questions.
Collapse
Affiliation(s)
| | - David C Dallas
- Nutrition Program, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, and Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Wang W, An Q, Huang K, Dai Y, Meng Q, Zhang Y. Unlocking the power of Lactoferrin: Exploring its role in early life and its preventive potential for adult chronic diseases. Food Res Int 2024; 182:114143. [PMID: 38519174 DOI: 10.1016/j.foodres.2024.114143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 03/24/2024]
Abstract
Nutrition during the early postnatal period exerts a profound impact on both infant development and later-life health. Breast milk, which contains lactoferrin, a dynamic protein, plays a crucial role in the growth of various biological systems and in preventing numerous chronic diseases. Based on the relationship between early infant development and chronic diseases later in life, this paper presents a review of the effects of lactoferrin in early life on neonates intestinal tract, immune system, nervous system, adipocyte development, and early intestinal microflora establishment, as well as the preventive and potential mechanisms of early postnatal lactoferrin against adult allergy, inflammatory bowel disease, depression, cancer, and obesity. Furthermore, we summarized the application status of lactoferrin in the early postnatal period and suggested directions for future research.
Collapse
Affiliation(s)
- Wenli Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qin An
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yunping Dai
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qingyong Meng
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yali Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
5
|
Abdelnour SA, Ghazanfar S, Abdel-Hamid M, Abdel-Latif HMR, Zhang Z, Naiel MAE. Therapeutic uses and applications of bovine lactoferrin in aquatic animal medicine: an overview. Vet Res Commun 2023; 47:1015-1029. [PMID: 36658448 PMCID: PMC10485086 DOI: 10.1007/s11259-022-10060-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/19/2022] [Indexed: 01/21/2023]
Abstract
Aquaculture is an important food sector throughout the globe because of its importance in ensuring the availability of nutritious and safe food for human beings. In recent years, this sector has been challenged with several obstacles especially the emergence of infectious disease outbreaks. Various treatment and control aspects, including antibiotics, antiseptics, and other anti-microbial agents, have been used to treat farmed fish and shrimp against diseases. Nonetheless, these medications have been prohibited and banned in many countries because of the development of antimicrobial-resistant bacterial strains, the accumulation of residues in the flesh of farmed fish and shrimp, and their environmental threats to aquatic ecosystems. Therefore, scientists and researchers have concentrated their research on finding natural and safe products to control disease outbreaks. From these natural products, bovine lactoferrin can be utilized as a functional feed supplement. Bovine lactoferrin is a multi-functional glycoprotein applied in various industries, like food preservation, and numerous medications, due to its non-toxic and ecological features. Recent research has proposed multiple advantages and benefits of using bovine lactoferrin in aquaculture. Reports showed its potential ability to enhance growth, reduce mortalities, regulate iron metabolism, decrease disease outbreaks, stimulate the antioxidant defense system, and recuperate the overall health conditions of the treated fish and shrimp. Besides, bovine lactoferrin can be considered as a safe antibiotic alternative and a unique therapeutic agent to decrease the negative impacts of infectious diseases. These features can be attributed to its well-known antibacterial, anti-parasitic, anti-inflammatory, immunostimulatory, and antioxidant capabilities. This literature review will highlight the implications of bovine lactoferrin in aquaculture, particularly highlighting its therapeutic features and ability to promote immunological defensive pathways in fish. The information included in this article would be valuable for further research studies to improve aquaculture's sustainability and the functionality of aquafeeds.
Collapse
Affiliation(s)
- Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, 44519, Zagazig, Egypt
| | - Shakira Ghazanfar
- National Institute for Genomics Advanced and Biotechnology (NIGAB), National Agricultural Research Centre, Park Road, 45500, Islamabad, Pakistan
| | - Mahmoud Abdel-Hamid
- Dairy Science Department, Faculty of Agriculture, Cairo University, 12613, Giza, Egypt
| | - Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, 22758, Alexandria, Egypt
| | - Zhaowei Zhang
- National Reference Laboratory for Agricultural Testing (Biotoxin), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, 430062, Wuhan, PR China
| | - Mohammed A E Naiel
- Department of Animal Production, Faculty of Agriculture, Zagazig University, 44519, Zagazig, Egypt.
| |
Collapse
|
6
|
Conesa C, Bellés A, Grasa L, Sánchez L. The Role of Lactoferrin in Intestinal Health. Pharmaceutics 2023; 15:1569. [PMID: 37376017 DOI: 10.3390/pharmaceutics15061569] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
The intestine represents one of the first barriers where microorganisms and environmental antigens come into tight contact with the host immune system. A healthy intestine is essential for the well-being of humans and animals. The period after birth is a very important phase of development, as the infant moves from a protected environment in the uterus to one with many of unknown antigens and pathogens. In that period, mother's milk plays an important role, as it contains an abundance of biologically active components. Among these components, the iron-binding glycoprotein, lactoferrin (LF), has demonstrated a variety of important benefits in infants and adults, including the promotion of intestinal health. This review article aims to provide a compilation of all the information related to LF and intestinal health, in infants and adults.
