1
|
Saad EE, Michel R, Borahay MA. Senescence-associated secretory phenotype (SASP) and uterine fibroids: Association with PD-L1 activation and collagen deposition. Ageing Res Rev 2024; 97:102314. [PMID: 38670462 PMCID: PMC11181954 DOI: 10.1016/j.arr.2024.102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/10/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Uterine fibroids (or uterine leiomyoma, UFs) are one of the most prevalent benign uterine tumors with high proliferation and collagen synthesis capabilities. UFs are a significant worldwide health issue for women, affecting their physical and financial well-being. Risk factors for UFs include age, racial disparities, obesity, uterine infections, hormonal variation, and lifestyle (i.e., diet, exercise, stress, and smoking). Senescence and its associated secretory phenotypes (SASPs) are among the most salient changes accompanying the aging process. As a result, SASPs are suggested to be one of the major contributors to developing UFs. Interleukin 6 (IL-6), IL-8, IL-1, chemokine ligand 20 (CCL-20), and transforming growth factor-beta (TGF-β) are the most prominent SASPs associated with aging. In addition, different processes contribute to UFs such as collagen deposition and the changes in the immune microenvironment. Programmed death ligand 1 is a major player in the tumor immune microenvironment, which helps tumor cells evade immune attacks. This review focuses on the correlation of SASPs on two axes of tumor progression: immune suppression and collagen deposition. This review opens the door towards more investigations regarding changes in the UF immune microenvironment and age-UFs correlation and thus, a novel targeting approach for UF treatment.
Collapse
Affiliation(s)
- Eslam E Saad
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rachel Michel
- Department of Population, Family, and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, MD 21205, USA
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
2
|
Lu T, Chen F, Yao J, Bu Z, Kyani A, Liang B, Chen S, Zheng Y, Liang H, Neamati N, Liu Y. Design of FK866-Based Degraders for Blocking the Nonenzymatic Functions of Nicotinamide Phosphoribosyltransferase. J Med Chem 2024; 67:8099-8121. [PMID: 38722799 DOI: 10.1021/acs.jmedchem.4c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is an attractive therapeutic target for treating select cancers. There are two forms of NAMPT: intracellular NAMPT (iNAMPT, the rate-limiting enzyme in the mammalian NAD+ main synthetic pathway) and extracellular NAMPT (eNAMPT, a cytokine with protumorigenic function). Reported NAMPT inhibitors only inhibit iNAMPT and show potent activities in preclinical studies. Unfortunately, they failed to show efficacy due to futility and toxicity. We developed a series of FK866-based NAMPT-targeting PROTACs and identified LYP-8 as a potent and effective NAMPT degrader that simultaneously diminished iNAMPT and eNAMPT. Importantly, LYP-8 demonstrated superior efficacy and safety in mice when compared to the clinical candidate, FK866. This study highlights the importance and feasibility of applying PROTACs as a superior strategy for interfering with both the enzymatic function of NAMPT (iNAMPT) and nonenzymatic function of NAMPT (eNAMPT), which is difficult to achieve with conventional NAMPT inhibitors.
Collapse
Affiliation(s)
- Tiangong Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fangfang Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jian Yao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Zixuan Bu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Armita Kyani
- Department of Medicinal Chemistry, College of Pharmacy and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Benji Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Shaoting Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Yuxiang Zheng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yanghan Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
3
|
Semerena E, Nencioni A, Masternak K. Extracellular nicotinamide phosphoribosyltransferase: role in disease pathophysiology and as a biomarker. Front Immunol 2023; 14:1268756. [PMID: 37915565 PMCID: PMC10616597 DOI: 10.3389/fimmu.2023.1268756] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) plays a central role in mammalian cell metabolism by contributing to nicotinamide adenine dinucleotide biosynthesis. However, NAMPT activity is not limited to the intracellular compartment, as once secreted, the protein accomplishes diverse functions in the extracellular space. Extracellular NAMPT (eNAMPT, also called visfatin or pre-B-cell colony enhancing factor) has been shown to possess adipocytokine, pro-inflammatory, and pro-angiogenic activities. Numerous studies have reported the association between elevated levels of circulating eNAMPT and various inflammatory and metabolic disorders such as obesity, diabetes, atherosclerosis, arthritis, inflammatory bowel disease, lung injury and cancer. In this review, we summarize the current state of knowledge on eNAMPT biology, proposed roles in disease pathogenesis, and its potential as a disease biomarker. We also briefly discuss the emerging therapeutic approaches for eNAMPT inhibition.
