1
|
Gomes TG, de Assis Fonseca FC, Alves GSC, de Siqueira FG, Miller RNG. Development of reference genes for RT-qPCR analysis of gene expression in Pleurotus pulmonarius for biotechnological applications. Sci Rep 2023; 13:12296. [PMID: 37516784 PMCID: PMC10387064 DOI: 10.1038/s41598-023-39115-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023] Open
Abstract
Jatropha curcas is an oilseed crop with biorefinery applications. Whilst cake generated following oil extraction offers potential as a protein source for animal feed, inactivation of toxic phorbol esters present in the material is necessary. Pleurotus pulmonarius is a detoxifying agent for jatropha cake with additional potential as animal feed, edible mushroom and for enzyme production. For the characterization of fungal genes involved in phorbol ester degradation, together with other industrial applications, reverse transcription-quantitative PCR (RT-qPCR) is a tool that enables accurate quantification of gene expression. For this, reliable analysis requires reference genes for normalization of mRNA levels validated under conditions employed for target genes. The stability of potential reference genes β-TUB, ACTIN, GAPDH, PHOS, EF1α, TRPHO, LAC, MNP3, MYP and VP were evaluated following growth of P. pulmonarius on toxic, non-toxic jatropha cake and a combined treatment, respectively. NormFinder and geNorm algorithms for expression stability analysis identified PHOS, EF1α and MNP3 as appropriate for normalizing gene expression. Reference gene combinations contrasting in ranking were compared following normalization of relative expression of the CHU_2040 gene, encoding an esterase enzyme potentially involved in phorbol ester degradation. The reference genes for P. pulmonarius will facilitate the elucidation of mechanisms involved in detoxification of phorbol esters as well as analysis of target genes for application in biorefinery models.
Collapse
Affiliation(s)
- Taísa Godoy Gomes
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
| | - Fernando Campos de Assis Fonseca
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
- Instituto Federal de Goiás (IFG), Águas Lindas, GO, 72910-733, Brazil
| | - Gabriel Sergio Costa Alves
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
| | | | - Robert Neil Gerard Miller
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
2
|
Identification of s9ap used as an endogenous reference gene in qualitative and real-time quantitative PCR detection of Pleurotus eryngii. Mol Biol Rep 2023; 50:621-629. [PMID: 36370299 DOI: 10.1007/s11033-022-07562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/25/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Pleurotus eryngii is a kind of edible fungi with good quality, and it is popular among consumers. At present, some adulterated edible fungi are available in the market. The rights and interests of consumers can be ensured by establishing a practical edible fungi detection system. Among the existing methods for detecting food adulteration, endogenous reference gene amplification is convenient and reliable. However, no ideal endogenous reference gene is available for P. eryngii. METHODS AND RESULTS In this study, s9ap was screened as an endogenous reference gene through sequence alignment. Qualitative and quantitative PCR analysis of this gene was carried out in one P. eryngii variety and 18 other species. The detection limit of quantitative PCR was 400 pg, and no s9ap amplification products were detected in the 18 other species. CONCLUSIONS This study confirmed that s9ap was an ideal endogenous reference gene for the detection of P. eryngii. This method was also suitable for processed food products.
Collapse
|
3
|
Wei Y, Li L, Liu Y, Xiang S, Zhang H, Yi L, Shang Y, Xu W. Identification techniques and detection methods of edible fungi species. Food Chem 2021; 374:131803. [PMID: 34915377 DOI: 10.1016/j.foodchem.2021.131803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 12/15/2022]
Abstract
Edible fungi have high nutritional value and great potential. Confusion among edible fungi species, and foodborne diseases due to toadstool poisoning or death induced by inadvertent consumption exist across the world. Therefore, edible fungi must be accurately identified. Based on different substances in edible fungi, there are different detection methods, and the same method can use different identification technology. Sensory identification methods include morphological and odor methods. Instrumental analysis methods based on chemical composition include chromatographic, mass spectrometry and spectral technology. Molecular biology identification methods based on nucleic acids include molecular marker technology, sequencing technology, isothermal amplification technology and endogenous reference gene method. Method is channel, and technology is the means. The principles, advantages, disadvantages and applications of various identification techniques and detection methods were discussed in this work to provide reference for the identification research of edible fungi and technical support for preventing food safety incidents caused by toadstools.