Collapse
Affiliation(s)
- Celia Conesa
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Andrea Bellés
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - Laura Grasa
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - Lourdes Sánchez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| |
Collapse
|
7
|
Olyayee M, Javanmard A, Janmohammadi H, Kianfar R, Alijani S, Mir Ghelenj SA. Supplementation of broiler chicken diets with bovine lactoferrin improves growth performance, histological parameters of jejunum and immune-related gene expression. J Anim Physiol Anim Nutr (Berl) 2023; 107:200-213. [PMID: 35102621 DOI: 10.1111/jpn.13683] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/24/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023]
Abstract
The aim of this study was to investigate the influence of dietary supplementation of bovine lactoferrin (bLF) on growth performance, carcass traits, histomorphology of jejunum, immune function and hepatic and splenic gene expression of interferon-gamma (IFN-γ) and interleukine-2 (IL-2) in broiler chickens. A total of 240 one-day-old Ross 308 male broiler chickens were randomly allotted into six dietary treatments with four replicate pens (10 chicks per pen) and fed experimental diet in 3 feeding phases (starter: d 0-10, grower: d 11-24 and finisher: d 25-42). The experimental treatments were (1) corn-soya bean meal-based basal diet (control), (2-5) basal diet supplemented with 200, 400, 600, 800 mg/kg bLF, respectively, and (6) basal diet supplemented with 200 mg/kg oxytetracycline (OTC). The average body weight gain (ABWG) of broilers fed 800 mg/kg bLF was 8.48% higher than those fed a corn-soybean meal-based diet during the starter period (d 0-10) (linear effect, p = 0.002; quadratic effect, p = 0.24). Average daily feed intake (ADFI) and the feed conversion ratio (FCR) were not affected (p>0.05) by bLF supplementation. At 42 days of age, the breast meat percentage and carcass yield of broilers fed 800 mg/kg bLF compared with the control group significantly increased by 9.51% and 6.03% respectively (p < 0.05). Compared with the chicks fed the control diet, the chicks fed diets supplemented with bLF had higher villus height, muscle thickness and villus surface area (p > 0.05). Dietary bLF inclusion increased the total immunoglobulin (IgT) titre against sheep red blood cells (SRBCs) antigen (linear effect, p = 0.031; quadratic effect, p = 0.035) and improved the phytohaemagglutinin-P (PHA-P)-skin test of broilers. Compared with the control, bLF enhanced the gene expression of IFN-γ in spleen (p = 0.048, linear effect, p = 0.009; quadratic effect, p = 0.093) and liver (p = 0.012, linear effect, p = 0.008; quadratic effect, p = 0.01) and IL-2 expression in spleen (p = 0.021, linear effect, p = 0.026; quadratic effect, p = 0.103). The bLF supplementation had no effect on IL-2 gene expression in liver (p > 0.05, linear effect, p = 0.213; quadratic effect, p = 0.159). In conclusion, we found that supplementation of broiler diets with 800 mg/kg bLF can improve the growth performance, carcass yield, cell-mediated and antibody-mediated immune responses and enhance the IL-2 and IFN-γ gene expression of broilers.
Collapse
Affiliation(s)
- Majid Olyayee
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Arash Javanmard
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Hossein Janmohammadi
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Ruhollah Kianfar
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Sadegh Alijani
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
8
|
Li W, Liu B, Lin Y, Xue P, Lu Y, Song S, Li Y, Szeto IMY, Ren F, Guo H. The application of lactoferrin in infant formula: The past, present and future. Crit Rev Food Sci Nutr 2022; 64:5748-5767. [PMID: 36533432 DOI: 10.1080/10408398.2022.2157792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human milk is universally regarded as the gold standard to fulfill nutrition needs of infants. Lactoferrin (LF) is a major multiple bioactive glycoprotein in human milk but little is presented in infant formula. LF can resist digestion in the infant gastrointestinal tract and is absorbed into the bloodstream in an intact form to perform physiological functions. Evidence suggest that LF prevents pathogen infection, promotes immune system development, intestinal development, brain development and bone health, as well as ameliorates iron deficiency anemia. However, more clinical studies of LF need to be further elucidated to determine an appropriate dosage for application in infant formula. LF is sensitive to denaturation induced by processing of infant formula such as heat treatments and spay drying. Thus, further studies should be focus on maximizing the retention of LF activity in the infant formula process. This review summarizes the structural features of LF. Then the digestion, absorption and metabolism of LF in infants are discussed, followed by the function of LF for infants. Further, we summarize LF in infant formula and effects of processing of infant formula on bioactivities of LF, as well as future perspectives of LF research.
