1
|
Zhu Z, Ding D, Hu H, He T. Pen2/ErbB4 signaling regulates stemness of pancreatic ductal carcinoma. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167316. [PMID: 38901650 DOI: 10.1016/j.bbadis.2024.167316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/29/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
Cancer stem cells (CSCs) are critical for progression, invasion, metastasis, and chemotherapy resistance of pancreatic ductal adenocarcinoma (PDAC). Presenilin enhancer 2 (Pen2), a vital component of the gamma-secretase complex, is overexpressed in various cancers and plays a significant role in carcinogenesis. Here, we investigated the association between Pen2 expression and the stem-like properties of PDAC cells. We analyzed Pen2 and its downstream target, Erb-B2 Receptor Tyrosine Kinase 4 (ErbB4), using public databases. The expression of Pen2 in CSC populations, marked by CD133+, CD44+, or epithelial cell adhesion molecule (EpCAM)+, was evaluated. Pen2-positive cells were sorted from Pen2-negative ones in PDAC cells transduced with a vector designed to express green fluorescent protein (GFP) under the Pen2 promoter. Stemness was examined in vitro and in vivo in Pen2-positive versus Pen2-negative cells. Our results showed that Pen2 was significantly upregulated, while ErbB4 was significantly downregulated in PDAC tissues compared to adjacent non-tumorous tissues, with an inverse relationship between Pen2 and Erbb4 levels. PDACs with high Pen2 expression are associated with considerably poorer patient survival. The CSC populations identified by CD133+, CD44+, and EpCAM+ markers displayed significantly higher Pen2 and lower EpCAM levels. Compared to Pen2-negative PDAC cells, Pen2-positive cells formed more tumor spheres, were more invasive and migratory, and showed significantly increased resistance to chemotherapy-induced apoptosis. Altering Pen2 levels reversed these oncogenic effects. In vivo, Pen2-positive cells formed larger tumors in immunodeficient mice. Overall, our findings suggest that Pen2 is highly expressed in CSCs within PDAC cells, being a novel therapeutic target.
Collapse
Affiliation(s)
- Zhongfei Zhu
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Dan Ding
- Department of Gastrointestinal Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Hao Hu
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Tianlin He
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
2
|
Xu Y, Bai Z, Lan T, Fu C, Cheng P. CD44 and its implication in neoplastic diseases. MedComm (Beijing) 2024; 5:e554. [PMID: 38783892 PMCID: PMC11112461 DOI: 10.1002/mco2.554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 05/25/2024] Open
Abstract
CD44, a nonkinase single span transmembrane glycoprotein, is a major cell surface receptor for many other extracellular matrix components as well as classic markers of cancer stem cells and immune cells. Through alternative splicing of CD44 gene, CD44 is divided into two isoforms, the standard isoform of CD44 (CD44s) and the variant isoform of CD44 (CD44v). Different isoforms of CD44 participate in regulating various signaling pathways, modulating cancer proliferation, invasion, metastasis, and drug resistance, with its aberrant expression and dysregulation contributing to tumor initiation and progression. However, CD44s and CD44v play overlapping or contradictory roles in tumor initiation and progression, which is not fully understood. Herein, we discuss the present understanding of the functional and structural roles of CD44 in the pathogenic mechanism of multiple cancers. The regulation functions of CD44 in cancers-associated signaling pathways is summarized. Moreover, we provide an overview of the anticancer therapeutic strategies that targeting CD44 and preclinical and clinical trials evaluating the pharmacokinetics, efficacy, and drug-related toxicity about CD44-targeted therapies. This review provides up-to-date information about the roles of CD44 in neoplastic diseases, which may open new perspectives in the field of cancer treatment through targeting CD44.
Collapse
Affiliation(s)
- Yiming Xu
- Department of BiotherapyLaboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ziyi Bai
- Department of BiotherapyLaboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Tianxia Lan
- Department of BiotherapyLaboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Chenying Fu
- Laboratory of Aging and Geriatric Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ping Cheng
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
3
|
Zhang J, Sun Y, Ma J, Guo X. Deciphering the molecular mechanism of long non-coding RNA HIF1A-AS1 regulating pancreatic cancer cells. Ann Med Surg (Lond) 2024; 86:3367-3377. [PMID: 38846874 PMCID: PMC11152846 DOI: 10.1097/ms9.0000000000002097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/11/2024] [Indexed: 06/09/2024] Open
Abstract
Background HIF1A-AS1, an antisense transcript of HIF1α gene, is a 652-bp LncRNA that is globally expressed in multiple tissues of animals. Recent evidence indicated that HIF1A-AS1 was involved in tumorigenesis of several types of cancer. However, the role of lncRNA in PC has not been reported, and the molecular mechanism remains elusive. Results In order to investigate the role of HIF1A-AS1 in PC, it was overexpressed in some PC cell lines (PANC-1, PATU8988 and SW1990), and a series of experiments including cell viability detection, flow cytometry, transwell migration, clone formation and wound healing were performed. Functionally, the results indicated that overexpression of HIF1A-AS1 could greatly inhibit proliferation and migration and promote apoptosis of PC cells. Moreover, the isobaric tags for relative and absolute quantification (iTRAQ) quantitative proteomics analysis was implemented to explore the underlying mechanism and the results indicated that OE of HIF1A-AS1 globally affected the expression levels of multiple proteins associated with metabolism of cancer. At last, the network analysis revealed that most of these differentially expressed proteins (DEPs) were integrated and severed essential roles in regulatory function. In view of this, we guessed HIF1A-AS1 overexpression induced the dysfunction of metabolism and disordered proteins' translation, which may account for its excellent tumour suppressor effect. Conclusions HIF1A-AS1 altered the cell function of PC cell lines via affecting the expression of numerous proteins. In summary, HIF1A-AS1 may exhibit a potential therapeutic effect on PC, and our study provided useful information in this filed.
Collapse
Affiliation(s)
- Jiaxin Zhang
- School of Physical Education, Xinxiang Medical University, Xinxiang, Henan
| | - Yifeng Sun
- Department of Occupational Health and Occupational Disease, School of Public Health, Zhengzhou University, Zhengzhou
| | - Jiahui Ma
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiang Guo
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
4
|
Daks A, Parfenyev S, Shuvalov O, Fedorova O, Nazarov A, Melino G, Barlev NA. Lysine-specific methyltransferase Set7/9 in stemness, differentiation, and development. Biol Direct 2024; 19:41. [PMID: 38812048 PMCID: PMC11137904 DOI: 10.1186/s13062-024-00484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
The enzymes performing protein post-translational modifications (PTMs) form a critical post-translational regulatory circuitry that orchestrates literally all cellular processes in the organism. In particular, the balance between cellular stemness and differentiation is crucial for the development of multicellular organisms. Importantly, the fine-tuning of this balance on the genetic level is largely mediated by specific PTMs of histones including lysine methylation. Lysine methylation is carried out by special enzymes (lysine methyltransferases) that transfer the methyl group from S-adenosyl-L-methionine to the lysine residues of protein substrates. Set7/9 is one of the exemplary protein methyltransferases that however, has not been fully studied yet. It was originally discovered as histone H3 lysine 4-specific methyltransferase, which later was shown to methylate a number of non-histone proteins that are crucial regulators of stemness and differentiation, including p53, pRb, YAP, DNMT1, SOX2, FOXO3, and others. In this review we summarize the information available to date on the role of Set7/9 in cellular differentiation and tissue development during embryogenesis and in adult organisms. Finally, we highlight and discuss the role of Set7/9 in pathological processes associated with aberrant cellular differentiation and self-renewal, including the formation of cancer stem cells.
Collapse
Affiliation(s)
- Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064.
| | - Sergey Parfenyev
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064
| | - Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064
| | - Alexander Nazarov
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Nickolai A Barlev
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064.
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, 001000, Astana, Kazakhstan.
| |
Collapse
|
5
|
Bhartiya D, Raouf S, Pansare K, Tripathi A, Tripathi A. Initiation of Cancer: The Journey From Mutations in Somatic Cells to Epigenetic Changes in Tissue-resident VSELs. Stem Cell Rev Rep 2024; 20:857-880. [PMID: 38457060 DOI: 10.1007/s12015-024-10694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 03/09/2024]
Abstract
Multiple theories exist to explain cancer initiation, although a consensus on this is crucial for developing effective therapies. 'Somatic mutation theory' suggests that mutations in somatic cells during DNA repair initiates cancer but this concept has several attached paradoxes. Research efforts to identify quiescent cancer stem cells (CSCs) that survive therapy and result in metastasis and recurrence have remained futile. In solid cancers, CSCs are suggested to appear during epithelial-mesenchymal transition by the dedifferentiation and reprogramming of epithelial cells. Pluripotent and quiescent very small embryonic-like stem cells (VSELs) exist in multiple tissues but remain elusive owing to their small size and scarce nature. VSELs are developmentally connected to primordial germ cells, undergo rare, asymmetrical cell divisions and are responsible for the regular turnover of cells to maintain tissue homeostasis throughout life. VSELs are directly vulnerable to extrinsic endocrine insults because they express gonadal and gonadotropin hormone receptors. VSELs undergo epigenetic changes due to endocrine insults and transform into CSCs. CSCs exhibit genomic instability and develop mutations due to errors during DNA replication while undergoing excessive proliferation and clonal expansion to form spheroids. Thus tissue-resident VSELs offer a connection between extrinsic insults and variations in cancer incidence reported in various body tissues. To conclude, cancer is indeed a stem cell disease with mutations occurring as a consequence. In addition to immunotherapy, targeting mutations, and Lgr5 + organoids for developing new therapeutics, targeting CSCs (epigenetically altered VSELs) by improving their niche and epigenetic status could serve as a promising strategy to treat cancer.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India.
| | | | - Kshama Pansare
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India
| | - Anish Tripathi
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India
| | - Ashish Tripathi
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, 400013, Mumbai, India
- 23Ikigai Pte Ltd, 30 Cecil Street, #21-08 Prudentsial Tower, Singapore, 049712, Singapore
| |
Collapse
|
6
|
Ye L, Liu B, Huang J, Zhao X, Wang Y, Xu Y, Wang S. DCLK1 and its oncogenic functions: A promising therapeutic target for cancers. Life Sci 2024; 336:122294. [PMID: 38007147 DOI: 10.1016/j.lfs.2023.122294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023]
Abstract
Doublecortin-like kinase 1 (DCLK1), a significant constituent of the protein kinase superfamily and the doublecortin family, has been recognized as a prooncogenic factor that exhibits a strong association with the malignant progression and clinical prognosis of various cancers. DCLK1 serves as a stem cell marker that governs tumorigenesis, tumor cell reprogramming, and epithelial-mesenchymal transition. Multiple studies have indicated the capable of DCLK1 in regulating the DNA damage response and facilitating DNA damage repair. Additionally, DCLK1 is involved in the regulation of the immune microenvironment and the promotion of tumor immune evasion. Recently, DCLK1 has emerged as a promising therapeutic target for a multitude of cancers. Several small-molecule inhibitors of DCLK1 have been identified. Nevertheless, the biological roles of DCLK1 are mainly ambiguous, particularly with the disparities between its α- and β-form transcripts in the malignant progression of cancers, which impedes the development of more precisely targeted drugs. This article focuses on tumor stem cells, tumor epithelial-mesenchymal transition, the DNA damage response, and the tumor microenvironment to provide a comprehensive overview of the association between DCLK1 and tumor malignant progression, address unsolved questions and current challenges, and project future directions for targeting DCLK1 for the diagnosis and treatment of cancers.
Collapse
Affiliation(s)
- Liu Ye
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Beibei Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jingling Huang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xiaolin Zhao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yuan Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yungen Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Shuping Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
7
|
Yuan Y, Fan J, Liang D, Wang S, Luo X, Zhu Y, Liu N, Xiang T, Zhao X. Cell surface GRP78-directed CAR-T cells are effective at treating human pancreatic cancer in preclinical models. Transl Oncol 2024; 39:101803. [PMID: 37897831 PMCID: PMC10630660 DOI: 10.1016/j.tranon.2023.101803] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/13/2023] [Accepted: 10/09/2023] [Indexed: 10/30/2023] Open
Abstract
Pancreatic cancer is a highly lethal solid malignancy with limited treatment options. Chimeric antigen receptor T (CAR-T) cell therapy has been successfully applied to treat hematological malignancies, but faces many challenges in solid tumors. One major challenge is the shortage of tumor-selective targets. Cell surface GRP78 (csGRP78) is highly expressed on various solid cancer cells including pancreatic cancer, but not normal cells, providing a potential target for CAR-T cell therapy in pancreatic cancer. Here, we demonstrated that csGRP78-directed CAR-T (GRP78-CAR-T) cells effectively killed the human pancreatic cancer cell lines Bxpc-3-luc, Aspc-1-luc and MIA PaCa-2-luc, and pancreatic cancer stem-like cells derived from Aspc-1-luc cells and MIA PaCa-2-luc cells in vitro by a luciferase-based cytotoxicity assay. Importantly, we showed that GRP78-CAR-T cells efficiently homed to and infiltrated Aspc-1-luc cell-derived xenografts and significantly inhibited pancreatic tumor growth in vivo by performing mouse xenograft experiments. Interestingly, we found that gemcitabine treatment increased csGRP78 expression in gemcitabine-resistant MIA PaCa-2-luc cells, and the coapplication of gemcitabine with GRP78-CAR-T cells led to a robust cytotoxic effect on these cells in vitro. Taken together, our study demonstrates that csGRP78-directed CAR-T cells, alone or in combination with chemotherapy, selectively and efficiently target csGRP78-expressing pancreatic cancer cells to suppress pancreatic tumor growth.