Collapse
Affiliation(s)
- Yuanmiao Wei
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, China
| | - Ling Li
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, China
| | - Yao Liu
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, China
| | - Shuna Xiang
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, China
| | - Hanyue Zhang
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, China
| | - Lunzhao Yi
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, China
| | - Ying Shang
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, China.
| | - Wentao Xu
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
4
|
Li J, Han LH, Liu XB, Zhao ZW, Yang ZL. The saprotrophic Pleurotus ostreatus species complex: late Eocene origin in East Asia, multiple dispersal, and complex speciation. IMA Fungus 2020; 11:10. [PMID: 32617259 PMCID: PMC7325090 DOI: 10.1186/s43008-020-00031-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/31/2020] [Indexed: 12/02/2022] Open
Abstract
The Pleurotus ostreatus species complex is saprotrophic and of significant economic and ecological importance. However, species delimitation has long been problematic because of phenotypic plasticity and morphological stasis. In addition, the evolutionary history is poorly understood due to limited sampling and insufficient gene fragments employed for phylogenetic analyses. Comprehensive sampling from Asia, Europe, North and South America and Africa was used to run phylogenetic analyses of the P. ostreatus species complex based on 40 nuclear single-copy orthologous genes using maximum likelihood and Bayesian inference analyses. Here, we present a robust phylogeny of the P. ostreatus species complex, fully resolved from the deepest nodes to species level. The P. ostreatus species complex was strongly supported as monophyletic, and 20 phylogenetic species were recognized, with seven putatively new species. Data from our molecular clock analyses suggested that divergence of the genus Pleurotus probably occurred in the late Jurassic, while the most recent common ancestor of the P. ostreatus species complex diversified about 39 Ma in East Asia. Species of the P. ostreatus complex might migrate from the East Asia into North America across the North Atlantic Land Bridge or the Bering Land Bridge at different times during the late Oligocene, late Miocene and late Pliocene, and then diversified in the Old and New Worlds simultaneously through multiple dispersal and vicariance events. The dispersal from East Asia to South America in the middle Oligocene was probably achieved by a long-distance dispersal event. Intensification of aridity and climate cooling events in the late Miocene and Quaternary glacial cycling probably had a significant influence on diversification patterns of the complex. The disjunctions among East Asia, Europe, North America and Africa within Clade IIc are hypothesized to be a result of allopatric speciation. Substrate transitions to Apiaceae probably occurred no earlier than 6 Ma. Biogeographic analyses suggested that the global cooling of the late Eocene, intensification of aridity caused by rapid uplift of the QTP and retreat of the Tethys Sea in the late Miocene, climate cooling events in Quaternary glacial cycling, and substrate transitions have contributed jointly to diversification of the species complex.
Collapse
Affiliation(s)
- Jing Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, 650201 Yunnan China
- State Key Laboratory of Conservation and Utilization for Bioresources in Yunnan, Yunnan University, Kunming, 650091 Yunnan China
| | - Li-Hong Han
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, 655011 Yunnan China
| | - Xiao-Bin Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, 650201 Yunnan China
| | - Zhi-Wei Zhao
- State Key Laboratory of Conservation and Utilization for Bioresources in Yunnan, Yunnan University, Kunming, 650091 Yunnan China
| | - Zhu L. Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, 650201 Yunnan China
| |
Collapse
|
5
|
Dai Y, Sun L, Yin X, Gao M, Zhao Y, Jia P, Yuan X, Fu Y, Li Y. Pleurotus eryngii Genomes Reveal Evolution and Adaptation to the Gobi Desert Environment. Front Microbiol 2019; 10:2024. [PMID: 31551962 PMCID: PMC6734163 DOI: 10.3389/fmicb.2019.02024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/19/2019] [Indexed: 12/30/2022] Open
Abstract
Pleurotus eryngii (King Oyster) is one of the most highly prized edible mushrooms. Among the diverse varieties within P. eryngii, P. eryngii var. eryngii is the commonest one, with a worldwide distribution, while P. eryngii var. ferulae is only distributed in Europe and China, and is especially adapted to the Gobi Desert in Xinjiang Autonomous Region of China. However, little is known about the genome-wide pattern of evolution and adaptation to the divergent environments of P. eryngii. Here, we present the high-quality genome sequences of P. eryngii var. eryngii strain PEE81 originating from Europe and P. eryngii var. ferulae strain PEF12 originating from the Gobi Desert of China. The assembled genome sizes of PEE81 and PEF12 were 53.6 and 48.0 Mbp, respectively, which are larger than other reported genomes in the genus Pleurotus. We propose that the selective amplification of long terminal repeat (LTR) retrotransposons increases the genome size of the genus Pleurotus, and may play a key role in driving their rapid species diversification. Molecular clock analyses of five Pleurotus species, namely PEE81, PEF12, P. tuoliensis, P. ostreatus and P. cf. floridanus suggest that the divergence estimates of the genus Pleurotus over time scales ranged from ∼4 to ∼38 million years ago (Mya), and PEE81 and PEF12 diverged at ∼13 Mya. The whole genome resequencing of 33 geographically diverse strains of P. eryngii var. eryngii and var. ferulae was then performed and the genome variation among and within these two populations were investigated. Comparative analyses of these two populations detected several candidate genes related to stress responses and DNA repair that are putatively involved in adaptation to the Gobi Desert environment. These findings offer insights into genome evolution of the genus Pleurotus and provide valuable genomic resources for King Oyster mushroom breeding.