Collapse
Affiliation(s)
- Elise Semerena
- Light Chain Bioscience - Novimmune SA, Plan-les-Ouates, Switzerland
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | | |
Collapse
|
4
|
Rahimzada M, Nahavandi M, Saffari M, Shafaei A, Mosavat A, Ahmadi Gezeldasht S, Ariaee N, Valizadeh N, Rahimi H, Rezaee SA, Derakhshan M. Gene expression study of host-human T-cell leukaemia virus type 1 (HTLV-1) interactions: adult T-cell leukaemia/lymphoma (ATLL). Mol Biol Rep 2023; 50:7479-7487. [PMID: 37480512 DOI: 10.1007/s11033-023-08626-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/21/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND In HTLV-1-associated malignant disease, adult T-cell leukaemia/lymphoma (ATLL), the interaction of virus and host was evaluated at the chemokines gene expression level. Also, IL-1β and Caspase-1 expressions were evaluated to investigate the importance of pyroptosis in disease development and progression. METHODS AND RESULTS The expression of host CCR6 and CXCR-3 and the HTLV-1 proviral load (PVL), Tax, and HBZ were assessed in 17 HTLV-1 asymptomatic carriers (ACs) and 12 ATLL patients using the reverse transcription-quantitative polymerase chain reaction (RT-qPCR), TaqMan method. Moreover, RT-qPCR, SYBR Green assay were performed to measure Caspase-1 and IL-1β expression. HTLV-1-Tax did not express in 91.5% of the ATLLs, while HBZ was expressed in all ATLLs. The expression of CXCR3 dramatically decreased in ATLLs compared to ACs (p = 0.001). The expression of CCR6 was lower in ATLLs than ACs (p = 0.04). The mean of PVL in ATLL patients was statistically higher than ACs (p = 0.001). Furthermore, the expression of the IL-1β between ATLLs and ACs was not statistically significant (p = 0.4). In contrast, there was a meaningful difference between Caspase-1 in ATLLs and ACs (p = 0.02). CONCLUSIONS The present study indicated that in the first stage of ATLL malignancy toward acute lymphomatous, CXCR3 and its progression phase may target the pyroptosis process. Mainly, HBZ expression could be a novel therapeutic target.
Collapse
Affiliation(s)
- Masooma Rahimzada
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi-Square, Medical Campus, Mashhad, 9177948564, Iran
| | - Mehri Nahavandi
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi-Square, Medical Campus, Mashhad, 9177948564, Iran
| | - Mona Saffari
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi-Square, Medical Campus, Mashhad, 9177948564, Iran
| | - Azam Shafaei
- Blood Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Sanaz Ahmadi Gezeldasht
- Blood Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Nazila Ariaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi-Square, Medical Campus, Mashhad, 9177948564, Iran
| | - Narges Valizadeh
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi-Square, Medical Campus, Mashhad, 9177948564, Iran
| | - Hossein Rahimi
- Hematology and Oncology Division, Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi-Square, Medical Campus, Mashhad, 9177948564, Iran.
| | - Mohammad Derakhshan
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi-Square, Medical Campus, Mashhad, 9177948564, Iran.