Collapse
Affiliation(s)
- Yuncang Yuan
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiawei Fan
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Dandan Liang
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shijie Wang
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xu Luo
- Development and Application of Human Major Disease Monkey Model Key Laboratory of Sichuan Province, Sichuan Hengshu Bio-Technology Co., Ltd., Yibin 644600, China
| | - Yongjie Zhu
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Nan Liu
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China.
| | - Xudong Zhao
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
8
|
Kido A, Ishikawa A, Fukui T, Katsuya N, Kuraoka K, Sentani K, Tazuma S, Sudo T, Serikawa M, Oka S, Oue N, Yasui W. IQ Motif Containing GTPase-Activating Protein 3 Is Associated with Cancer Stemness and Survival in Pancreatic Ductal Adenocarcinoma. Pathobiology 2023; 91:268-278. [PMID: 38104546 PMCID: PMC11309048 DOI: 10.1159/000535542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023] Open
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal types of malignancy, with poor prognosis and rising incidence. IQ motif containing GTPase-activating protein 3 (IQGAP3) is a member of the IQGAPs family of scaffolding proteins that govern multiple cellular activities like cytoskeletal remodeling and cellular signal transduction. This study aimed to analyze the expression and biological function of IQGAP3 in PDAC. METHODS We analyzed IQGAP3 expression in 81 PDAC samples by immunohistochemistry. RNA interference was used to inhibit IQGAP3 expression in PDAC cell lines. RESULTS Immunohistochemical analysis of IQGAP3 showed that 54.3% of PDACs were positive for cytoplasmic expression of IQGAP3, with no expression found in non-neoplastic tissue. Furthermore, IQGAP3 expression was an independent poor prognostic factor in our immunostaining-based studies and analyses of public databases. Our cohort and the Cancer Genome Atlas database indicated that IQGAP3 is co-localized with kinesin family member C1 (KIFC1), which we previously reported as a cancer stem cell-associated protein. IQGAP3 small interfering RNA treatment decreased PDAC cell proliferation and spheroid colony formation via ERK and AKT pathways. DISCUSSION/CONCLUSION These results suggest that IQGAP3, a transmembrane protein, is involved in survival and stemness and may be a promising new therapeutic target for PDAC.
Collapse
Affiliation(s)
- Aya Kido
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan,
| | - Akira Ishikawa
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takafumi Fukui
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Narutaka Katsuya
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuya Kuraoka
- Department of Diagnostic Pathology, Kure Medical Center and Chugoku Cancer Center, National Hospital Organization, Kure, Japan
- Institute for Clinical Laboratory, Kure Medical Center and Chugoku Cancer Center, National Hospital Organization, Kure, Japan
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Sho Tazuma
- Department of Surgery, Kure Medical Center and Chugoku Cancer Center, National Hospital Organization, Kure, Japan
| | - Takeshi Sudo
- Department of Surgery, Kure Medical Center and Chugoku Cancer Center, National Hospital Organization, Kure, Japan
| | - Masahiro Serikawa
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shiro Oka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naohide Oue
- Department of Pathology, Miyoshi Central Hospital, Miyoshi, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Division of Pathology, Hiroshima City Medical Association Clinical Laboratory, Hiroshima, Japan
| |
Collapse
|
9
|
Chen Y, Meng L, Wang W, Ye L, Huang L, Wang C, Wang S, Li M, Pei Y, Zhang S, Zou Y, Xu Y. Design, synthesis and biological evaluation of novel DCLK1 inhibitor containing purine skeleton for the treatment of pancreatic cancer. Eur J Med Chem 2023; 261:115846. [PMID: 37862816 DOI: 10.1016/j.ejmech.2023.115846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/22/2023]
Abstract
Pancreatic cancer is a highly lethal form of malignancy that continues to pose a significant and unresolved health challenge. Doublecortin-like kinase 1 (DCLK1), a serine/threonine kinase, is found to be overexpressed in pancreatic cancer and holds promise as a potential therapeutic target for this disease. However, few potent inhibitors have been reported currently. Herein, a series of novel purine, pyrrolo [2,3-d]pyrimidine, and pyrazolo [3,4-d] pyrimidine derivatives were designed, synthesized, and evaluated their biological activities in vitro. Among them, compound I-5 stood out as the most potent compound with strong inhibitory activity against DCLK1 (IC50 = 171.3 nM) and remarkable antiproliferative effects on SW1990 cell lines (IC50 = 0.6 μM). Notably, I-5 exhibited higher in vivo antitumor potency (Tumor growth inhibition value (TGI): 68.6 %) than DCLK1-IN-1 (TGI: 24.82 %) in the SW1990 xenograft model. The preliminary mechanism study demonstrated that I-5 not only inhibited SW1990 cell invasion and migration, but also decreased the expression of prominin-1 (CD133) and cluster of differentiation 44 (CD44), which are considered as differentiation markers for SW1990 stem cells. All the results indicated that I-5, a novel DCLK1 inhibitor, shows promise for further investigation in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yuepeng Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Liuqiong Meng
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Wenze Wang
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Liu Ye
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Lei Huang
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Chenghao Wang
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Shuping Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China; Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Mengyao Li
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Yingxin Pei
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Shijie Zhang
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Zou
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China; Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China.
| | - Yungen Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China; Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
10
|
Dang HX, Saha D, Jayasinghe R, Zhao S, Coonrod E, Mudd J, Goedegebuure S, Fields R, Ding L, Maher C. Single-cell transcriptomics reveals long noncoding RNAs associated with tumor biology and the microenvironment in pancreatic cancer. NAR Cancer 2023; 5:zcad055. [PMID: 38023733 PMCID: PMC10664695 DOI: 10.1093/narcan/zcad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is highly heterogeneous and lethal. Long noncoding RNAs (lncRNAs) are an important class of genes regulating tumorigenesis and progression. Prior bulk transcriptomic studies in PDAC have revealed the dysregulation of lncRNAs but lack single-cell resolution to distinguish lncRNAs in tumor-intrinsic biology and the tumor microenvironment (TME). We analyzed single-cell transcriptome data from 73 multiregion samples in 21 PDAC patients to evaluate lncRNAs associated with intratumoral heterogeneity and the TME in PDAC. We found 111 cell-specific lncRNAs that reflected tumor, immune and stromal cell contributions, associated with outcomes, and validated across orthogonal datasets. Single-cell analysis of tumor cells revealed lncRNAs associated with TP53 mutations and FOLFIRINOX treatment that were obscured in bulk tumor analysis. Lastly, tumor subcluster analysis revealed widespread intratumor heterogeneity and intratumoral lncRNAs associated with cancer hallmarks and tumor processes such as angiogenesis, epithelial-mesenchymal transition, metabolism and immune signaling. Intratumoral subclusters and lncRNAs were validated across six datasets and showed clinically relevant associations with patient outcomes. Our study provides the first comprehensive assessment of the lncRNA landscape in PDAC using single-cell transcriptomic data and can serve as a resource, PDACLncDB (accessible at https://www.maherlab.com/pdaclncdb-overview), to guide future functional studies.
Collapse
Affiliation(s)
- Ha X Dang
- Department of Internal Medicine, Washington University in St Louis, St Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO 63108, USA
| | - Debanjan Saha
- Department of Internal Medicine, Washington University in St Louis, St Louis, MO 63110, USA
- MD–PhD Program, Washington University in St Louis, St Louis, MO 63110, USA
| | - Reyka Jayasinghe
- Department of Internal Medicine, Washington University in St Louis, St Louis, MO 63110, USA
| | - Sidi Zhao
- Department of Internal Medicine, Washington University in St Louis, St Louis, MO 63110, USA
| | - Emily Coonrod
- Department of Internal Medicine, Washington University in St Louis, St Louis, MO 63110, USA
| | - Jacqueline Mudd
- Department of Surgery, Washington University in St Louis, St Louis, MO 63110, USA
| | - S Peter Goedegebuure
- Department of Surgery, Washington University in St Louis, St Louis, MO 63110, USA
| | - Ryan Fields
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO 63110, USA
- Department of Surgery, Washington University in St Louis, St Louis, MO 63110, USA
| | - Li Ding
- Department of Internal Medicine, Washington University in St Louis, St Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO 63110, USA
| | - Christopher A Maher
- Department of Internal Medicine, Washington University in St Louis, St Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO 63108, USA
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO 63130, USA
| |
Collapse
|
11
|
Zaarour RF, Ribeiro M, Azzarone B, Kapoor S, Chouaib S. Tumor microenvironment-induced tumor cell plasticity: relationship with hypoxic stress and impact on tumor resistance. Front Oncol 2023; 13:1222575. [PMID: 37886168 PMCID: PMC10598765 DOI: 10.3389/fonc.2023.1222575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
The role of tumor interaction with stromal components during carcinogenesis is crucial for the design of efficient cancer treatment approaches. It is widely admitted that tumor hypoxic stress is associated with tumor aggressiveness and thus impacts susceptibility and resistance to different types of treatments. Notable biological processes that hypoxia functions in include its regulation of tumor heterogeneity and plasticity. While hypoxia has been reported as a major player in tumor survival and dissemination regulation, the significance of hypoxia inducible factors in cancer stem cell development remains poorly understood. Several reports indicate that the emergence of cancer stem cells in addition to their phenotype and function within a hypoxic tumor microenvironment impacts cancer progression. In this respect, evidence showed that cancer stem cells are key elements of intratumoral heterogeneity and more importantly are responsible for tumor relapse and escape to treatments. This paper briefly reviews our current knowledge of the interaction between tumor hypoxic stress and its role in stemness acquisition and maintenance. Our review extensively covers the influence of hypoxia on the formation and maintenance of cancer stem cells and discusses the potential of targeting hypoxia-induced alterations in the expression and function of the so far known stem cell markers in cancer therapy approaches. We believe that a better and integrated understanding of the effect of hypoxia on stemness during carcinogenesis might lead to new strategies for exploiting hypoxia-associated pathways and their targeting in the clinical setting in order to overcome resistance mechanisms. More importantly, at the present time, efforts are oriented towards the design of innovative therapeutical approaches that specifically target cancer stem cells.
Collapse
Affiliation(s)
- RF. Zaarour
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - M. Ribeiro
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - B. Azzarone
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - S. Kapoor
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - S. Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, Villejuif, France
| |
Collapse
|
12
|
Khan SU, Fatima K, Malik F, Kalkavan H, Wani A. Cancer metastasis: Molecular mechanisms and clinical perspectives. Pharmacol Ther 2023; 250:108522. [PMID: 37661054 DOI: 10.1016/j.pharmthera.2023.108522] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Metastatic progression combined with non-responsiveness towards systemic therapy often shapes the course of disease for cancer patients and commonly determines its lethal outcome. The complex molecular events that promote metastasis are a combination of both, the acquired pro-metastatic properties of cancer cells and a metastasis-permissive or -supportive tumor micro-environment (TME). Yet, dissemination is a challenging process for cancer cells that requires a series of events to enable cancer cell survival and growth. Metastatic cancer cells have to initially detach themselves from primary tumors, overcome the challenges of their intravasal journey and colonize distant sites that are suited for their metastases. The implicated obstacles including anoikis and immune surveillance, can be overcome by intricate intra- and extracellular signaling pathways, which we will summarize and discuss in this review. Further, emerging modulators of metastasis, like the immune-microenvironment, microbiome, sublethal cell death engagement, or the nervous system will be integrated into the existing working model of metastasis.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- The University of Texas MD Anderson Cancer Center, Division of Genitourinary Medical Oncology, Holcombe Blvd, Houston, TX 77030, USA; Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India
| | - Kaneez Fatima
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (ASIR), Ghaziabad 201002, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (ASIR), Ghaziabad 201002, India.
| | - Halime Kalkavan
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany.
| | - Abubakar Wani
- St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105, United States.
| |
Collapse
|
13
|
Pospieszna J, Dams-Kozlowska H, Udomsak W, Murias M, Kucinska M. Unmasking the Deceptive Nature of Cancer Stem Cells: The Role of CD133 in Revealing Their Secrets. Int J Mol Sci 2023; 24:10910. [PMID: 37446085 DOI: 10.3390/ijms241310910] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer remains a leading cause of death globally, and its complexity poses a significant challenge to effective treatment. Cancer stem cells and their markers have become key players in tumor growth and progression. CD133, a marker in various cancer types, is an active research area as a potential therapeutic target. This article explores the role of CD133 in cancer treatment, beginning with an overview of cancer statistics and an explanation of cancer stem cells and their markers. The rise of CD133 is discussed, including its structure, functions, and occurrence in different cancer types. Furthermore, the article covers CD133 as a therapeutic target, focusing on gene therapy, immunotherapy, and approaches to affect CD133 expression. Nanoparticles such as gold nanoparticles and nanoliposomes are also discussed in the context of CD133-targeted therapy. In conclusion, CD133 is a promising therapeutic target for cancer treatment. As research in this area progresses, it is hoped that CD133-targeted therapies will offer new and effective treatment options for cancer patients in the future.