Collapse
Affiliation(s)
- Wusun Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Biao Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, PR China
| | - Yingying Lin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
| | - Peng Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Yao Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Sijia Song
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Yixuan Li
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
| | - Ignatius Man-Yau Szeto
- Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, PR China
- National Center of Technology Innovation for Dairy, Hohhot, PR China
| | - Fazheng Ren
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
| | - Huiyuan Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
| |
Collapse
|
9
|
Song T, Qin Y, Ke L, Wang X, Wang K, Sun Y, Ye J. Dietary Lactoferrin Supplementation Improves Growth Performance and Intestinal Health of Juvenile Orange-Spotted Groupers ( Epinephelus coioides). Metabolites 2022; 12:915. [PMID: 36295817 PMCID: PMC9607261 DOI: 10.3390/metabo12100915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/14/2022] [Accepted: 09/25/2022] [Indexed: 11/16/2022] Open
Abstract
A 56-day feeding trial was conducted to investigate the effects of dietary lactoferrin (LF) supplementation on the growth performance and intestinal health of juvenile orange-spotted groupers fed high-soybean-meal (SBM) diets. The control diet (FM) and high-soybean-meal diet (SBM60) were prepared to contain 480 g/kg protein and 110 g/kg fat. Three inclusion levels of 2, 6, and 10 g/kg LF were added into the SBM60 to prepare three diets (recorded as LF2, LF6, and LF10, respectively). The results showed that the supplementation of LF in SBM60 increased the growth rate in a dose-dependent manner. However, the feed utilization, hepatosomatic index, whole-body proximate composition, and the abundance and diversity of intestinal microbiota did not vary across the dietary treatments (p > 0.05). After the dietary intervention with LF, the contents of the intestinal malondialdehyde, endotoxin, and d-lactic acid, as well as the plasma low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and total cholesterol were lower, and the intestinal activities of the glutathione peroxidase, lipase, trypsin, and protease were higher in the LF2-LF10 groups than that in the SBM60 group (p < 0.05). The supplementation of LF in SBM60 increased the muscle layer thickness of the middle and distal intestine and the mucosal fold length of the middle intestine vs. the SBM60 diet (p < 0.05). Furthermore, the supplementation of LF in SBM60 resulted in an up-regulation of the mRNA levels for the IL-10 and TGF-β1 genes and a down-regulation of the mRNA levels of the IL-1β, IL-12, IL-8, and TNF-α genes vs. the SBM60 diet (p < 0.05). The above results showed that a dietary LF intervention improves the growth and alleviates soybean meal-induced enteritis in juvenile orange-spotted groupers. The dietary appropriate level of LF was at 5.8 g/kg, through the regression analysis of the percent weight gain against the dietary LF inclusion levels.
Collapse
Affiliation(s)
- Tao Song
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen 361021, China
| | - Yingmei Qin
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen 361021, China
| | - Liner Ke
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen 361021, China
| | - Xuexi Wang
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kun Wang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen 361021, China
| | - Yunzhang Sun
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen 361021, China
| | - Jidan Ye
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen 361021, China
| |
Collapse
|
10
|
Liu N, Feng G, Zhang X, Hu Q, Sun S, Sun J, Sun Y, Wang R, Zhang Y, Wang P, Li Y. The Functional Role of Lactoferrin in Intestine Mucosal Immune System and Inflammatory Bowel Disease. Front Nutr 2021; 8:759507. [PMID: 34901112 PMCID: PMC8655231 DOI: 10.3389/fnut.2021.759507] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Inflammatory bowel disease (IBD), encompassing ulcerative colitis (UC) and Crohn's disease (CD), is one of the main types of intestinal inflammatory diseases with intestine mucosal immune disorder. Intestine mucosal immune system plays a remarkable and important role in the etiology and pathogenesis of IBD. Therefore, understanding the intestine mucosal immune mechanism is a key step to develop therapeutic interventions for IBD. Intestine mucosal immune system and IBD are influenced by various factors, such as inflammation, gut permeability, gut microbiota, and nutrients. Among these factors, emerging evidence show that nutrients play a key role in inflammation activation, integrity of intestinal barrier, and immune cell modulation. Lactoferrin (LF), an iron-binding glycoprotein belonging to transferrin family, is a dietary bioactive component abundantly found in mammalian milk. Notably, LF has been reported to perform diverse biological functions including antibacterial activity, anti-inflammatory activity, intestinal barrier protection, and immune cell modulation, and is involved in maintaining intestine mucosal immune homeostasis. The improved understanding of the properties of LF in intestine mucosal immune system and IBD will facilitate its application in nutrition, clinical medicine, and health. Herein, this review outlines the recent advancements on LF as a potential therapeutic intervention for IBD associated with intestine mucosal immune system dysfunction. We hope this review will provide a reference for future studies and lay a theoretical foundation for LF-based therapeutic interventions for IBD by understanding the particular effects of LF on intestine mucosal immune system.