Collapse
Affiliation(s)
- Yueting Dai
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,International Cooperation Research Center of China for New Germplasm and Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, China
| | - Lei Sun
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,International Cooperation Research Center of China for New Germplasm and Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, China
| | - Xiaolei Yin
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,International Cooperation Research Center of China for New Germplasm and Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, China
| | - Meng Gao
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,International Cooperation Research Center of China for New Germplasm and Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, China
| | - Yitong Zhao
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,International Cooperation Research Center of China for New Germplasm and Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, China
| | - Peisong Jia
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang, China
| | - Xiaohui Yuan
- School of Computer Science and Technology, Wuhan University of Technology, Wuhan, China
| | - Yongping Fu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,International Cooperation Research Center of China for New Germplasm and Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, China
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,International Cooperation Research Center of China for New Germplasm and Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, China
| |
Collapse
|
6
|
Statistical Inconsistency of Maximum Parsimony for k-Tuple-Site Data. Bull Math Biol 2019; 81:1173-1200. [PMID: 30607881 DOI: 10.1007/s11538-018-00552-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 12/05/2018] [Indexed: 10/27/2022]
Abstract
One of the main aims of phylogenetics is to reconstruct the "Tree of Life." In this respect, different methods and criteria are used to analyze DNA sequences of different species and to compare them in order to derive the evolutionary relationships of these species. Maximum parsimony is one such criterion for tree reconstruction, and it is the one which we will use in this paper. However, it is well known that tree reconstruction methods can lead to wrong relationship estimates. One typical problem of maximum parsimony is long branch attraction, which can lead to statistical inconsistency. In this work, we will consider a blockwise approach to alignment analysis, namely the so-called k-tuple analyses. For four taxa, it has already been shown that k-tuple-based analyses are statistically inconsistent if and only if the standard character-based (site-based) analyses are statistically inconsistent. So, in the four-taxon case, going from individual sites to k-tuples does not lead to any improvement. However, real biological analyses often consider more than only four taxa. Therefore, we analyze the case of five taxa for 2- and 3-tuple-site data and consider alphabets with two and four elements. We show that the equivalence of single-site data and k-tuple-site data then no longer holds. Even so, we can show that maximum parsimony is statistically inconsistent for k-tuple-site data and five taxa.
Collapse
|
7
|
The evolution of genomic and epigenomic features in two Pleurotus fungi. Sci Rep 2018; 8:8313. [PMID: 29844491 PMCID: PMC5974365 DOI: 10.1038/s41598-018-26619-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/23/2018] [Indexed: 12/17/2022] Open
Abstract
Pleurotus tuoliensis (Bailinggu, designated Pt) and P. eryngii var. eryngii (Xingbaogu, designated Pe) are highly valued edible mushrooms. We report de novo assemblies of high-quality genomes for both mushrooms based on PacBio RS II sequencing and annotation of all identified genes. A comparative genomics analysis between Pt and Pe with P. ostreatus as an outgroup taxon revealed extensive genomic divergence between the two mushroom genomes primarily due to the rapid gain of taxon-specific genes and disruption of synteny in either taxon. The re-appraised phylogenetic relationship between Pt and Pe at the genome-wide level validates earlier proposals to designate Pt as an independent species. Variation of the identified wood-decay-related gene content can largely explain the variable adaptation and host specificity of the two mushrooms. On the basis of the two assembled genome sequences, methylomes and the regulatory roles of DNA methylation in gene expression were characterized and compared. The genome, methylome and transcriptome data of these two important mushrooms will provide valuable information for advancing our understanding of the evolution of Pleurotus and related genera and for facilitating genome- and epigenome-based strategies for mushroom breeding.