Collapse
Affiliation(s)
- Julia Pospieszna
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Street, 10 Uniwersytetu Poznanskiego Street, 60-631 Poznan, Poland
| | - Hanna Dams-Kozlowska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary Street, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
| | - Wachirawit Udomsak
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Street, 10 Uniwersytetu Poznanskiego Street, 60-631 Poznan, Poland
| | - Marek Murias
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Street, 10 Uniwersytetu Poznanskiego Street, 60-631 Poznan, Poland
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10 Street, 61-614 Poznan, Poland
| | - Malgorzata Kucinska
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Street, 10 Uniwersytetu Poznanskiego Street, 60-631 Poznan, Poland
| |
Collapse
|
14
|
Wen C, Dechsupa N, Yu Z, Zhang X, Liang S, Lei X, Xu T, Gao X, Hu Q, Innuan P, Kantapan J, Lü M. Pentagalloyl Glucose: A Review of Anticancer Properties, Molecular Targets, Mechanisms of Action, Pharmacokinetics, and Safety Profile. Molecules 2023; 28:4856. [PMID: 37375411 DOI: 10.3390/molecules28124856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Pentagalloyl glucose (PGG) is a natural hydrolyzable gallotannin abundant in various plants and herbs. It has a broad range of biological activities, specifically anticancer activities, and numerous molecular targets. Despite multiple studies available on the pharmacological action of PGG, the molecular mechanisms underlying the anticancer effects of PGG are unclear. Here, we have critically reviewed the natural sources of PGG, its anticancer properties, and underlying mechanisms of action. We found that multiple natural sources of PGG are available, and the existing production technology is sufficient to produce large quantities of the required product. Three plants (or their parts) with maximum PGG content were Rhus chinensis Mill, Bouea macrophylla seed, and Mangifera indica kernel. PGG acts on multiple molecular targets and signaling pathways associated with the hallmarks of cancer to inhibit growth, angiogenesis, and metastasis of several cancers. Moreover, PGG can enhance the efficacy of chemotherapy and radiotherapy by modulating various cancer-associated pathways. Therefore, PGG can be used for treating different human cancers; nevertheless, the data on the pharmacokinetics and safety profile of PGG are limited, and further studies are essential to define the clinical use of PGG in cancer therapies.
Collapse
Affiliation(s)
- Chengli Wen
- Department of Intensive Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Luzhou Key Laboratory of Human Microecology and Precision Diagnosis and Treatment, Luzhou 646000, China
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Zehui Yu
- Laboratory Animal Center, Southwest Medical University, Luzhou 646000, China
| | - Xu Zhang
- Luzhou Key Laboratory of Human Microecology and Precision Diagnosis and Treatment, Luzhou 646000, China
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Sicheng Liang
- Luzhou Key Laboratory of Human Microecology and Precision Diagnosis and Treatment, Luzhou 646000, China
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xianying Lei
- Department of Intensive Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Tao Xu
- Department of Intensive Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiaolan Gao
- Department of Intensive Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Qinxue Hu
- Department of Intensive Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Phattarawadee Innuan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiraporn Kantapan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Muhan Lü
- Luzhou Key Laboratory of Human Microecology and Precision Diagnosis and Treatment, Luzhou 646000, China
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
15
|
Zhao Y, Qin C, Zhao B, Wang Y, Li Z, Li T, Yang X, Wang W. Pancreatic cancer stemness: dynamic status in malignant progression. J Exp Clin Cancer Res 2023; 42:122. [PMID: 37173787 PMCID: PMC10182699 DOI: 10.1186/s13046-023-02693-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most aggressive malignancies worldwide. Increasing evidence suggests that the capacity for self-renewal, proliferation, and differentiation of pancreatic cancer stem cells (PCSCs) contribute to major challenges with current PC therapies, causing metastasis and therapeutic resistance, leading to recurrence and death in patients. The concept that PCSCs are characterized by their high plasticity and self-renewal capacities is central to this review. We focused specifically on the regulation of PCSCs, such as stemness-related signaling pathways, stimuli in tumor cells and the tumor microenvironment (TME), as well as the development of innovative stemness-targeted therapies. Understanding the biological behavior of PCSCs with plasticity and the molecular mechanisms regulating PC stemness will help to identify new treatment strategies to treat this horrible disease.
Collapse
Affiliation(s)
- Yutong Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Bangbo Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Yuanyang Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Zeru Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Tianyu Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Xiaoying Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China.
- National Science and Technology Key Infrastructure On Translational Medicine in, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China.
| |
Collapse
|
16
|
Nairuz T, Mahmud Z, Manik RK, Kabir Y. Cancer stem cells: an insight into the development of metastatic tumors and therapy resistance. Stem Cell Rev Rep 2023:10.1007/s12015-023-10529-x. [PMID: 37129728 DOI: 10.1007/s12015-023-10529-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 05/03/2023]
Abstract
The term "cancer stem cells" (CSCs) refers to cancer cells that exhibit traits parallel to normal stem cells, namely the potential to give rise to every type of cell identified in a tumor microenvironment. It has been found that CSCs usually develops from other neoplastic cells or non-cancerous somatic cells by acquiring stemness and malignant characteristics through particular genetic modifications. A trivial number of CSCs, identified in solid and liquid cancer, can give rise to an entire tumor population with aggressive anticancer drug resistance, metastasis, and invasiveness. Besides, cancer stem cells manipulate their intrinsic and extrinsic features, regulate the metabolic pattern of the cell, adjust efflux-influx efficiency, modulate different signaling pathways, block apoptotic signals, and cause genetic and epigenetic alterations to retain their pluripotency and ability of self-renewal. Notably, to keep the cancer stem cells' ability to become malignant cells, mesenchymal stem cells, tumor-associated fibroblasts, immune cells, etc., interact with one another. Furthermore, CSCs are characterized by the expression of particular molecular markers that carry significant diagnostic and prognostic significance. Because of this, scientific research on CSCs is becoming increasingly imperative, intending to understand the traits and behavior of cancer stem cells and create more potent anticancer therapeutics to fight cancer at the CSC level. In this review, we aimed to elucidate the critical role of CSCs in the onset and spread of cancer and the characteristics of CSCs that promote severe resistance to targeted therapy.
Collapse
Affiliation(s)
- Tahsin Nairuz
- Department of Biochemistry and Molecular Biology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Rasel Khan Manik
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Yearul Kabir
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
17
|
Tawara M, Suzuki H, Goto N, Tanaka T, Kaneko MK, Kato Y. A Novel Anti-CD44 Variant 9 Monoclonal Antibody C 44Mab-1 Was Developed for Immunohistochemical Analyses against Colorectal Cancers. Curr Issues Mol Biol 2023; 45:3658-3673. [PMID: 37185762 PMCID: PMC10137259 DOI: 10.3390/cimb45040238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Cluster of differentiation 44 (CD44) is a type I transmembrane glycoprotein and has been shown to be a cell surface marker of cancer stem-like cells in various cancers. In particular, the splicing variants of CD44 (CD44v) are overexpressed in cancers and play critical roles in cancer stemness, invasiveness, and resistance to chemotherapy and radiotherapy. Therefore, the understanding of the function of each CD44v is indispensable for CD44-targeting therapy. CD44v9 contains the variant 9-encoded region, and its expression predicts poor prognosis in patients with various cancers. CD44v9 plays critical roles in the malignant progression of tumors. Therefore, CD44v9 is a promising target for cancer diagnosis and therapy. Here, we developed sensitive and specific monoclonal antibodies (mAbs) against CD44 by immunizing mice with CD44v3-10-overexpressed Chinese hamster ovary-K1 (CHO/CD44v3-10) cells. We first determined their critical epitopes using enzyme-linked immunosorbent assay and characterized their applications as flow cytometry, western blotting, and immunohistochemistry. One of the established clones, C44Mab-1 (IgG1, kappa), reacted with a peptide of the variant 9-encoded region, indicating that C44Mab-1 recognizes CD44v9. C44Mab-1 could recognize CHO/CD44v3-10 cells or colorectal cancer cell lines (COLO201 and COLO205) in flow cytometric analysis. The apparent dissociation constant (KD) of C44Mab-1 for CHO/CD44v3-10, COLO201, and COLO205 was 2.5 × 10-8 M, 3.3 × 10-8 M, and 6.5 × 10-8 M, respectively. Furthermore, C44Mab-1 was able to detect the CD44v3-10 in western blotting and the endogenous CD44v9 in immunohistochemistry using colorectal cancer tissues. These results indicated that C44Mab-1 is useful for detecting CD44v9 not only in flow cytometry or western blotting but also in immunohistochemistry against colorectal cancers.
Collapse
Affiliation(s)
- Mayuki Tawara
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.T.); (N.G.); (T.T.); (M.K.K.)
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.T.); (N.G.); (T.T.); (M.K.K.)
| | - Nohara Goto
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.T.); (N.G.); (T.T.); (M.K.K.)
| | - Tomohiro Tanaka
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.T.); (N.G.); (T.T.); (M.K.K.)
| | - Mika K. Kaneko
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.T.); (N.G.); (T.T.); (M.K.K.)
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.T.); (N.G.); (T.T.); (M.K.K.)
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
18
|
Bhattacharyya S, Ghosh H, Covarrubias-Zambrano O, Jain K, Swamy KV, Kasi A, Hamza A, Anant S, VanSaun M, Weir SJ, Bossmann SH, Padhye SB, Dandawate P. Anticancer Activity of Novel Difluorinated Curcumin Analog and Its Inclusion Complex with 2-Hydroxypropyl-β-Cyclodextrin against Pancreatic Cancer. Int J Mol Sci 2023; 24:ijms24076336. [PMID: 37047307 PMCID: PMC10093935 DOI: 10.3390/ijms24076336] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the primary reason for cancer-related deaths in the US. Genetic mutations, drug resistance, the involvement of multiple signaling pathways, cancer stem cells (CSCs), and desmoplastic stroma, which hinders drug penetrance, contribute to poor chemotherapeutic efficacy. Hence, there is a need to identify novel drugs with improved delivery to improve treatment outcomes. Curcumin is one such compound that can inhibit multiple signaling pathways and CSCs. However, curcumin’s clinical applicability for treating PDAC is limited because of its poor solubility in water and metabolic instability. Hence, we developed a difluorinated curcumin (CDF) analog that accumulates selectively in the pancreas and inhibits PDAC growth in vitro and in vivo. In the present work, we developed its 2-hydroxy-propyl-β-cyclodextrin (HCD) inclusion complex to increase its water solubility and hydrolytic stability. The CDFHCD inclusion complex was characterized by spectroscopic, thermal, and microscopic techniques. The inclusion complex exhibited increased aqueous solubility, hydrolytic stability, and antiproliferative activity compared to parent CDF. Moreover, CDF and CDFHCD inhibited colony and spheroid formation, and induced cell cycle and apoptosis in PDAC cell lines. Hence, CDFHCD self-assembly is an efficient approach to increase water solubility and anticancer therapeutic efficacy, which now warrants advancement towards a clinical proof of concept in PDAC patients.