Collapse
Affiliation(s)
- Ning Liu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Gang Feng
- Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot, China
- Yili Maternal & Infant Nutrition Institute, Beijing, China
| | - Xiaoying Zhang
- Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot, China
- Yili Maternal & Infant Nutrition Institute, Beijing, China
| | - Qingjuan Hu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Shiqiang Sun
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Jiaqi Sun
- Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot, China
- Yili Maternal & Infant Nutrition Institute, Beijing, China
| | - Yanan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yan Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Pengjie Wang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Monzani PS, Adona PR, Long SA, Wheeler MB. Cows as Bioreactors for the Production of Nutritionally and Biomedically Significant Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:299-314. [PMID: 34807448 DOI: 10.1007/978-3-030-85686-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Dairy and beef cattle make a vital contribution to global nutrition, and since their domestication, they have been continuously exposed to natural and artificial selection to improve production characteristics. The technologies of transgenesis and gene editing used in cattle are responsible for generating news characteristics in bovine breeding, such as alteration of nutritional components of milk and meat enhancing human health benefits, disease resistance decreasing production costs and offering safe products for human food, as well as the recombinant protein production of biomedical significance. Different methodologies have been used to generate transgenic cattle as bioreactors. These methods include the microinjection of vectors in pronuclear, oocyte or zygote, sperm-mediate transgenesis, and somatic cell nuclear transfer. Gene editing has been applied to eliminate unwanted genes related to human and animal health, such as allergy, infection, or disease, and to insert transgenes into specific sites in the host genome. Methodologies for the generation of genetically modified cattle are laborious and not very efficient. However, in the last 30 years, transgenic animals were produced using many biotechnological tools. The result of these modifications includes (1) the change of nutritional components, including proteins, amino acids and lipids for human nutrition; (2) the removal allergic proteins milk; (3) the production of cows resistant to disease; or (4) the production of essential proteins used in biomedicine (biomedical proteins) in milk and blood plasma. The genetic modification of cattle is a powerful tool for biotechnology. It allows for the generation of new or modified products and functionality that are not currently available in this species.
Collapse
Affiliation(s)
- P S Monzani
- Instituto Chico Mendes de Conservação da Biodiversidade/Centro Nacional de Pesquisa e Conservação da Biodiversidade Aquática Continental, Pirassununga, SP, Brasil.
| | - P R Adona
- Saúde e Produção de Ruminantes, Universidade Norte do Paraná, Arapongas, PR, Brasil
| | - S A Long
- Departments of Animal Sciences and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - M B Wheeler
- Departments of Animal Sciences and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
12
|
Hao Y, Wang J, Teng D, Wang X, Mao R, Yang N, Ma X. A prospective on multiple biological activities of lactoferrin contributing to piglet welfare. Biochem Cell Biol 2021; 99:66-72. [DOI: 10.1139/bcb-2020-0078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Piglets, especially weaning piglets, show a lower level of immunity and higher morbidity and mortality, owing to their rapid growth, physiological immaturity, and gradual reduction of maternal antibodies, which seriously affects their growth and thus, value. It is important that piglets adapt to nutrient digestion and absorption and develop sound intestinal function and colonization with gut microbiota as soon as possible during their early life stage. Lactoferrin is a natural glycoprotein polypeptide that is part of the transferrin family. It is widely found in mucosal secretions such as saliva and tears, and most highly in milk and colostrum. As a multifunctional bioactive protein and a recommended food additive, lactoferrin is a potential alternative therapy to antibiotics and health promoting additive for piglet nutrition and development. It is expected that lactoferrin, as a natural food additive, could play an important role in maintaining pig health and development. This review examines the following known beneficial effects of lactoferrin: improves the digestion and capacity for absorption in the intestinal tract; promotes the absorption of iron and reduces the incidence of iron deficiency anemia; regulates intestinal function and helps to balance the microbial biota; and enhances the resistance to disease of the piglets via modulating and enhancing the immune system.
Collapse
Affiliation(s)
- Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P.R. China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P.R. China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P.R. China
| | - Xiumin Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P.R. China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P.R. China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P.R. China
| | - Xuanxuan Ma
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P.R. China
| |
Collapse
|
13
|
Ameliorative effect of recombinant human lactoferrin on the premature ovarian failure in rats after cyclophosphamide treatments. J Ovarian Res 2021; 14:17. [PMID: 33478578 PMCID: PMC7821665 DOI: 10.1186/s13048-020-00763-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/27/2020] [Indexed: 12/27/2022] Open
Abstract
This study investigated the effect of recombinant human lactoferrin (rhLF) on the premature ovarian failure (POF) of rats. After cyclophosphamide treatments, the POF rats were divided into the following groups: normal control group (NC), low-dose group (LD), medium-dose group (MD) and high-dose group (HD) of rhLF. After drug administrations, the ovarian indexes and hormonal levels were detected. After follicle number count, the proliferation and apoptosis were analyzed with the expressions of genes related with oogenesis, reactive oxygen species (ROS) production and apoptosis detected, followed by the calculation of oxidative stress and protein expressions. After 4-hydroperoxy cyclophosphamide (4-HC) treatments, the effect of rhLF on the proliferation, ROS production and gene expressions of primary rat granulosa cells (GCs) cultured in vitro were detected. After mating, the fertilities of POF rats were recorded. The result showed that the rhLF administrations up-regulated the ovarian index with the number of developing follicles increased and the decreases of hormonal levels conferred. The Ki-67 intensities of the MD and HD groups were up-regulated with the Tunnel intensities decreased. The rhLF treatments significantly promoted the expression of oogenesis, antioxidant and anti-apoptosis related genes. The expression of Bax and Caspase 3 were decreased with the expression of Bcl-2 up-regulated after rhLF administrations. The in vitro treatments of rhLF effectively conferred the toxicity of 4-HC on primary rat GCs. The fertility assessment showed the rhLF treatments up-regulated the offspring’s’ folliculogenesis, which confirmed the ameliorative role of rhLF on the POF damages via the inhibition of ROS production in GCs.