| |
Collapse
|
5
|
Zheng Y, Xie L, Yang D, Luo K, Li X. Small-molecule natural plants for reversing liver fibrosis based on modulation of hepatic stellate cells activation: An update. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154721. [PMID: 36870824 DOI: 10.1016/j.phymed.2023.154721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Liver fibrosis (LF) is a trauma repair process carried out by the liver in response to various acute and chronic liver injuries. Its primary pathological characteristics are excessive proliferation and improper dismissal of the extracellular matrix, and if left untreated, it will progress into cirrhosis, liver cancer, and other diseases. Hepatic stellate cells (HSCs) activation is intimately associated to the onset of LF, and it is anticipated that addressing HSCs proliferation can reverse LF. Plant-based small-molecule medications have anti-LF properties, and their mechanisms of action involve suppression of extracellular matrix abnormally accumulating as well as anti-inflammation and anti-oxidative stress. New targeting HSC agents will therefore be needed to provide a potential curative response. PURPOSE The most recent HSC routes and small molecule natural plants that target HSC described domestically and internationally in recent years were examined in this review. METHODS The data was looked up using resources including ScienceDirect, CNKI, Web of Science, and PubMed. Keyword searches for information on hepatic stellate cells included "liver fibrosis", "natural plant", "hepatic stellate cells", "adverse reaction", "toxicity", etc. RESULTS: We discovered that plant monomers can target and control various pathways to prevent the activation and proliferation of HSC and promote the apoptosis of HSC in order to achieve the anti-LF effect in this work by compiling the plant monomers that influence many common pathways of HSC in recent years. It demonstrates the wide-ranging potential of plant monomers targeting different routes to combat LF, with a view to supplying new concepts and new strategies for natural plant therapy of LF as well as research and development of novel pharmaceuticals. The investigation of kaempferol, physalin B, and other plant monomers additionally motivated researchers to focus on the structure-activity link between the main chemicals and LF. CONCLUSION The creation of novel pharmaceuticals can benefit greatly from the use of natural components. They are often harmless for people, non-target creatures, and the environment because they are found in nature, and they can be employed as the starting chemicals for the creation of novel medications. Natural plants are valuable resources for creating new medications with fresh action targets because they feature original and distinctive action mechanisms.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Long Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
6
|
Qin L, Wu J, Sun X, Huang X, Huang W, Weng C, Cai J. The regulatory role of metabolic organ-secreted factors in the nonalcoholic fatty liver disease and cardiovascular disease. Front Cardiovasc Med 2023; 10:1119005. [PMID: 37180779 PMCID: PMC10169694 DOI: 10.3389/fcvm.2023.1119005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic metabolic disease characterized by an excessive accumulation of fat in the liver, which is becoming a major global health problem, affecting about a quarter of the population. In the past decade, mounting studies have found that 25%-40% of NAFLD patients have cardiovascular disease (CVD), and CVD is one of the leading causes of death in these subjects. However, it has not attracted enough awareness and emphasis from clinicians, and the underlying mechanisms of CVD in NAFLD patients remain unclear. Available research reveals that inflammation, insulin resistance, oxidative stress, and glucose and lipid metabolism disorders play indispensable roles in the pathogenesis of CVD in NAFLD. Notably, emerging evidence indicates that metabolic organ-secreted factors, including hepatokines, adipokines, cytokines, extracellular vesicles, and gut-derived factors, are also involved in the occurrence and development of metabolic disease and CVD. Nevertheless, few studies have focused on the role of metabolic organ-secreted factors in NAFLD and CVD. Therefore, in this review, we summarize the relationship between metabolic organ-secreted factors and NAFLD as well as CVD, which is beneficial for clinicians to comprehensive and detailed understanding of the association between both diseases and strengthen management to improve adverse cardiovascular prognosis and survival.