Collapse
Affiliation(s)
- Sangita Bhattacharyya
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Hindole Ghosh
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | | | - Krishan Jain
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - K. Venkateswara Swamy
- MIT School of Bioengineering, Sciences & Research, MIT Art, Design and Technology University, Pune 412201, India
| | - Anup Kasi
- Division of Medical Oncology, University of Kansas, Kansas City, KS 66160, USA
| | - Ameer Hamza
- Pathology and Laboratory Medicine, University of Kansas, Kansas City, KS 66160, USA
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Michael VanSaun
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Scott J. Weir
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
- Division of Medical Oncology, University of Kansas, Kansas City, KS 66160, USA
- Institute for Advancing Medical Innovation, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Stefan H. Bossmann
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Subhash B. Padhye
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
- Interdisciplinary Science & Technology Research Academy (ISTRA), Azam Campus, University of Pune, Pune 411001, India
| | - Prasad Dandawate
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
- Correspondence: ; Tel.: +1-913-945-6336
| |
Collapse
|
19
|
Desai N, Hasan U, K J, Mani R, Chauhan M, Basu SM, Giri J. Biomaterial-based platforms for modulating immune components against cancer and cancer stem cells. Acta Biomater 2023; 161:1-36. [PMID: 36907233 DOI: 10.1016/j.actbio.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Immunotherapy involves the therapeutic alteration of the patient's immune system to identify, target, and eliminate cancer cells. Dendritic cells, macrophages, myeloid-derived suppressor cells, and regulatory T cells make up the tumor microenvironment. In cancer, these immune components (in association with some non-immune cell populations like cancer-associated fibroblasts) are directly altered at a cellular level. By dominating immune cells with molecular cross-talk, cancer cells can proliferate unchecked. Current clinical immunotherapy strategies are limited to conventional adoptive cell therapy or immune checkpoint blockade. Targeting and modulating key immune components presents an effective opportunity. Immunostimulatory drugs are a research hotspot, but their poor pharmacokinetics, low tumor accumulation, and non-specific systemic toxicity limit their use. This review describes the cutting-edge research undertaken in the field of nanotechnology and material science to develop biomaterials-based platforms as effective immunotherapeutics. Various biomaterial types (polymer-based, lipid-based, carbon-based, cell-derived, etc.) and functionalization methodologies for modulating tumor-associated immune/non-immune cells are explored. Additionally, emphasis has been laid on discussing how these platforms can be used against cancer stem cells, a fundamental contributor to chemoresistance, tumor relapse/metastasis, and failure of immunotherapy. Overall, this comprehensive review strives to provide up-to-date information to an audience working at the juncture of biomaterials and cancer immunotherapy. STATEMENT OF SIGNIFICANCE: Cancer immunotherapy possesses incredible potential and has successfully transitioned into a clinically lucrative alternative to conventional anti-cancer therapies. With new immunotherapeutics getting rapid clinical approval, fundamental problems associated with the dynamic nature of the immune system (like limited clinical response rates and autoimmunity-related adverse effects) have remained unanswered. In this context, treatment approaches that focus on modulating the compromised immune components within the tumor microenvironment have garnered significant attention amongst the scientific community. This review aims to provide a critical discussion on how various biomaterials (polymer-based, lipid-based, carbon-based, cell-derived, etc.) can be employed along with immunostimulatory agents to design innovative platforms for selective immunotherapy directed against cancer and cancer stem cells.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Uzma Hasan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India; Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Jeyashree K
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Rajesh Mani
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Meenakshi Chauhan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Suparna Mercy Basu
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
20
|
Liu Z, Hayashi H, Matsumura K, Ogata Y, Sato H, Shiraishi Y, Uemura N, Miyata T, Higashi T, Nakagawa S, Mima K, Imai K, Baba H. Hyperglycaemia induces metabolic reprogramming into a glycolytic phenotype and promotes epithelial-mesenchymal transitions via YAP/TAZ-Hedgehog signalling axis in pancreatic cancer. Br J Cancer 2023; 128:844-856. [PMID: 36536047 PMCID: PMC9977781 DOI: 10.1038/s41416-022-02106-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Hyperglycaemia is a well-known initial symptom in patients with pancreatic ductal adenocarcinoma (PDAC). Metabolic reprogramming in cancer, described as the Warburg effect, can induce epithelial-mesenchymal transition (EMT). METHODS The biological impact of hyperglycaemia on malignant behaviour in PDAC was examined by in vitro and in vivo experiments. RESULTS Hyperglycaemia promoted EMT by inducing metabolic reprogramming into a glycolytic phenotype via yes-associated protein (YAP)/PDZ-binding motif (TAZ) overexpression, accompanied by GLUT1 overexpression and enhanced phosphorylation Akt in PDAC. In addition, hyperglycaemia enhanced chemoresistance by upregulating ABCB1 expression and triggered PDAC switch into pure basal-like subtype with activated Hedgehog pathway (GLI1 high, GATA6 low expression) through YAP/TAZ overexpression. PDAC is characterised by abundant stroma that harbours tumour-promoting properties and chemoresistance. Hyperglycaemia promotes the production of collagen fibre-related proteins (fibronectin, fibroblast activation protein, COL1A1 and COL11A1) by stimulating YAP/TAZ expression in cancer-associated fibroblasts (CAFs). Knockdown of YAP and/or TAZ or treatment with YAP/TAZ inhibitor (K975) abolished EMT, chemoresistance and a favourable tumour microenvironment even under hyperglycemic conditions in vitro and in vivo. CONCLUSION Hyperglycaemia induces metabolic reprogramming into glycolytic phenotype and promotes EMT via YAP/TAZ-Hedgehog signalling axis, and YAP/TAZ could be a novel therapeutic target in PDAC.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Hiromitsu Hayashi
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Kazuki Matsumura
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Yoko Ogata
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Hiroki Sato
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Yuta Shiraishi
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Norio Uemura
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Tatsunori Miyata
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Takaaki Higashi
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Shigeki Nakagawa
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Kosuke Mima
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Katsunori Imai
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan.
| |
Collapse
|
21
|
Wu B, Shi X, Jiang M, Liu H. Cross-talk between cancer stem cells and immune cells: potential therapeutic targets in the tumor immune microenvironment. Mol Cancer 2023; 22:38. [PMID: 36810098 PMCID: PMC9942413 DOI: 10.1186/s12943-023-01748-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Ongoing research has revealed that the existence of cancer stem cells (CSCs) is one of the biggest obstacles in the current cancer therapy. CSCs make an influential function in tumor progression, recurrence and chemoresistance due to their typical stemness characteristics. CSCs are preferentially distributed in niches, and those niche sites exhibit characteristics typical of the tumor microenvironment (TME). The complex interactions between CSCs and TME illustrate these synergistic effects. The phenotypic heterogeneity within CSCs and the spatial interactions with the surrounding tumor microenvironment led to increased therapeutic challenges. CSCs interact with immune cells to protect themselves against immune clearance by exploiting the immunosuppressive function of multiple immune checkpoint molecules. CSCs also can protect themselves against immune surveillance by excreting extracellular vesicles (EVs), growth factors, metabolites and cytokines into the TME, thereby modulating the composition of the TME. Therefore, these interactions are also being considered for the therapeutic development of anti-tumor agents. We discuss here the immune molecular mechanisms of CSCs and comprehensively review the interplay between CSCs and the immune system. Thus, studies on this topic seem to provide novel ideas for reinvigorating therapeutic approaches to cancer.
Collapse
Affiliation(s)
- Bo Wu
- grid.459742.90000 0004 1798 5889Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042 China
| | - Xiang Shi
- grid.459742.90000 0004 1798 5889Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042 China
| | - Meixi Jiang
- grid.412644.10000 0004 5909 0696Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032 China
| | - Hongxu Liu
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China.
| |
Collapse
|
22
|
Pershina AG, Nevskaya KV, Morozov KR, Litviakov NV. Methods for assessing the effect of microRNA on stemness genes. BULLETIN OF SIBERIAN MEDICINE 2023. [DOI: 10.20538/1682-0363-2022-4-170-182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
According to the latest concepts, for micrometastasis to develop into macrometastasis, differentiated cancer cells must revert to a dedifferentiated state. Activation of stemness genes plays a key role in this transition. Suppression of stemness gene expression using microRNAs can become the basis for the development of effective anti-metastatic drugs. This article provides an overview of the existing methods for assessing the effect of microRNAs on stemness genes and cancer cell dedifferentiation.
Collapse
Affiliation(s)
| | | | | | - N. V. Litviakov
- Siberian State Medical University;
Cancer Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| |
Collapse
|
23
|
Florio R, De Filippis B, Veschi S, di Giacomo V, Lanuti P, Catitti G, Brocco D, di Rienzo A, Cataldi A, Cacciatore I, Amoroso R, Cama A, De Lellis L. Resveratrol Derivative Exhibits Marked Antiproliferative Actions, Affecting Stemness in Pancreatic Cancer Cells. Int J Mol Sci 2023; 24:ijms24031977. [PMID: 36768301 PMCID: PMC9916441 DOI: 10.3390/ijms24031977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Pancreatic cancer (PC) is one of the deadliest malignancies, with an increasing incidence and limited response to current therapeutic options. Therefore, more effective and low-toxic agents are needed to improve PC patients' outcomes. Resveratrol (RSV) is a natural polyphenol with multiple biological properties, including anticancer effects. In this study, we explored the antiproliferative activities of newly synthetized RSV analogues in a panel of PC cell lines and evaluated the physicochemical properties of the most active compound. This derivative exhibited marked antiproliferative effects in PC cells through mechanisms involving DNA damage, apoptosis induction, and interference in cell cycle progression, as assessed using flow cytometry and immunoblot analysis of cell cycle proteins, PARP cleavage, and H2AX phosphorylation. Notably, the compound induced a consistent reduction in the PC cell subpopulation with a CD133+EpCAM+ stem-like phenotype, paralleled by dramatic effects on cell clonogenicity. Moreover, the RSV derivative had negligible toxicity against normal HFF-1 cells and, thus, good selectivity index values toward PC cell lines. Remarkably, its higher lipophilicity and stability in human plasma, as compared to RSV, might ensure a better permeation along the gastrointestinal tract. Our results provide insights into the mechanisms of action contributing to the antiproliferative activity of a synthetic RSV analogue, supporting its potential value in the search for effective and safe agents in PC treatment.
Collapse
Affiliation(s)
- Rosalba Florio
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Barbara De Filippis
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Serena Veschi
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Viviana di Giacomo
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Giulia Catitti
- Department of Medicine and Aging Sciences, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Davide Brocco
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Annalisa di Rienzo
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Amelia Cataldi
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Ivana Cacciatore
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Rosa Amoroso
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Correspondence: (A.C.); (L.D.L.)
| | - Laura De Lellis
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Correspondence: (A.C.); (L.D.L.)
| |
Collapse
|
24
|
Cancer Stem Cell Relationship with Pro-Tumoral Inflammatory Microenvironment. Biomedicines 2023; 11:biomedicines11010189. [PMID: 36672697 PMCID: PMC9855358 DOI: 10.3390/biomedicines11010189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Inflammatory processes and cancer stem cells (CSCs) are increasingly recognized as factors in the development of tumors. Emerging evidence indicates that CSCs are associated with cancer properties such as metastasis, treatment resistance, and disease recurrence. However, the precise interaction between CSCs and the immune microenvironment remains unexplored. Although evasion of the immune system by CSCs has been extensively studied, new research demonstrates that CSCs can also control and even profit from the immune response. This review provides an overview of the reciprocal interplay between CSCs and tumor-infiltrating immune cells, collecting pertinent data about how CSCs stimulate leukocyte reprogramming, resulting in pro-tumor immune cells that promote metastasis, chemoresistance, tumorigenicity, and even a rise in the number of CSCs. Tumor-associated macrophages, neutrophils, Th17 and regulatory T cells, mesenchymal stem cells, and cancer-associated fibroblasts, as well as the signaling pathways involved in these pro-tumor activities, are among the immune cells studied. Although cytotoxic leukocytes have the potential to eliminate CSCs, immune evasion mechanisms in CSCs and their clinical implications are also known. We intended to compile experimental findings that provide direct evidence of interactions between CSCs and the immune system and CSCs and the inflammatory milieu. In addition, we aimed to summarize key concepts in order to comprehend the cross-talk between CSCs and the tumor microenvironment as a crucial process for the effective design of anti-CSC therapies.