Collapse
|
14
|
Wang Q, Chen X, Xie Z, Liu X, Fu W, Huang K, Xu W, Lin X. Untargeted Metabonomics of Genetically Modified Cows Expressing Lactoferrin Based on Serum and Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:686-696. [PMID: 31877248 DOI: 10.1021/acs.jafc.9b06630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metabolites of serum and milk from genetically modified (GM) cows and contrast check (CK) cows were comparatively investigated. Serum and milk were collected from genetically modified (GM) cows and contrast check (CK) cows, and then, they were analyzed using ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) and gas chromatography-mass spectrometry (GC-MS). Although the level of some blood biochemical indexes for GM cows was shifted up or down, they were generally in normal physiological condition. Serum samples from lactoferrin GM cows exhibited reduced levels of amino acids and elevated levels of indoleacetate, α-keto acids, long-chain fatty acids, etc. GM milk possessed elevated levels of pentose and amino sugar metabolites, including arabitol, xylulose, glucuronate, and N-acetylgalactosamine. Interestingly, some essential nutrients, such as certain unsaturated fatty acids (e.g., eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and docosapentaenoic acid (DPA)), and some necessary rare sugars were significantly upregulated. Compared to the CK group, a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was conducted based on the increased or decreased metabolites identified in the serum and milk samples of the GM group. The results showed that the GM cows were in healthy condition and their milk has improved benefits for customers. The milk from genetically modified cows was found to be a promising milk source for producing recombinant human lactoferrin (rhLF) for human beings.
Collapse
Affiliation(s)
- Qin Wang
- Institute of Animal Quarantine , Chinese Academy of Inspection and Quarantine , Beijing 100123 , China
| | - Xu Chen
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Zixin Xie
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Xiaofei Liu
- Institute of Animal Quarantine , Chinese Academy of Inspection and Quarantine , Beijing 100123 , China
| | - Wei Fu
- Institute of Animal Quarantine , Chinese Academy of Inspection and Quarantine , Beijing 100123 , China
| | - Kunlun Huang
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Wentao Xu
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Xiangmei Lin
- Institute of Animal Quarantine , Chinese Academy of Inspection and Quarantine , Beijing 100123 , China
| |
Collapse
|
15
|
The Impact of Lactoferrin on the Growth of Intestinal Inhabitant Bacteria. Int J Mol Sci 2019; 20:ijms20194707. [PMID: 31547574 PMCID: PMC6801499 DOI: 10.3390/ijms20194707] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
Lactoferrin (Lf) is an iron-binding milk glycoprotein that promotes the growth of selected probiotic strains. The effect of Lf on the growth and diversification of intestinal microbiota may have an impact on several issues, including (i) strengthening the permeability of the epithelial cell monolayer, (ii) favoring the microbial antagonism that discourages the colonization and proliferation of enteric pathogens, (iii) enhancing the growth and maturation of cell-monolayer components and gut nerve fibers, and (iv) providing signals to balance the anti- and pro-inflammatory responses resulting in gut homeostasis. Given the beneficial role of probiotics, this contribution aims to review the current properties of bovine and human Lf and their derivatives in in vitro probiotic growth and Lf interplay with microbiota described in the piglet model. By using Lf as a component in pharmacological products, we may enable novel strategies that promote probiotic growth while conferring antimicrobial activity against multidrug-resistant microorganisms that cause life-threatening diseases, especially in neonates.