Collapse
|
8
|
Xu LM, Hinsinger DD, Jiang GF. The complete mitochondrial genome of the Basidiomycete fungus Pleurotus cornucopiae (Paulet) Rolland. Mitochondrial DNA B Resour 2018; 3:73-75. [PMID: 33490488 PMCID: PMC7800982 DOI: 10.1080/23802359.2017.1422405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 12/26/2017] [Indexed: 12/04/2022] Open
Abstract
Pleurotus cornucopiae is a commercial edible and medicinal fungus. Herein, we determined and analyzed its complete mitochondrial genome. The mitogenome length was 72,134 bp with a GC content of 26.7%, contained 14 conserved protein coding genes, two rRNA genes (rnl and rns), ribosomal protein gene rps3 and 24 tRNA genes. Pleurotus cornucopiae has a similar gene content and gene order of the mitogenome as P. ostreatus and P. eryngii. A phylogenetic analysis based on complete mitogenome in related fungi showed that P. cornucopiae is a member of the order Agaricales, forming a clade with P. ostreatus and P. eryngii, with P. ostreatus as a sister taxa. The mitochondrial genome sequence of P. cornucopiae appeared a promising tool for further studies of the taxonomy and evolution of Pleurotaceae and Agaricales.
Collapse
Affiliation(s)
- Li-Ming Xu
- Biology Institute, Guangxi Academy of Sciences, Nanning, Guangxi, PR China
| | - Damien Daniel Hinsinger
- Biodiversity Genomics Team, Plant Ecophysiology & Evolution Group, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, PR China
| | - Guo-Feng Jiang
- Biodiversity Genomics Team, Plant Ecophysiology & Evolution Group, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, PR China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, PR China
| |
Collapse
|
9
|
Comparative Transcriptome Analysis Identified Candidate Genes Related to Bailinggu Mushroom Formation and Genetic Markers for Genetic Analyses and Breeding. Sci Rep 2017; 7:9266. [PMID: 28839254 PMCID: PMC5571210 DOI: 10.1038/s41598-017-08049-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 07/04/2017] [Indexed: 01/12/2023] Open
Abstract
Bailinggu (Pleurotus tuoliensis) is a major, commercially cultivated mushroom and widely used for nutritional, medicinal, and industrial applications. Yet, the mushroom’s genetic architecture and the molecular mechanisms underlying its formation are largely unknown. Here we performed comparative transcriptomic analysis during Bailinggu’s mycelia, primordia, and fruiting body stages to identify genes regulating fruiting body development and develop EST-SSR markers assessing the genetic value of breeding materials. The stage-specific and differentially expressed unigenes (DEGs) involved in morphogenesis, primary carbohydrate metabolism, cold stimulation and blue-light response were identified using GO and KEGG databases. These unigenes might help Bailinggu adapt to genetic and environmental factors that influence fructification. The most pronounced change in gene expression occurred during the vegetative-to-reproductive transition, suggesting that is most active and key for Bailinggu development. We then developed 26 polymorphic and informative EST-SSR markers to assess the genetic diversity in 82 strains of Bailinggu breeding materials. These EST-SSRs exhibited high transferability in closely related species P. eryngii var. ferulae and var. eryngii. Genetic population structure analysis indicated that China’s Bailinggu has low introgression with these two varieties and likely evolved independently. These findings provide new genes, SSR markers, and germplasm to enhance the breeding of commercially cultivated Bailinggu.
Collapse
|
10
|
Xing R, Gao QB, Zhang FQ, Fu PC, Wang JL, Yan HY, Chen SL. Genetic variation and phylogenetic relationships of the ectomycorrhizal Floccularia luteovirens on the Qinghai-Tibet Plateau. J Microbiol 2017; 55:600-606. [PMID: 28674972 DOI: 10.1007/s12275-017-7101-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/01/2017] [Accepted: 06/07/2017] [Indexed: 11/24/2022]
Abstract
Floccularia luteovirens, as an ectomycorrhizal fungus, is widely distributed in the Qinghai-Tibet Plateau. As an edible fungus, it is famous for its unique flavor. Former studies mainly focus on the chemical composition and genetic structure of this species. However, the phylogenetic relationship between genotypes remains unknown. In this study, the genetic variation and phylogenetic relationship between the genotypes of F. luteovirens in Qinghai-Tibet Plateau was estimated through the analysis on two protein-coding genes (rpb1 and ef-1α) from 398 individuals collected from 24 wild populations. The sample covered the entire range of this species during all the growth seasons from 2011 to 2015. 13 genotypes were detected and moderate genetic diversity was revealed. Based on the results of network analysis, the maximum likelihood (ML), maximum parsimony (MP), and Bayesian inference (BI) analyses, the genotypes H-1, H-4, H-6, H-8, H-10, and H-11 were grouped into one clade. Additionally, a relatively higher genotype diversity (average h value is 0.722) and unique genotypes in the northeast edge of Qinghai- Tibet plateau have been found, combined with the results of mismatch analysis and neutrality tests indicated that Southeast Qinghai-Tibet plateau was a refuge for F. luteovirens during the historical geological or climatic events (uplifting of the Qinghai-Tibet Plateau or Last Glacial Maximum). Furthermore, the present distribution of the species on the Qinghai-Tibet plateau has resulted from the recent population expansion. Our findings provide a foundation for the future study of the evolutionary history and the speciation of this species.