Collapse
|
25
|
Kyriakopoulou K, Piperigkou Z, Tzaferi K, Karamanos NK. Trends in extracellular matrix biology. Mol Biol Rep 2023; 50:853-863. [PMID: 36342580 PMCID: PMC9884264 DOI: 10.1007/s11033-022-07931-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/06/2022] [Indexed: 11/09/2022]
Abstract
Extracellular matrixes (ECMs) are intricate 3-dimensional macromolecular networks of unique architectures with regulatory roles in cell morphology and functionality. As a dynamic native biomaterial, ECM undergoes constant but tightly controlled remodeling that is crucial for the maintenance of normal cellular behavior. Under pathological conditions like cancer, ECM remodeling ceases to be subjected to control resulting in disease initiation and progression. ECM is comprised of a staggering number of molecules that interact not only with one another, but also with neighboring cells via cell surface receptors. Such interactions, too many to tally, are of paramount importance for the identification of novel disease biomarkers and more personalized therapeutic intervention. Recent advances in big data analytics have allowed the development of online databases where researchers can take advantage of a stochastic evaluation of all the possible interactions and narrow them down to only those of interest for their study, respectively. This novel approach addresses the limitations that currently exist in studies, expands our understanding on ECM interactions, and has the potential to advance the development of targeted therapies. In this article we present the current trends in ECM biology research and highlight its importance in tissue integrity, the main interaction networks, ECM-mediated cell functional properties and issues related to pharmacological targeting.
Collapse
Affiliation(s)
- Konstantina Kyriakopoulou
- Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04, Patras, Greece
| | - Zoi Piperigkou
- Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04, Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), 261 10, Patras, Greece
| | - Kyriaki Tzaferi
- Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04, Patras, Greece
| | - Nikos K Karamanos
- Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04, Patras, Greece.
- Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), 261 10, Patras, Greece.
| |
Collapse
|
26
|
Ishikawa A, Fujii H, Fukui T, Kido A, Katsuya N, Sentani K, Kuraoka K, Tazuma S, Sudo T, Serikawa M, Oka S, Oue N. Expression of kinesin family member C1 in pancreatic ductal adenocarcinoma affects tumor progression and stemness. Pathol Res Pract 2023; 241:154277. [PMID: 36565617 DOI: 10.1016/j.prp.2022.154277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer and the third leading cause of cancer-related deaths. Therefore, there is an urgent need for a novel molecular target for the treatment of PDAC. Kinesin family member C1 (KIFC1) belongs to the kinesin superfamily proteins and has been reported to be involved in the pathogenesis of a wide variety of carcinomas. However, the role of KIFC1 in PDAC remains unknown. This study aimed to analyze the expression and biological function of KIFC1 in PDAC. Immunohistochemically, KIFC1 was found in 37 of 81 PDAC cases (46%). A high expression of KIFC1 was significantly related to tumor size (p = 0.023) and poor overall survival (p = 0.011). Univariate and multivariate analysis indicated that KIFC1 expression was a prognostic factor in PDAC cases. As for cancer stem cell markers, KIFC1 expression tended to co-express significantly with CD44 (p < 0.01). The growth and spheroid colony formation of KIFC1 small interfering RNA (siRNA)-transfected PDAC cells were significantly lower than those of negative control siRNA-transfected cells. Therefore, our findings suggest that KIFC1 is an independent prognostic factor in PDAC and may represent a new promising therapeutic target in PDAC.
Collapse
Affiliation(s)
- Akira Ishikawa
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Hiroki Fujii
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Takafumi Fukui
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Aya Kido
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Narutaka Katsuya
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Kazuya Kuraoka
- Department of Diagnostic Pathology, National Hospital Organization, Kure Medical Center and Chugoku Cancer Center, 3-1 Aoyama, Kure 737-0023, Japan; Institute for Clinical Laboratory, National Hospital Organization, Kure Medical Center and Chugoku Cancer Center, 3-1 Aoyama, Kure 737-0023, Japan
| | - Sho Tazuma
- Department of Surgery, National Hospital Organization, Kure Medical Center and Chugoku Cancer Center, 3-1 Aoyama, Kure 737-0023, Japan
| | - Takeshi Sudo
- Department of Surgery, National Hospital Organization, Kure Medical Center and Chugoku Cancer Center, 3-1 Aoyama, Kure 737-0023, Japan
| | - Masahiro Serikawa
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Shiro Oka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Naohide Oue
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
27
|
Kim EY, Lee SU, Kim YH. 1,2,3,4,6-Penta- O-galloyl-β-D-glucose Inhibits CD44v3, a cancer stem cell marker, by regulating its transcription factor, in human pancreatic cancer cell line. Anim Cells Syst (Seoul) 2022; 26:328-337. [PMID: 36605595 PMCID: PMC9809349 DOI: 10.1080/19768354.2022.2152864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Inhibition of cluster of differentiation 44 (CD44), a pancreatic cancer stem cell (CSC) marker, is a potential treatment for pancreatic ductal adenocarcinoma (PDAC). In this study, we evaluated the effect of 1,2,3,4,6-penta-O-galloyl-β-D-glucose (PGG), a gallotannin contained in various medicinal plants, on CD44 standard (CD44s) and CD44 variant 3 (CD44v3) in Mia-PaCa-2, human pancreatic cancer cells and explored the underlying mechanisms. PGG showed cytotoxic effects and inhibited the proliferation of Mia-PaCa-2 cells. It also inhibited clonogenic activity, adhesion to fibronectin, and cell migration, which are characteristics of CSCs. PGG inhibited the expression of CD44s and CD44v3 by inducing the phosphorylation of p53 and suppressing NF-κB and Foxo3. Inhibition of Foxo3 induces CD44v3 ubiquitination. Indeed, PGG increased proteasome activity and promoted CD44v3 ubiquitination. PGG downregulated the CSC regulatory factors Nanog, Oct-4, and Sox-2, which act downstream of CD44v3 signaling. These data indicate that PGG may have therapeutic effects in pancreatic cancer mediated by inhibition of CSC markers.
Collapse
Affiliation(s)
- Eun-Young Kim
- Department of Food and Nutrition, Daegu University, Gyeongsan-si, Republic of Korea
| | - Seong-Uk Lee
- Department of Food and Nutrition, Daegu University, Gyeongsan-si, Republic of Korea
| | - Yoon Hee Kim
- Department of Food and Nutrition, Daegu University, Gyeongsan-si, Republic of Korea, Yoon Hee Kim Department of Food and Nutrition, Daegu University, 201, Daegudae-ro, Gyeongsan-si, Gyeongsangbuk-do38453, Republic of Korea
| |
Collapse
|
28
|
Carigga Gutierrez NM, Pujol-Solé N, Arifi Q, Coll JL, le Clainche T, Broekgaarden M. Increasing cancer permeability by photodynamic priming: from microenvironment to mechanotransduction signaling. Cancer Metastasis Rev 2022; 41:899-934. [PMID: 36155874 DOI: 10.1007/s10555-022-10064-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/06/2022] [Indexed: 01/25/2023]
Abstract
The dense cancer microenvironment is a significant barrier that limits the penetration of anticancer agents, thereby restraining the efficacy of molecular and nanoscale cancer therapeutics. Developing new strategies to enhance the permeability of cancer tissues is of major interest to overcome treatment resistance. Nonetheless, early strategies based on small molecule inhibitors or matrix-degrading enzymes have led to disappointing clinical outcomes by causing increased chemotherapy toxicity and promoting disease progression. In recent years, photodynamic therapy (PDT) has emerged as a novel approach to increase the permeability of cancer tissues. By producing excessive amounts of reactive oxygen species selectively in the cancer microenvironment, PDT increases the accumulation, penetration depth, and efficacy of chemotherapeutics. Importantly, the increased cancer permeability has not been associated to increased metastasis formation. In this review, we provide novel insights into the mechanisms by which this effect, called photodynamic priming, can increase cancer permeability without promoting cell migration and dissemination. This review demonstrates that PDT oxidizes and degrades extracellular matrix proteins, reduces the capacity of cancer cells to adhere to the altered matrix, and interferes with mechanotransduction pathways that promote cancer cell migration and differentiation. Significant knowledge gaps are identified regarding the involvement of critical signaling pathways, and to which extent these events are influenced by the complicated PDT dosimetry. Addressing these knowledge gaps will be vital to further develop PDT as an adjuvant approach to improve cancer permeability, demonstrate the safety and efficacy of this priming approach, and render more cancer patients eligible to receive life-extending treatments.
Collapse
Affiliation(s)
| | - Núria Pujol-Solé
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Qendresa Arifi
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Jean-Luc Coll
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Tristan le Clainche
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France.
| | - Mans Broekgaarden
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France.
| |
Collapse
|
29
|
Manni W, Min W. Signaling pathways in the regulation of cancer stem cells and associated targeted therapy. MedComm (Beijing) 2022; 3:e176. [PMID: 36226253 PMCID: PMC9534377 DOI: 10.1002/mco2.176] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/07/2022] Open
Abstract
Cancer stem cells (CSCs) are defined as a subpopulation of malignant tumor cells with selective capacities for tumor initiation, self-renewal, metastasis, and unlimited growth into bulks, which are believed as a major cause of progressive tumor phenotypes, including recurrence, metastasis, and treatment failure. A number of signaling pathways are involved in the maintenance of stem cell properties and survival of CSCs, including well-established intrinsic pathways, such as the Notch, Wnt, and Hedgehog signaling, and extrinsic pathways, such as the vascular microenvironment and tumor-associated immune cells. There is also intricate crosstalk between these signal cascades and other oncogenic pathways. Thus, targeting pathway molecules that regulate CSCs provides a new option for the treatment of therapy-resistant or -refractory tumors. These treatments include small molecule inhibitors, monoclonal antibodies that target key signaling in CSCs, as well as CSC-directed immunotherapies that harness the immune systems to target CSCs. This review aims to provide an overview of the regulating networks and their immune interactions involved in CSC development. We also address the update on the development of CSC-directed therapeutics, with a special focus on those with application approval or under clinical evaluation.
Collapse
Affiliation(s)
- Wang Manni
- Department of Biotherapy, Cancer Center, West China HospitalSichuan UniversityChengduP. R. China
| | - Wu Min
- Department of Biomedical Sciences, School of Medicine and Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| |
Collapse
|
30
|
Mukherjee AG, Wanjari UR, Gopalakrishnan AV, Bradu P, Sukumar A, Patil M, Renu K, Dey A, Vellingiri B, George A, Ganesan R. Implications of cancer stem cells in diabetes and pancreatic cancer. Life Sci 2022; 312:121211. [PMID: 36414089 DOI: 10.1016/j.lfs.2022.121211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
This review provides a detailed study of pancreatic cancer (PC) and the implication of different types of cancers concerning diabetes. The combination of anti-diabetic drugs with other anti-cancer drugs and phytochemicals can help prevent and treat this disease. PC cancer stem cells (CSCs) and how they migrate and develop into malignant tumors are discussed. A detailed explanation of the different mechanisms of diabetes development, which can enhance the pancreatic CSCs' proliferation by increasing the IGF factor levels, epigenetic modifications, DNA damage, and the influence of lifestyle factors like obesity, and inflammation, has been discussed. It also explains how cancer due to diabetes is associated with high mortality rates. One of the well-known diabetic drugs, metformin, can be combined with other anti-cancer drugs and prevent the development of PC and has been taken as one of the prime focus in this review. Overall, this paper provides insight into the relationship between diabetes and PC and the methods that can be employed to diagnose this disease at an earlier stage successfully.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Pragya Bradu
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Aarthi Sukumar
- Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Megha Patil
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, 700073, India
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda - 151401, Punjab, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, 680005, Kerala, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, 24252, Republic of Korea
| |
Collapse
|
31
|
A Novel 3D Culture Scaffold to Shorten Development Time for Multicellular Tumor Spheroids. Int J Mol Sci 2022; 23:ijms232213962. [PMID: 36430445 PMCID: PMC9699299 DOI: 10.3390/ijms232213962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Multicellular tumor spheroids and tumoroids are considered ideal in vitro models that reflect the features of the tumor microenvironment. Biomimetic components resembling the extracellular matrix form scaffolds to provide structure to 3-dimensional (3D) culture systems, supporting the growth of both spheroids and tumoroids. Although Matrigel has long been used to support 3D culture systems, batch variations, component complexity, and the use of components derived from tumors are complicating factors. To address these issues, we developed the ACD 3D culture system to provide better control and consistency. We evaluated spheroid and tumoroid formation using the ACD 3D culture system, including the assessment of cell viability and cancer marker expression. Under ACD 3D culture conditions, spheroids derived from cancer cell lines exhibited cancer stem cell characteristics, including a sphere-forming size and the expression of stem cell marker genes. The ACD 3D culture system was also able to support patient-derived primary cells and organoid cell cultures, displaying adequate cell growth, appropriate morphology, and resistance to oxaliplatin treatment. These spheroids could also be used for drug screening purposes. In conclusion, the ACD 3D culture system represents an efficient tool for basic cancer research and therapeutic development.