Collapse
|
16
|
Hu P, Zhao F, Zhu W, Wang J. Effects of early-life lactoferrin intervention on growth performance, small intestinal function and gut microbiota in suckling piglets. Food Funct 2019; 10:5361-5373. [PMID: 31393487 DOI: 10.1039/c9fo00676a] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The early postnatal stage is a critical period for suckling animals in developing intestinal function and stabilizing gut microbiota. Lactoferrin (LF) plays a critical role in promoting gut development and regulating gut microbiota. This study investigates the impact of early-life lactoferrin (LF) intervention on the growth performance, small intestinal function and gut microbiota in suckling piglets. Sixty suckling piglets (1.51 ± 0.05 kg) obtained from six sows (10 piglets per litter) were assigned to a control (CON) group and an LF group in each litter, which were sow-fed. Piglets in the LF group were orally administered 8-12 mL LF solution (0.5 g per kg body weight per day) for a week, and piglets in the CON group were orally administered the same dose of physiological saline. Six piglets (n = 6) from each group were euthanized on days 8 and 21. The early-life LF intervention increased growth performance, with higher villi height of the jejunum and greater disaccharidase activity of the jejunum and ileum (P < 0.05). Diarrhoea incidence decreased in the LF group from day 1 to day 7 (P < 0.05). Urinary lactulose-mannitol ratios decreased in the LF group, whereas the gene and protein expressions of jejunal occludin increased in the LF group on day 8 and day 21, and higher gene and protein levels of ileal occludin were observed on day 8 (P < 0.05). Additionally, the LF piglets had lower concentrations of IL-1β and TNF-α, and higher concentration of IL-10 in the jejunum (P < 0.05). For the ileum, higher concentration of IL-10 and lower concentration of TNF-α were observed in the LF group (P < 0.05). LF piglets had a greater abundance of Lactobacillus and lower abundance of Veillonella and Escherichia-Shigella in the jejunum on day 8 (P < 0.05). In the ileum, the abundance of Actinobacillus was decreased in the LF piglets on day 8 and day 21 (P < 0.05). The early-life LF intervention enhanced the growth performance and decreased diarrhoea incidence in the suckling piglets by promoting the development of intestinal function and changing the microbiota in the small intestine.
Collapse
Affiliation(s)
- Ping Hu
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Jiangsu Province 210095, P. R. China. and Laboratory of Gastrointestinal Microbiology, Xiaolingwei Street, Weigang 1, Nanjing 210095, China
| | - Fangzhou Zhao
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Jiangsu Province 210095, P. R. China. and Laboratory of Gastrointestinal Microbiology, Xiaolingwei Street, Weigang 1, Nanjing 210095, China
| | - Weiyun Zhu
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Jiangsu Province 210095, P. R. China. and Laboratory of Gastrointestinal Microbiology, Xiaolingwei Street, Weigang 1, Nanjing 210095, China
| | - Jing Wang
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Jiangsu Province 210095, P. R. China. and Laboratory of Gastrointestinal Microbiology, Xiaolingwei Street, Weigang 1, Nanjing 210095, China
| |
Collapse
|
17
|
Affiliation(s)
- Paolo Manzoni
- Division of Pediatrics and Neonatology, Degli Infermi Hospital, Biella, Italy
| |
Collapse
|
18
|
Nagaoka K, Ito T, Ogino K, Eguchi E, Fujikura Y. Human lactoferrin induces asthmatic symptoms in NC/Nga mice. Physiol Rep 2018; 5:5/15/e13365. [PMID: 28774951 PMCID: PMC5555891 DOI: 10.14814/phy2.13365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/25/2017] [Accepted: 06/29/2017] [Indexed: 01/04/2023] Open
Abstract
Lactoferrin in commercial supplements is known to exert anti‐viral and anti‐allergic effects. However, this is the first study to evaluate the induction of allergic airway inflammation in NC/Nga mice. Human lactoferrin was administered intraperitoneally with aluminum oxide for sensitization. Five days later, lactoferrin was inoculated intranasally for 5 days, and then on the 12th day, the single inoculation of lactoferrin intranasally was performed as a challenge. On the 13th day, airway hypersensitivity was assessed (AHR), a bronchoalveolar fluid (BALF) cell analysis was conducted, serum IgE and serum lactoferrin‐specific IgG and IgE levels as well as the mRNA expression levels of cytokines and chemokines in the lung were measured, and a histopathological analysis of the lung was performed. Human lactoferrin increased AHR, the number of eosinophils in BALF, serum lactoferrin‐specific IgG levels, and the mRNA levels of IL‐13, eotaxin 1, and eotaxin 2. Moreover, the accumulation of inflammatory cells around the bronchus and the immunohistochemical localization of arginase I and human lactoferrin were detected. Collectively, these results indicate that human lactoferrin induced allergic airway inflammation in mice. Therefore, the commercial use of human lactoferrin in supplements warrants more intensive study.