Collapse
Affiliation(s)
| | | | | | | | | | - Chunyan Weng
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jingjing Cai
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
7
|
Ramser A, Dridi S. Hormonal regulation of visfatin and adiponectin system in quail muscle cells. Comp Biochem Physiol A Mol Integr Physiol 2023; 281:111425. [PMID: 37044369 DOI: 10.1016/j.cbpa.2023.111425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/08/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Visfatin and adiponectin are two adipokines known to regulate energy homeostasis and stress response within different peripheral tissues. Their role and regulation in highly metabolically active tissue such as the muscle is of particular interest. As modern poultry exhibit insulin resistance, obesity, and hyperglycemia along with a lack of insight into the regulation of these avian adipokines, we undertook the present work to determine the regulation of visfatin and adiponectin system by cytokines and obesity-related hormones in a relevant in vitro model of avian muscle, quail muscle (QM7) cells. Cells were treated with pro-inflammatory cytokine IL-6 (5 and 10 ng/mL) and TNFα (5 and 10 ng/mL), as well as leptin (10 and 100 ng/mL) and both orexin-A and orexin-B (ORX-A/B) (5 and 10 ng/mL). Results showed significant increases in visfatin mRNA abundance under both cytokines (IL-6 and TNFα), and down regulation with ORX-B treatment. Adiponectin expression was also upregulated by pro-inflammatory cytokines (IL-6 and TNFα), but down regulated by leptin, ORX-A, and ORXB. High doses of IL-6 and TNFα up regulated the expression of adiponectin receptors AdipoR1 and AdipoR2, respectively. Leptin and orexin treatments also down regulated both AdipoR1 and AdipoR2 expression. Taken together, this is the first report showing a direct response of visfatin and the adiponectin system to pro-inflammatory and obesity-related hormones in avian muscle cells.
Collapse
Affiliation(s)
- Alison Ramser
- University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, AR 72701, USA
| | - Sami Dridi
- University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, AR 72701, USA.
| |
Collapse
|
8
|
Regulatory Networks, Management Approaches, and Emerging Treatments of Nonalcoholic Fatty Liver Disease. Can J Gastroenterol Hepatol 2022; 2022:6799414. [PMID: 36397950 PMCID: PMC9666027 DOI: 10.1155/2022/6799414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/05/2022] [Indexed: 11/09/2022] Open
Abstract
The pathogenesis of NAFLD is complex and diverse, involving multiple signaling pathways and cytokines from various organs. Hepatokines, stellakines, adipokines, and myokines secreted by hepatocytes, hepatic stellate cells, adipose tissue, and myocytes play an important role in the occurrence and development of nonalcoholic fatty liver disease (NAFLD). The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) contributes to the progression of NAFLD by mediating liver inflammation, immune response, hepatocyte death, and later compensatory proliferation. In this review, we first discuss the crosstalk and interaction between hepatokines, stellakines, adipokines, and myokines and NF-κB in NAFLD. The characterization of the crosstalk of NF-κB with these factors will provide a better understanding of the molecular mechanisms involved in the progression of NAFLD. In addition, we examine new expert management opinions for NAFLD and explore the therapeutic potential of silymarin in NAFLD/NASH.
Collapse
|
9
|
Visfatin Amplifies Cardiac Inflammation and Aggravates Cardiac Injury via the NF-κB p65 Signaling Pathway in LPS-Treated Mice. Mediators Inflamm 2022; 2022:3306559. [PMID: 36262545 PMCID: PMC9576419 DOI: 10.1155/2022/3306559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
Background Visfatin is an adipocytokine that has been demonstrated to be involved in cardiovascular diseases. This study aims at determining the role of visfatin in sepsis-induced cardiac injury and identify its possible mechanisms. Methods Dynamic changes in visfatin expression in mice with lipopolysaccharide- (LPS-) induced septicemia were measured. Additionally, mice were pretreated with visfatin and further administered LPS to observe the effects of visfatin on cardiac injury. Finally, septic mice were also pretreated with JSH-23 to investigate whether visfatin regulates cardiac injury via the NF-κB p65 pathway. Results Visfatin expression levels in both the heart and serum were increased in LPS-treated mice and peaked at 6 hours, and visfatin was derived from cardiac macrophages. In septic mice, pretreatment with visfatin reduced the survival rate, worsened cardiac dysfunction, and increased the expression of cardiac injury markers, including creatine kinase myocardial bound (CK-MB) and lactate dehydrogenase (LDH). Treatment with visfatin also increased the infiltration of CD3+ cells and F4/80+ cells, amplified the cardiac inflammatory response, and elevated myocardial cell apoptosis. Treatment with JSH-23 reversed the effects of visfatin in septic mice. Conclusions This study showed that visfatin amplifies the cardiac inflammatory response and aggravates cardiac injury through the p65 signaling pathway. Visfatin may be a clinical target for preventing cardiac injury in sepsis.