Collapse
|
32
|
Liu J, Tao M, Zhao W, Song Q, Yang X, Li M, Zhang Y, Xiu D, Zhang Z. Calcium Channel α2δ1 is Essential for Pancreatic Tumor-Initiating Cells through Sequential Phosphorylation of PKM2. Cell Mol Gastroenterol Hepatol 2022; 15:373-392. [PMID: 36244646 PMCID: PMC9791133 DOI: 10.1016/j.jcmgh.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND & AIMS Tumor-initiating cells (TICs) drive pancreatic cancer tumorigenesis, therapeutic resistance, and metastasis. However, TICs are highly plastic and heterogenous, which impede the robust identification and targeted therapy of such a population. The aim of this study is to identify the surface marker and therapeutic target for pancreatic TICs. METHODS We isolated voltage-gated calcium channel α2δ1 subunit (isoform 5)-positive subpopulation from pancreatic cancer cell lines and freshly resected primary tissues by fluorescence-activated cell sorting and evaluated their TIC properties by spheroid formation and tumorigenic assays. Coimmunoprecipitation was used to identify the direct substrate of CaMKⅡδ. RESULTS We demonstrate that the voltage-gated calcium channel α2δ1 subunit (isoform 5) marks a subpopulation of pancreatic TICs with the highest TIC frequency among the known pancreatic TIC markers tested. Furthermore, α2δ1 is functionally sufficient and indispensable to promote TIC properties by mediating Ca2+ influx, which activates CaMKⅡδ to directly phosphorylate PKM2 at T454 that results in subsequent phosphorylation at Y105 to translocate into nucleus, enhancing the stem-like properties. Interestingly, blocking α2δ1 with its specific antibody has remarkably therapeutic effects on pancreatic cancer xenografts by reducing TICs. CONCLUSIONS α2δ1 promotes pancreatic TIC properties through sequential phosphorylation of PKM2 mediated by CaMKⅡδ, and targeting α2δ1 provides a therapeutic strategy against TICs for pancreatic cancer.
Collapse
Affiliation(s)
- Jingtao Liu
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing, P.R. China; Department of Pharmacology, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Ming Tao
- Department of General Surgery, Peking University Third Hospital, Beijing, P.R. China
| | - Wei Zhao
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Qingru Song
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Xiaodan Yang
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Meng Li
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - Yanhua Zhang
- Department of Pharmacology, Peking University Cancer Hospital and Institute, Beijing, P.R. China.
| | - Dianrong Xiu
- Department of General Surgery, Peking University Third Hospital, Beijing, P.R. China.
| | - Zhiqian Zhang
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing, P.R. China.
| |
Collapse
|
33
|
A Comprehensive Characterization of Stemness in Cell Lines and Primary Cells of Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2022; 23:ijms231810663. [PMID: 36142575 PMCID: PMC9503169 DOI: 10.3390/ijms231810663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 01/18/2023] Open
Abstract
The aim of this study is to provide a comprehensive characterization of stemness in pancreatic ductal adenocarcinoma (PDAC) cell lines. Seventeen cell lines were evaluated for the expression of cancer stem cell (CSC) markers. The two putative pancreatic CSC phenotypes were expressed heterogeneously ranging from 0 to 99.35% (median 3.46) for ESA+CD24+CD44+ and 0 to 1.94% (median 0.13) for CXCR4+CD133+. Cell lines were classified according to ESA+CD24+CD44+ expression as: Low-Stemness (LS; <5%, n = 9, median 0.31%); Medium-Stemness (MS; 6−20%, n = 4, median 12.4%); and High-Stemness (HS; >20%, n = 4, median 95.8%) cell lines. Higher degree of stemness was associated with in vivo tumorigenicity but not with in vitro growth kinetics, clonogenicity, and chemo-resistance. A wide characterization (chemokine receptors, factors involved in pancreatic organogenesis, markers of epithelial−mesenchymal transition, and secretome) revealed that the degree of stemness was associated with KRT19 and NKX2.2 mRNA expression, with CD49a and CA19.9/Tie2 protein expression, and with the secretion of VEGF, IL-7, IL-12p70, IL-6, CCL3, IL-10, and CXCL9. The expression of stem cell markers was also evaluated on primary tumor cells from 55 PDAC patients who underwent pancreatectomy with radical intent, revealing that CXCR4+/CD133+ and CD24+ cells, but not ESA+CD24+CD44+, are independent predictors of mortality.
Collapse
|
34
|
Kt RD, Karthick D, Saravanaraj KS, Jaganathan MK, Ghorai S, Hemdev SP. The Roles of MicroRNA in Pancreatic Cancer Progression. Cancer Invest 2022; 40:700-709. [PMID: 35333689 DOI: 10.1080/07357907.2022.2057526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/21/2022] [Accepted: 03/21/2022] [Indexed: 11/09/2022]
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) has a poor patient survival rate in comparison with other cancer types, even after targeted therapy, chemotherapy, and immunotherapy. Therefore, a great deal needs to be done to gain a better understanding of the biology and identification of prognostic and predictive markers for the development of superior therapies. The microRNAs (miRNAs) belong to small non-coding RNAs that regulate post-transcriptional gene expression. Several shreds of evidence indicate that miRNAs play an important role in the pathogenesis of pancreatic cancer. Here we review the recent developments in miRNAs and their target role in the development, metastasis, migration, and invasion.
Collapse
Affiliation(s)
- Ramya Devi Kt
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Dharshene Karthick
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Kirtikesav Salem Saravanaraj
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tamil Nadu, India
| | - M K Jaganathan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Suvankar Ghorai
- Department of Microbiology, Raiganj University, Uttar Dinajpur, India
| | - Sanjana Prakash Hemdev
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
35
|
Zuzčák M, Trnka J. Cellular metabolism in pancreatic cancer as a tool for prognosis and treatment (Review). Int J Oncol 2022; 61:93. [PMID: 35730611 PMCID: PMC9256076 DOI: 10.3892/ijo.2022.5383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022] Open
Abstract
Pancreatic cancer (PC) has one of the highest fatality rates and the currently available therapeutic options are not sufficient to improve its overall poor prognosis. In addition to insufficient effectiveness of anticancer treatments, the lack of clear early symptoms and early metastatic spread maintain the PC survival rates at a low level. Metabolic reprogramming is among the hallmarks of cancer and could be exploited for the diagnosis and treatment of PC. PC is characterized by its heterogeneity and, apart from molecular subtypes, the identification of metabolic subtypes in PC could aid in the development of more individualized therapeutic approaches and may lead to improved clinical outcomes. In addition to the deregulated utilization of glucose in aerobic glycolysis, PC cells can use a wide range of substrates, including branched‑chain amino acids, glutamine and lipids to fulfil their energy requirements, as well as biosynthetic needs. The tumor microenvironment in PC supports tumor growth, metastatic spread, treatment resistance and the suppression of the host immune response. Moreover, reciprocal interactions between cancer and stromal cells enhance their metabolic reprogramming. PC stem cells (PCSCs) with an increased resistance and distinct metabolic properties are associated with disease relapses and cancer spread, and represent another significant candidate for therapeutic targeting. The present review discusses the metabolic signatures observed in PC, a disease with a multifaceted and often transient metabolic landscape. In addition, the metabolic pathways utilized by PC cells, as well as stromal cells are discussed, providing examples of how they could present novel targets for therapeutic interventions and elaborating on how interactions between the various cell types affect their metabolism. Furthermore, the importance of PCSCs is discussed, focusing specifically on their metabolic adaptations.
Collapse
Affiliation(s)
- Michal Zuzčák
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic
- Center for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic
| | - Jan Trnka
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic
- Center for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic
| |
Collapse
|
36
|
Sahoo OS, Pethusamy K, Srivastava TP, Talukdar J, Alqahtani MS, Abbas M, Dhar R, Karmakar S. The metabolic addiction of cancer stem cells. Front Oncol 2022; 12:955892. [PMID: 35957877 PMCID: PMC9357939 DOI: 10.3389/fonc.2022.955892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer stem cells (CSC) are the minor population of cancer originating cells that have the capacity of self-renewal, differentiation, and tumorigenicity (when transplanted into an immunocompromised animal). These low-copy number cell populations are believed to be resistant to conventional chemo and radiotherapy. It was reported that metabolic adaptation of these elusive cell populations is to a large extent responsible for their survival and distant metastasis. Warburg effect is a hallmark of most cancer in which the cancer cells prefer to metabolize glucose anaerobically, even under normoxic conditions. Warburg's aerobic glycolysis produces ATP efficiently promoting cell proliferation by reprogramming metabolism to increase glucose uptake and stimulating lactate production. This metabolic adaptation also seems to contribute to chemoresistance and immune evasion, a prerequisite for cancer cell survival and proliferation. Though we know a lot about metabolic fine-tuning in cancer, what is still in shadow is the identity of upstream regulators that orchestrates this process. Epigenetic modification of key metabolic enzymes seems to play a decisive role in this. By altering the metabolic flux, cancer cells polarize the biochemical reactions to selectively generate "onco-metabolites" that provide an added advantage for cell proliferation and survival. In this review, we explored the metabolic-epigenetic circuity in relation to cancer growth and proliferation and establish the fact how cancer cells may be addicted to specific metabolic pathways to meet their needs. Interestingly, even the immune system is re-calibrated to adapt to this altered scenario. Knowing the details is crucial for selective targeting of cancer stem cells by choking the rate-limiting stems and crucial branch points, preventing the formation of onco-metabolites.
Collapse
Affiliation(s)
- Om Saswat Sahoo
- Department of Biotechnology, National Institute of technology, Durgapur, India
| | - Karthikeyan Pethusamy
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Joyeeta Talukdar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
- Computers and communications Department, College of Engineering, Delta University for Science and Technology, Gamasa, Egypt
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
37
|
Repositioning of Old Drugs for Novel Cancer Therapies: Continuous Therapeutic Perfusion of Aspirin and Oseltamivir Phosphate with Gemcitabine Treatment Disables Tumor Progression, Chemoresistance, and Metastases. Cancers (Basel) 2022; 14:cancers14153595. [PMID: 35892853 PMCID: PMC9331689 DOI: 10.3390/cancers14153595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Repositioning old drugs in combination with clinical standard chemotherapeutics opens a promising clinical treatment approach for patients with pancreatic cancer. This report presents a therapeutic repositioning of continuous perfusion of aspirin and oseltamivir phosphate in combination with gemcitabine treatment as an effective treatment option for pancreatic cancer. The data suggest that repositioning these drugs with continuous perfusion with gemcitabine disables chemoresistance, tumor progression, EMT program, cancer stem cells, and metastases in a preclinical mouse model of human pancreatic cancer. These promising results warrant additional investigation to assess the potential of translating into the clinical setting to improve the cancer patient prognosis for an otherwise fatal disease. Abstract Metastatic pancreatic cancer has an invariably fatal outcome, with an estimated median progression-free survival of approximately six months employing our best combination chemotherapeutic regimens. Once drug resistance develops, manifested by increased primary tumor size and new and growing metastases, patients often die rapidly from their disease. Emerging evidence indicates that chemotherapy may contribute to the development of drug resistance through the upregulation of epithelial–mesenchymal transition (EMT) pathways and subsequent cancer stem cell (CSC) enrichment. Neuraminidase-1 (Neu-1) regulates the activation of several receptor tyrosine kinases implicated in EMT induction, angiogenesis, and cellular proliferation. Here, continuous therapeutic targeting of Neu-1 using parenteral perfusion of oseltamivir phosphate (OP) and aspirin (ASA) with gemcitabine (GEM) treatment significantly disrupts tumor progression, critical compensatory signaling mechanisms, EMT program, CSC, and metastases in a preclinical mouse model of human pancreatic cancer. ASA- and OP-treated xenotumors significantly inhibited the metastatic potential when transferred into animals.
Collapse
|
38
|
Zi D, Li Q, Xu CX, Zhou ZW, Song GB, Hu CB, Wen F, Yang HL, Nie L, Zhao X, Tan J, Zhou SF, He ZX. CXCR4 knockdown enhances sensitivity of paclitaxel via the PI3K/Akt/mTOR pathway in ovarian carcinoma. Aging (Albany NY) 2022; 14:4673-4698. [PMID: 35681259 PMCID: PMC9217704 DOI: 10.18632/aging.203241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 04/29/2021] [Indexed: 12/24/2022]
Abstract
Epithelial ovarian cancer (EOC) is the deadliest gynecological malignancy. EOC control remains difficult, and EOC patients show poor prognosis regarding metastasis and chemotherapy resistance. The aim of this study was to estimate the effect of CXCR4 knockdown-mediated reduction of cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT) stemness and enhancement of chemotherapy sensitivity in EOC. Mechanisms contributing to these effects were also explored. Our data showed distinct contribution of CXCR4 overexpression by dependent PI3K/Akt/mTOR signaling pathway in EOC development. CXCR4 knockdown resulted in a reduction in CSCs and EMT formation and enhancement of chemotherapy sensitivity in tumor cells, which was further advanced by blocking CXCR4-PI3K/Akt/mTOR signaling. This study also documented the critical role of silencing CXCR4 in sensitizing ovarian CSCs to chemotherapy. Thus, targeting CXCR4 to suppress EOC progression, specifically in combination with paclitaxel (PTX) treatment, may have clinical application value.