Collapse
Affiliation(s)
- Kenjiro Nagaoka
- Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tatsuo Ito
- Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keiki Ogino
- Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Eri Eguchi
- Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshihisa Fujikura
- Department of Molecular Anatomy, Faculty of Medicine, Oita University, Oita, Japan
| |
Collapse
|
19
|
Pagheh E, Marammazi JG, Agh N, Nouri F, Sepahdari A, Gisbert E, Mozanzadeh MT. Growth Performance, Hemato-Immunological Responses, and Digestive Enzyme Activities in Silvery-Black Porgy (Sparidentex hasta) Fed Dietary Bovine Lactoferrin. Probiotics Antimicrob Proteins 2017; 10:399-407. [DOI: 10.1007/s12602-017-9340-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Li Q, Zhao J, Hu W, Wang J, Yu T, Dai Y, Li N. Effects of Recombinant Human Lactoferrin on Osteoblast Growth and Bone Status in Piglets. Anim Biotechnol 2017; 29:90-99. [PMID: 28494220 DOI: 10.1080/10495398.2017.1313269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lactoferrin (LF), an ~80 kDa iron-binding glycoprotein, modulates many biological effects, including antimicrobial and immunomodulatory activities. Recently, it was shown that LF also regulates bone cell activity, suggesting its therapeutic effect on postmenopausal bone loss. However, a minimal amount is known regarding the effects of recombinant human LF (rhLF) supplementation on bone status in young healthy infants. We found osteoblast cell differentiation was significantly promoted in vitro. Furthermore, treatment of human osteoblast cells with rhLF rapidly induced phosphorylation of p44/p42 mitogen-activated protein kinase (p44/p42 MAPK, ERK1/2). In order to investigate the effects of rhLF on bone status in vivo, we used a piglet model, which is a useful model for human infants. Piglets were supplemented with rhLF milk for 30 days. Bone formation markers, Serum calcium concentration, bone mineral density (BMD), bone mineral content (BMC), tibia bone strength, and the overall metabolite profile analysis showed that rhLF was advantageous to the bone growth in piglets. These findings suggest that rhLF supplementation benefits neonate bone health by modulating bone formation.
Collapse
Affiliation(s)
- Qiuling Li
- a State Key Laboratory of AgroBiotechnology , China Agricultural University , Beijing , China.,b College of Life Sciences , Langfang Teachers University , Langfang , China
| | - Jie Zhao
- a State Key Laboratory of AgroBiotechnology , China Agricultural University , Beijing , China
| | - Wenping Hu
- a State Key Laboratory of AgroBiotechnology , China Agricultural University , Beijing , China
| | - Jianwu Wang
- c Wuxi Kingenew Biotechnology Company , Wuxi , China
| | - Tian Yu
- c Wuxi Kingenew Biotechnology Company , Wuxi , China
| | - Yunping Dai
- a State Key Laboratory of AgroBiotechnology , China Agricultural University , Beijing , China
| | - Ning Li
- a State Key Laboratory of AgroBiotechnology , China Agricultural University , Beijing , China
| |
Collapse
|
21
|
Drago-Serrano ME, Campos-Rodríguez R, Carrero JC, de la Garza M. Lactoferrin: Balancing Ups and Downs of Inflammation Due to Microbial Infections. Int J Mol Sci 2017; 18:E501. [PMID: 28257033 PMCID: PMC5372517 DOI: 10.3390/ijms18030501] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/13/2017] [Accepted: 02/22/2017] [Indexed: 02/07/2023] Open
Abstract
Lactoferrin (Lf) is a glycoprotein of the primary innate immune-defense system of mammals present in milk and other mucosal secretions. This protein of the transferrin family has broad antimicrobial properties by depriving pathogens from iron, or disrupting their plasma membranes through its highly cationic charge. Noteworthy, Lf also exhibits immunomodulatory activities performing up- and down-regulation of innate and adaptive immune cells, contributing to the homeostasis in mucosal surfaces exposed to myriad of microbial agents, such as the gastrointestinal and respiratory tracts. Although the inflammatory process is essential for the control of invasive infectious agents, the development of an exacerbated or chronic inflammation results in tissue damage with life-threatening consequences. In this review, we highlight recent findings in in vitro and in vivo models of the gut, lung, oral cavity, mammary gland, and liver infections that provide experimental evidence supporting the therapeutic role of human and bovine Lf in promoting some parameters of inflammation and protecting against the deleterious effects of bacterial, viral, fungal and protozoan-associated inflammation. Thus, this new knowledge of Lf immunomodulation paves the way to more effective design of treatments that include native or synthetic Lf derivatives, which may be useful to reduce immune-mediated tissue damage in infectious diseases.
Collapse
Affiliation(s)
- Maria Elisa Drago-Serrano
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco (UAM-X), CdMx 04960, Mexico.
| | - Rafael Campos-Rodríguez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional (ESM-IPN), CdMx 11340, Mexico.
| | - Julio César Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (IIB-UNAM), CdMx 70228, Mexico.