Collapse
Affiliation(s)
- Rui Xing
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 59 Xiguan Avenue, Xining Qinghai, 810001, P. R. China.,Key Laboratory of Crop Molecular Breeding of Qinghai Provice, Qinghai, P. R. China
| | - Qing-Bo Gao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 59 Xiguan Avenue, Xining Qinghai, 810001, P. R. China
| | - Fa-Qi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 59 Xiguan Avenue, Xining Qinghai, 810001, P. R. China.,Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Peng-Cheng Fu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 59 Xiguan Avenue, Xining Qinghai, 810001, P. R. China
| | - Jiu-Li Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 59 Xiguan Avenue, Xining Qinghai, 810001, P. R. China
| | - Hui-Ying Yan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 59 Xiguan Avenue, Xining Qinghai, 810001, P. R. China
| | - Shi-Long Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 59 Xiguan Avenue, Xining Qinghai, 810001, P. R. China.
| |
Collapse
|
11
|
He XL, Li Q, Peng WH, Zhou J, Cao XL, Wang D, Huang ZQ, Tan W, Li Y, Gan BC. Intra- and inter-isolate variation of ribosomal and protein-coding genes in Pleurotus: implications for molecular identification and phylogeny on fungal groups. BMC Microbiol 2017. [PMID: 28651582 PMCID: PMC5485676 DOI: 10.1186/s12866-017-1046-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background The internal transcribed spacer (ITS), RNA polymerase II second largest subunit (RPB2), and elongation factor 1-alpha (EF1α) are often used in fungal taxonomy and phylogenetic analysis. As we know, an ideal molecular marker used in molecular identification and phylogenetic studies is homogeneous within species, and interspecific variation exceeds intraspecific variation. However, during our process of performing ITS, RPB2, and EF1α sequencing on the Pleurotus spp., we found that intra-isolate sequence polymorphism might be present in these genes because direct sequencing of PCR products failed in some isolates. Therefore, we detected intra- and inter-isolate variation of the three genes in Pleurotus by polymerase chain reaction amplification and cloning in this study. Results Results showed that intra-isolate variation of ITS was not uncommon but the polymorphic level in each isolate was relatively low in Pleurotus; intra-isolate variations of EF1α and RPB2 sequences were present in an unexpectedly high amount. The polymorphism level differed significantly between ITS, RPB2, and EF1α in the same individual, and the intra-isolate heterogeneity level of each gene varied between isolates within the same species. Intra-isolate and intraspecific variation of ITS in the tested isolates was less than interspecific variation, and intra-isolate and intraspecific variation of RPB2 was probably equal with interspecific divergence. Meanwhile, intra-isolate and intraspecific variation of EF1α could exceed interspecific divergence. These findings suggested that RPB2 and EF1α are not desirable barcoding candidates for Pleurotus. We also discussed the reason why rDNA and protein-coding genes showed variants within a single isolate in Pleurotus, but must be addressed in further research. Conclusions Our study demonstrated that intra-isolate variation of ribosomal and protein-coding genes are likely widespread in fungi. This has implications for studies on fungal evolution, taxonomy, phylogenetics, and population genetics. More extensive sampling of these genes and other candidates will be required to ensure reliability as phylogenetic markers and DNA barcodes. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1046-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao-Lan He
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Qian Li
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China.,Jilin Agricultural University, Changchun, 130118, China.,Mianyang Institute of Agricultural Sciences, Mianyang, 621023, China
| | - Wei-Hong Peng
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Jie Zhou
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Xue-Lian Cao
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Di Wang
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Zhong-Qian Huang
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Wei Tan
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Yu Li
- Jilin Agricultural University, Changchun, 130118, China
| | - Bing-Cheng Gan
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China.
| |
Collapse
|