Collapse
Affiliation(s)
- Dan Zi
- Department of Obstetrics and Gynecology, Guizhou Provincial People’s Hospital, Guiyang 550002, Guizhou, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences/Stem Cell and Tissue Engineering Research Center, Guizhou Medical University, Guiyang 550004, China
- Key Laboratory of Endemic and Ethnic Diseases and Key Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Qing Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Yuzhong 40042, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Cheng-xiong Xu
- Cancer Center, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, Yuzhong 40042, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Zhi-Wei Zhou
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guan-Bin Song
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cheng-Bin Hu
- Department of Computer Science and Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Fang Wen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Han-Lin Yang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Lei Nie
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Xing Zhao
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences/Stem Cell and Tissue Engineering Research Center, Guizhou Medical University, Guiyang 550004, China
| | - Jun Tan
- Key Laboratory of Endemic and Ethnic Diseases and Key Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
- Department of Bioengineering and Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian, China
| | - Zhi-Xu He
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences/Stem Cell and Tissue Engineering Research Center, Guizhou Medical University, Guiyang 550004, China
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
39
|
Rodríguez F, Caruana P, De la Fuente N, Español P, Gámez M, Balart J, Llurba E, Rovira R, Ruiz R, Martín-Lorente C, Corchero JL, Céspedes MV. Nano-Based Approved Pharmaceuticals for Cancer Treatment: Present and Future Challenges. Biomolecules 2022; 12:biom12060784. [PMID: 35740909 PMCID: PMC9221343 DOI: 10.3390/biom12060784] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is one of the main causes of death worldwide. To date, and despite the advances in conventional treatment options, therapy in cancer is still far from optimal due to the non-specific systemic biodistribution of antitumor agents. The inadequate drug concentrations at the tumor site led to an increased incidence of multiple drug resistance and the appearance of many severe undesirable side effects. Nanotechnology, through the development of nanoscale-based pharmaceuticals, has emerged to provide new and innovative drugs to overcome these limitations. In this review, we provide an overview of the approved nanomedicine for cancer treatment and the rationale behind their designs and applications. We also highlight the new approaches that are currently under investigation and the perspectives and challenges for nanopharmaceuticals, focusing on the tumor microenvironment and tumor disseminate cells as the most attractive and effective strategies for cancer treatments.
Collapse
Affiliation(s)
- Francisco Rodríguez
- Grup d’Oncologia Ginecològica i Peritoneal, Institut d’Investigacions Biomédiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (F.R.); (P.C.); (R.R.)
| | - Pablo Caruana
- Grup d’Oncologia Ginecològica i Peritoneal, Institut d’Investigacions Biomédiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (F.R.); (P.C.); (R.R.)
| | - Noa De la Fuente
- Servicio de Cirugía General y del Aparato Digestivo, Hospital HM Rosaleda, 15701 Santiago de Compostela, Spain;
| | - Pía Español
- Department of Obstetrics and Gynecology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain; (P.E.); (E.L.); (R.R.)
| | - María Gámez
- Department of Pharmacy, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Josep Balart
- Department of Radiation Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Elisa Llurba
- Department of Obstetrics and Gynecology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain; (P.E.); (E.L.); (R.R.)
| | - Ramón Rovira
- Department of Obstetrics and Gynecology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain; (P.E.); (E.L.); (R.R.)
| | - Raúl Ruiz
- Grup d’Oncologia Ginecològica i Peritoneal, Institut d’Investigacions Biomédiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (F.R.); (P.C.); (R.R.)
| | - Cristina Martín-Lorente
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina and CIBER-BBN, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Correspondence: (J.L.C.); (M.V.C.); Tel.: +34-93-5812148 (J.L.C.); +34-93-400000 (ext. 1427) (M.V.C.)
| | - María Virtudes Céspedes
- Grup d’Oncologia Ginecològica i Peritoneal, Institut d’Investigacions Biomédiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (F.R.); (P.C.); (R.R.)
- Correspondence: (J.L.C.); (M.V.C.); Tel.: +34-93-5812148 (J.L.C.); +34-93-400000 (ext. 1427) (M.V.C.)
| |
Collapse
|
40
|
Gulla A, Andriusaityte U, Zdanys GT, Babonaite E, Strupas K, Kelly H. The Impact of Epithelial-Mesenchymal Transition and Metformin on Pancreatic Cancer Chemoresistance: A Pathway towards Individualized Therapy. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:467. [PMID: 35454306 PMCID: PMC9032206 DOI: 10.3390/medicina58040467] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 12/26/2022]
Abstract
Globally, pancreatic ductal adenocarcinoma remains among the most aggressive forms of neoplastic diseases, having a dismal prognostic outcome. Recent findings elucidated that epithelial-mesenchymal transition (EMT) can play an important role in pancreatic tumorigenic processes, as it contributes to the manifestation of malignant proliferative masses, which impede adequate drug delivery. An organized literature search with PubMed, Scopus, Microsoft Academic and the Cochrane library was performed for articles published in English from 2011 to 2021 to review and summarize the latest updates and knowledge on the current understanding of EMT and its implications for tumorigenesis and chemoresistance. Furthermore, in the present paper, we investigate the recent findings on metformin as a possible neoadjuvant chemotherapy agent, which affects EMT progression and potentially provides superior oncological outcomes for PDAC patients. Our main conclusions indicate that selectively suppressing EMT in pancreatic cancer cells has a promising therapeutic utility by selectively targeting the chemotherapy-resistant sub-population of cancer stem cells, inhibiting tumor growth via EMT pathways and thereby improving remission in PDAC patients. Moreover, given that TGF-β1-driven EMT generates the migration of tumor-initiating cells by directly linking the acquisition of abnormal cellular motility with the maintenance of tumor initiating potency, the chemoprevention of TGF-β1-induced EMT may have promising clinical applications in the therapeutic management of PDAC outcomes.
Collapse
Affiliation(s)
- Aiste Gulla
- Institute of Clinical Medicine, Clinic of Gastroenterology, Surgery, Nephrology, Faculty of Medicine, Vilnius University, Santariskiu Str. 2, 08661 Vilnius, Lithuania;
- Center of Visceral Medicine and Translational Research, Department of Surgery, Georgetown University Hospital, 3800 Reservoir Road Northwest BLES Building 1st. Floor, Washington, DC 20007, USA
| | - Urte Andriusaityte
- Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21, 03101 Vilnius, Lithuania; (U.A.); (G.T.Z.); (E.B.)
| | - Gabrielius Tomas Zdanys
- Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21, 03101 Vilnius, Lithuania; (U.A.); (G.T.Z.); (E.B.)
| | - Elena Babonaite
- Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21, 03101 Vilnius, Lithuania; (U.A.); (G.T.Z.); (E.B.)
| | - Kestutis Strupas
- Institute of Clinical Medicine, Clinic of Gastroenterology, Surgery, Nephrology, Faculty of Medicine, Vilnius University, Santariskiu Str. 2, 08661 Vilnius, Lithuania;
| | - Helena Kelly
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St. Stephen’s Green, D02 YN77 Dublin, Ireland;
| |
Collapse
|
41
|
Zhao X, Li Z, Gu Z. A new era: tumor microenvironment in chemoresistance of pancreatic cancer. JOURNAL OF CANCER SCIENCE AND CLINICAL THERAPEUTICS 2022; 6:61-86. [PMID: 35187493 DOI: 10.26502/jcsct.5079146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a solid malignant tumor with an extremely poor prognosis. Gemcitabine (GEM)-based chemotherapy remains one of the most important treatment choices for PDAC. However, either as monotherapy or as a part of the combination chemotherapy, GEM achieved only limited success in improving the survival of patients with advanced PDAC, primarily due to GEM resistance. PDAC is characterized by an extensive desmoplasia in the tumor microenvironment (TME). Increasing evidence indicates that this fibrotic TME not only actively participates in the tumor growth and spread of PDAC but also contributes to the induction of GEM resistance. Here we review the current advances of how TME components are involved in the induction of GEM resistance.
Collapse
Affiliation(s)
- Xueping Zhao
- School of Life Science and Biopharmaceutical, Shenyang Pharmaceutical University, Shenyang, China
| | - Zongze Li
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zongting Gu
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
42
|
microRNA-21 Regulates Stemness in Pancreatic Ductal Adenocarcinoma Cells. Int J Mol Sci 2022; 23:ijms23031275. [PMID: 35163198 PMCID: PMC8835847 DOI: 10.3390/ijms23031275] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common and aggressive type of pancreatic cancer (PCa) with a low survival rate. microRNAs (miRs) are endogenous, non-coding RNAs that moderate numerous biological processes. miRs have been associated with the chemoresistance and metastasis of PDAC and the presence of a subpopulation of highly plastic "stem"-like cells within the tumor, known as cancer stem cells (CSCs). In this study, we investigated the role of miR-21, which is highly expressed in Panc-1 and MiaPaCa-2 PDAC cells in association with CSCs. Following miR-21 knockouts (KO) from both MiaPaCa-2 and Panc-1 cell lines, reversed expressions of epithelial-mesenchymal transition (EMT) and CSCs markers were observed. The expression patterns of key CSC markers, including CD44, CD133, CX-C chemokine receptor type 4 (CXCR4), and aldehyde dehydrogenase-1 (ALDH1), were changed depending on miR-21 status. miR-21 (KO) suppressed cellular invasion of Panc-1 and MiaPaCa-2 cells, as well as the cellular proliferation of MiaPaCa-2 cells. Our data suggest that miR-21 is involved in the stemness of PDAC cells, may play roles in mesenchymal transition, and that miR-21 poses as a novel, functional biomarker for PDAC aggressiveness.
Collapse
|
43
|
Szymonik J, Wala K, Górnicki T, Saczko J, Pencakowski B, Kulbacka J. The Impact of Iron Chelators on the Biology of Cancer Stem Cells. Int J Mol Sci 2021; 23:ijms23010089. [PMID: 35008527 PMCID: PMC8745085 DOI: 10.3390/ijms23010089] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023] Open
Abstract
Neoplastic diseases are still a major medical challenge, requiring a constant search for new therapeutic options. A serious problem of many cancers is resistance to anticancer drugs and disease progression in metastases or local recurrence. These characteristics of cancer cells may be related to the specific properties of cancer stem cells (CSC). CSCs are involved in inhibiting cells’ maturation, which is essential for maintaining their self-renewal capacity and pluripotency. They show increased expression of transcription factor proteins, which were defined as stemness-related markers. This group of proteins includes OCT4, SOX2, KLF4, Nanog, and SALL4. It has been noticed that the metabolism of cancer cells is changed, and the demand for iron is significantly increased. Iron chelators have been proven to have antitumor activity and influence the expression of stemness-related markers, thus reducing chemoresistance and the risk of tumor cell progression. This prompts further investigation of these agents as promising anticancer novel drugs. The article presents the characteristics of stemness markers and their influence on the development and course of neoplastic disease. Available iron chelators were also described, and their effects on cancer cells and expression of stemness-related markers were analyzed.
Collapse
Affiliation(s)
- Julia Szymonik
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.S.); (K.W.); (T.G.)
| | - Kamila Wala
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.S.); (K.W.); (T.G.)
| | - Tomasz Górnicki
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.S.); (K.W.); (T.G.)