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), CdMx 07360, Mexico.
| |
Collapse
|
22
|
Parc AL, Karav S, Rouquié C, Maga EA, Bunyatratchata A, Barile D. Characterization of recombinant human lactoferrin N-glycans expressed in the milk of transgenic cows. PLoS One 2017; 12:e0171477. [PMID: 28170415 PMCID: PMC5295716 DOI: 10.1371/journal.pone.0171477] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/21/2017] [Indexed: 12/23/2022] Open
Abstract
Lactoferrin (LF) is one of the most abundant bioactive glycoproteins in human milk. Glycans attached through N-glycosidic bonds may contribute to Lactoferrin functional activities. In contrast, LF is present in trace amounts in bovine milk. Efforts to increase LF concentration in bovine milk led to alternative approaches using transgenic cows to express human lactoferrin (hLF). This study investigated and compared N-glycans in recombinant human lactoferrin (rhLF), bovine lactoferrin (bLF) and human lactoferrin by Nano-LC-Chip-Q-TOF Mass Spectrometry. The results revealed a high diversity of N-glycan structures, including fucosylated and sialylated complex glycans that may contribute additional bioactivities. rhLF, bLF and hLF had 23, 27 and 18 N-glycans respectively with 8 N-glycan in common overall. rhLF shared 16 N-glycan with bLF and 9 N-glycan with hLF while bLF shared 10 N-glycan with hLF. Based on the relative abundances of N-glycan types, rhLF and hLF appeared to contain mostly neutral complex/hybrid N-glycans (81% and 52% of the total respectively) whereas bLF was characterized by high mannose glycans (65%). Interestingly, the majority of hLF N-glycans were fucosylated (88%), whereas bLF and rhLF had only 9% and 20% fucosylation, respectively. Overall, this study suggests that rhLF N-glycans share more similarities to bLF than hLF.
Collapse
Affiliation(s)
- Annabelle Le Parc
- Department of Food Science and Technology, University of California Davis, Davis, California, United States of America
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale 18 Mart University, Canakkale, Turkey
| | - Camille Rouquié
- Department of Food Science and Technology, University of California Davis, Davis, California, United States of America
| | - Elizabeth A. Maga
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - Apichaya Bunyatratchata
- Department of Food Science and Technology, University of California Davis, Davis, California, United States of America
| | - Daniela Barile
- Department of Food Science and Technology, University of California Davis, Davis, California, United States of America
- Foods for Health Institute, University of California Davis, Davis, California, United States of America
| |
Collapse
|
23
|
Wang X, Wang X, Hao Y, Teng D, Wang J. Research and development on lactoferrin and its derivatives in China from 2011–2015. Biochem Cell Biol 2017; 95:162-170. [DOI: 10.1139/bcb-2016-0073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lactoferrin (Lf), a multifunctional glycoprotein, is an important antimicrobial and immune regulatory protein present in neutrophils and most exocrine secretions of mammals. Lactoferricin (Lfcin) is located in the N-terminal region of this protein. In this review, the current state of research into Lf and Lfcin in China is described. Searching with HistCite software in Web Sci located 118 papers published by Chinese researchers from 2011–2015, making China one of the top 3 producers of Lf research and development in the world. The biological functions of Lf and Lfcin are discussed, including antibacterial, antiviral, antifungal, anticarcinogenic, and anti-inflammatory activities; targeted drug delivery, induction of neurocyte, osteoblast, and tenocyte growth, and possible mechanisms of action. The preparation and heterologous expression of Lf in animals, bacteria, and yeast are discussed in detail. Five Lf-related food additive factories and 9 Lf-related health food production companies are certified by the China Food and Drug Administration (CFDA). The latest progress in the generation of transgenic livestock in China, the safety of the use of transgenic animals, and future prospects for the uses of Lf and Lfcin are also covered.
Collapse
Affiliation(s)
- Xiao Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, P.R. China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, P.R. China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Ya Hao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, P.R. China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Da Teng
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, P.R. China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Jianhua Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, P.R. China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| |
Collapse
|
24
|
Donovan SM. The Role of Lactoferrin in Gastrointestinal and Immune Development and Function: A Preclinical Perspective. J Pediatr 2016; 173 Suppl:S16-28. [PMID: 27234407 DOI: 10.1016/j.jpeds.2016.02.072] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The early postnatal period is a critical time for gastrointestinal (GI) and immune development. Neonates fed mother's milk have more rapid GI and immune development than fed-formula infants. In addition, clinical and epidemiologic data provide strong evidence that breastfeeding reduces the incidence and/or severity of infectious diseases. Lactoferrin is a 77 kDa, iron-binding glycoprotein that is present at high concentration in human milk compared with bovine milk and infant formula. It is a multifunctional protein that mediates many of the physiological processes in which breastfed infants have advantages over their formula-fed peers, including promoting GI and immune development, protection from infections, and improved cognitive development. Feeding bovine lactoferrin or recombinant human lactoferrin was well tolerated and stimulated intestinal cell proliferation and increased villus length and crypt depth in piglets. Lactoferrin also influenced both systemic and GI immune development by stimulating a balanced T-helper-1/T-helper-2 cytokine immune response. Further, there was a tendency for immune cells to secrete more anti-inflammatory cytokines in an unstimulated state, while being primed for a robust pro-inflammatory response when presented with a bacterial trigger in piglets fed lactoferrin. These findings support clinical studies demonstrating benefits of dietary lactoferrin in the prevention of infections, late onset sepsis, and necrotizing enterocolitis.
Collapse
Affiliation(s)
- Sharon M Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL.
| |
Collapse
|