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Bartosz Pencakowski
- Department of Pharmaceutical Biology and Botany, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-71-784-06-88
| |
Collapse
|
44
|
Hassn Mesrati M, Syafruddin SE, Mohtar MA, Syahir A. CD44: A Multifunctional Mediator of Cancer Progression. Biomolecules 2021; 11:1850. [PMID: 34944493 PMCID: PMC8699317 DOI: 10.3390/biom11121850] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022] Open
Abstract
CD44, a non-kinase cell surface transmembrane glycoprotein, has been widely implicated as a cancer stem cell (CSC) marker in several cancers. Cells overexpressing CD44 possess several CSC traits, such as self-renewal and epithelial-mesenchymal transition (EMT) capability, as well as a resistance to chemo- and radiotherapy. The CD44 gene regularly undergoes alternative splicing, resulting in the standard (CD44s) and variant (CD44v) isoforms. The interaction of such isoforms with ligands, particularly hyaluronic acid (HA), osteopontin (OPN) and matrix metalloproteinases (MMPs), drive numerous cancer-associated signalling. However, there are contradictory results regarding whether high or low CD44 expression is associated with worsening clinicopathological features, such as a higher tumour histological grade, advanced tumour stage and poorer survival rates. Nonetheless, high CD44 expression significantly contributes to enhanced tumourigenic mechanisms, such as cell proliferation, metastasis, invasion, migration and stemness; hence, CD44 is an important clinical target. This review summarises current research regarding the different CD44 isoform structures and their roles and functions in supporting tumourigenesis and discusses CD44 expression regulation, CD44-signalling pathways and interactions involved in cancer development. The clinical significance and prognostic value of CD44 and the potential of CD44 as a therapeutic target in cancer are also addressed.
Collapse
Affiliation(s)
- Malak Hassn Mesrati
- Nanobiotechnology Research Group, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (S.E.S.); (M.A.M.)
| | - M. Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (S.E.S.); (M.A.M.)
| | - Amir Syahir
- Nanobiotechnology Research Group, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| |
Collapse
|
45
|
Vijai M, Baba M, Ramalingam S, Thiyagaraj A. DCLK1 and its interaction partners: An effective therapeutic target for colorectal cancer. Oncol Lett 2021; 22:850. [PMID: 34733368 PMCID: PMC8561619 DOI: 10.3892/ol.2021.13111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/02/2021] [Indexed: 12/23/2022] Open
Abstract
Doublecortin-like kinase protein 1 (DCLK1) is a microtubule-associated protein with a C-terminal serine/threonine kinase domain. Its expression was first reported in radial glial cells, where it serves an essential role in early neurogenesis, and since then, other functions of the DCLK1 protein have also been identified. Initially considered to be a marker of quiescent gastrointestinal and pancreatic stem cells, DCLK1 has recently been identified in the gastrointestinal tract as a marker of tuft cells. It has also been implicated in different types of cancer, where it regulates several vital pathways, such as Kras signaling. However, its underlying molecular mechanisms remain unclear. The present review discusses the different roles of DCLK1 and its interactions with other proteins that are homologically similar to DCLK1 to develop a novel therapeutic strategy to target cancer cells more accurately.
Collapse
Affiliation(s)
- Muthu Vijai
- Department of Genetic Engineering, SRM Institute of Science and Technology, Sri Ramaswamy Memorial (SRM) Nagar, Kattankulathur, Tamil Nadu 603203, India
| | - Mursaleen Baba
- Department of Genetic Engineering, SRM Institute of Science and Technology, Sri Ramaswamy Memorial (SRM) Nagar, Kattankulathur, Tamil Nadu 603203, India
| | - Satish Ramalingam
- Department of Genetic Engineering, SRM Institute of Science and Technology, Sri Ramaswamy Memorial (SRM) Nagar, Kattankulathur, Tamil Nadu 603203, India
| | - Anand Thiyagaraj
- Department of Genetic Engineering, SRM Institute of Science and Technology, Sri Ramaswamy Memorial (SRM) Nagar, Kattankulathur, Tamil Nadu 603203, India
| |
Collapse
|
46
|
Cui X, Liu R, Duan L, Cao D, Zhang Q, Zhang A. CAR-T therapy: Prospects in targeting cancer stem cells. J Cell Mol Med 2021; 25:9891-9904. [PMID: 34585512 PMCID: PMC8572776 DOI: 10.1111/jcmm.16939] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs), a group of tumour cells with stem cell characteristics, have the ability of self-renewal, multi-lineage differentiation and tumour formation. Since CSCs are resistant to conventional radiotherapy and chemotherapy, their existence may be one of the root causes of cancer treatment failure and tumour progression. The elimination of CSCs may be effective for eventual tumour eradication. Because of the good therapeutic effects without major histocompatibility complex (MHC) restriction and the unique characteristics of CSCs, chimeric antigen receptor T-cell (CAR-T) therapy is expected to be an important method to eliminate CSCs. In this review, we have discussed the feasibility of CSCs-targeted CAR-T therapy for cancer treatment, summarized current research and clinical trials of targeting CSCs with CAR-T cells and forecasted the challenges and future direction from the perspectives of toxicity, persistence and potency, trafficking, infiltration, immunosuppressive tumour microenvironment, and tumour heterogeneity.
Collapse
Affiliation(s)
- Xiaoyue Cui
- Basic Laboratory, Suining Central Hospital, Suining, China
| | - Rui Liu
- Department of Breast and Thyroid Surgery, Suining Central Hospital, Suining, China
| | - Lian Duan
- Basic Laboratory, Suining Central Hospital, Suining, China
| | - Dan Cao
- Basic Laboratory, Suining Central Hospital, Suining, China.,Key Laboratory of Metabolic Diseases, Suining Central Hospital, Suining, China
| | - Qiaoling Zhang
- Basic Laboratory, Suining Central Hospital, Suining, China.,Key Laboratory of Metabolic Diseases, Suining Central Hospital, Suining, China
| | - Aijie Zhang
- Basic Laboratory, Suining Central Hospital, Suining, China
| |
Collapse
|
47
|
Patil K, Khan FB, Akhtar S, Ahmad A, Uddin S. The plasticity of pancreatic cancer stem cells: implications in therapeutic resistance. Cancer Metastasis Rev 2021; 40:691-720. [PMID: 34453639 PMCID: PMC8556195 DOI: 10.1007/s10555-021-09979-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
The ever-growing perception of cancer stem cells (CSCs) as a plastic state rather than a hardwired defined entity has evolved our understanding of the functional and biological plasticity of these elusive components in malignancies. Pancreatic cancer (PC), based on its biological features and clinical evolution, is a prototypical example of a CSC-driven disease. Since the discovery of pancreatic CSCs (PCSCs) in 2007, evidence has unraveled their control over many facets of the natural history of PC, including primary tumor growth, metastatic progression, disease recurrence, and acquired drug resistance. Consequently, the current near-ubiquitous treatment regimens for PC using aggressive cytotoxic agents, aimed at ‘‘tumor debulking’’ rather than eradication of CSCs, have proven ineffective in providing clinically convincing improvements in patients with this dreadful disease. Herein, we review the key hallmarks as well as the intrinsic and extrinsic resistance mechanisms of CSCs that mediate treatment failure in PC and enlist the potential CSC-targeting ‘natural agents’ that are gaining popularity in recent years. A better understanding of the molecular and functional landscape of PCSC-intrinsic evasion of chemotherapeutic drugs offers a facile opportunity for treating PC, an intractable cancer with a grim prognosis and in dire need of effective therapeutic advances.
Collapse
Affiliation(s)
- Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Farheen B Khan
- Department of Biology, College of Science, The United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar. .,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar. .,Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
48
|
Yao X, Mao Y, Wu D, Zhu Y, Lu J, Huang Y, Guo Y, Wang Z, Zhu S, Li X, Lu Y. Exosomal circ_0030167 derived from BM-MSCs inhibits the invasion, migration, proliferation and stemness of pancreatic cancer cells by sponging miR-338-5p and targeting the Wif1/Wnt8/β-catenin axis. Cancer Lett 2021; 512:38-50. [PMID: 33971282 DOI: 10.1016/j.canlet.2021.04.030] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer (PC) is one of the most lethal malignant tumors and has the lowest survival rate due to early metastasis and drug resistance. Exosomes derived from bone marrow mesenchymal stem cells (BM-MSCs) have emerged as crucial regulators of the progression of various tumors. These vesicles contain abundant circRNAs that have important biological functions. This study aimed to elucidate the role of exosomal circRNAs in PC progression. In this study, we successfully isolated BM-MSCs from human bone marrow based on their surface marker expression and osteogenic and adipogenic differentiation potential. We found that BM-MSC-derived exosomes significantly reduced the invasion, migration, and proliferation of PC cells, as well as tumor stemness. According to whole-transcriptome resequencing and clustering heat map analysis, we identified the key molecule circ_0030167 and miR-338-5p, its downstream target. We revealed that circ_0030167 mainly regulates miR-338-5p, enhances Wif1 expression, and inhibits the Wnt8/β-catenin pathway, thereby inhibiting the stemness of PC cells and tumor progression. Overall, BM-MSC exosomal circ_0030167 contributes to the progression and stemness of PC cells via the miR-338-5p/wif1/Wnt 8/β-catenin axis. Our study provides a new perspective for the treatment of PC.
Collapse
Affiliation(s)
- Xihao Yao
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu province, 226001, PR China
| | - Yingqing Mao
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu province, 226001, PR China; Department of General Surgery, The Sixth People's Hospital of Nantong City, Nantong, Jiangsu province, 226001, PR China
| | - Di Wu
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu province, 226001, PR China
| | - Yi Zhu
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu province, 226001, PR China
| | - Jingjing Lu
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu province, 226001, PR China
| | - Yan Huang
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu province, 226001, PR China
| | - Yibing Guo
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu province, 226001, PR China
| | - Zhiwei Wang
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu province, 226001, PR China
| | - Shajun Zhu
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu province, 226001, PR China
| | - Xiaohong Li
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu province, 226001, PR China.
| | - Yuhua Lu
- Research Center of Clinical Medical and Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu province, 226001, PR China.
| |
Collapse
|
49
|
Raniszewska A, Kwiecień I, Rutkowska E, Rzepecki P, Domagała-Kulawik J. Lung Cancer Stem Cells-Origin, Diagnostic Techniques and Perspective for Therapies. Cancers (Basel) 2021; 13:2996. [PMID: 34203877 PMCID: PMC8232709 DOI: 10.3390/cancers13122996] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
Lung cancer remains one of the most aggressive solid tumors with an overall poor prognosis. Molecular studies carried out on lung tumors during treatment have shown the phenomenon of clonal evolution, thereby promoting the occurrence of a temporal heterogeneity of the tumor. Therefore, the biology of lung cancer is interesting. Cancer stem cells (CSCs) are involved in tumor initiation and metastasis. Aging is still the most important risk factor for lung cancer development. Spontaneously occurring mutations accumulate in normal stem cells or/and progenitor cells by human life resulting in the formation of CSCs. Deepening knowledge of these complex processes and improving early recognition and markers of predictive value are of utmost importance. In this paper, we discuss the CSC hypothesis with an emphasis on age-related changes that initiate carcinogenesis. We analyze the current literature in the field, describe our own experience in CSC investigation and discuss the technical challenges with special emphasis on liquid biopsy.
Collapse
Affiliation(s)
- Agata Raniszewska
- Laboratory of Hematology and Flow Cytometry, Department of Internal Medicine and Hematology, Military Institute of Medicine, 04-141 Warsaw, Poland; (I.K.); (E.R.)
| | - Iwona Kwiecień
- Laboratory of Hematology and Flow Cytometry, Department of Internal Medicine and Hematology, Military Institute of Medicine, 04-141 Warsaw, Poland; (I.K.); (E.R.)
| | - Elżbieta Rutkowska
- Laboratory of Hematology and Flow Cytometry, Department of Internal Medicine and Hematology, Military Institute of Medicine, 04-141 Warsaw, Poland; (I.K.); (E.R.)
| | - Piotr Rzepecki
- Department of Internal Medicine and Hematology, Military Institute of Medicine, 04-141 Warsaw, Poland;
| | - Joanna Domagała-Kulawik
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a Street, 02-097 Warsaw, Poland;
| |
Collapse
|
50
|
Xelwa N, Candy GP, Devar J, Omoshoro-Jones J, Smith M, Nweke EE. Targeting Growth Factor Signaling Pathways in Pancreatic Cancer: Towards Inhibiting Chemoresistance. Front Oncol 2021; 11:683788. [PMID: 34195085 PMCID: PMC8236623 DOI: 10.3389/fonc.2021.683788] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is one of the most deadly cancers, ranking amongst the top leading cause of cancer related deaths in developed countries. Features such as dense stroma microenvironment, abnormal signaling pathways, and genetic heterogeneity of the tumors contribute to its chemoresistant characteristics. Amongst these features, growth factors have been observed to play crucial roles in cancer cell survival, progression, and chemoresistance. Here we review the role of the individual growth factors in pancreatic cancer chemoresistance. Importantly, the interplay between the tumor microenvironment and chemoresistance is explored in the context of pivotal role played by growth factors. We further describe current and future potential therapeutic targeting of these factors.
Collapse
|