Collapse
|
10
|
Interleukin-36α is elevated in diffuse systemic sclerosis and may potentiate fibrosis. Cytokine 2022; 156:155921. [PMID: 35667282 DOI: 10.1016/j.cyto.2022.155921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022]
Abstract
Systemic sclerosis (SSc) is an autoimmune prototypical connective tissues disease that results in alterations in vasculature, inflammation and fibrosis of the skin. Interleukin-1 family cytokines has been implicated in the disease including IL-1. IL-36α is an IL-1 family member that is clearly implicated in psoriatic skin disease but its role in systemic sclerosis disease is not clear. The aim of this work is to evaluate the levels and role of IL-36α in systemic sclerosis. Early diffuse SSc patients sera was isolated along with healthy controls and IL-36 levels quantified by ELISA. In vitro analysis was also undertaken with primary dermal fibroblasts with recombinant IL-36α and keratinocyte cells were also incubated with IL-36α. Cytokines were measured by ELISA. Serum IL-36 was significantly elevated compared to healthy controls. Elevated neutrophil elastase was also elevated in the matched sera. IL-36 was not directly pro-fibrotic in dermal fibroblasts but did induce pro-inflammatory cytokines that were dependant on the MAPK pathway for their release. IL-36α also led to release of CCL20 and CCL2 in keratinocytes which may potentiate fibrosis. IL-36α is elevated in SSc serum and whilst not directly pro-fibrotic it may through keratinocytes, potentiate fibrosis through keratinocyte-immune fibroblast cross-talk.
Collapse
|
11
|
Heo YJ, Choi SE, Lee N, Jeon JY, Han SJ, Kim DJ, Kang Y, Lee KW, Kim HJ. Visfatin exacerbates hepatic inflammation and fibrosis in a methionine-choline-deficient diet mouse model. J Gastroenterol Hepatol 2021; 36:2592-2600. [PMID: 33600604 DOI: 10.1111/jgh.15465] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/14/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Non-alcoholic fatty liver disease (NAFLD) ranges from simple steatosis to non-alcoholic steatohepatitis, which is characterized by hepatic inflammation that can progress to fibrosis, cirrhosis, and hepatocellular carcinoma. Visfatin, an adipocytokine, was reported to induce pro-inflammatory cytokines and can be associated with liver fibrosis. We investigated the role of visfatin on hepatic inflammation and fibrosis in a methionine-choline-deficient (MCD)-diet-induced steatohepatitis mouse model. METHODS Eight-week-old male C57BL/6 J mice were randomly assigned into one of three groups: (1) saline-injected control diet group; (2) saline-injected MCD diet group; and (3) visfatin-injected MCD diet group (n = 8 per group). Mice were administered intravenous saline or 10 μg/kg of recombinant murine visfatin for 2 weeks. Histologic assessment of liver and biochemical and molecular measurements of endoplasmic reticulum (ER) stress, reactive oxidative stress (ROS), inflammation, and fibrosis were performed in livers from these animals. RESULTS Visfatin injection aggravated hepatic steatosis and increased plasma alanine aminotransferase and aspartate aminotransferase concentrations. Visfatin increased inflammatory cell infiltration (as indicated by F4/80, CD68, ly6G, and CD3 mRNA expression) and expression of chemokines in the liver. Visfatin also increased the expression of pro-inflammatory cytokines (IL-1β, TNF-α, and IL-6) and activated fibrosis markers (CTGF, TIMP1, collagen 1α2, collagen 3α2, αSMA, fibronectin, and vimentin) in liver. Livers of visfatin-injected mice showed upregulation of ER stress and ROS and activation of JNK signaling. CONCLUSIONS These results suggest that visfatin aggravates hepatic inflammation together with induction of ER and oxidative stress and exacerbates fibrosis in an MCD-diet-fed mouse model of NAFLD.
Collapse
Affiliation(s)
- Yu Jung Heo
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Sung-E Choi
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Nami Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ja Young Jeon
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Seung Jin Han
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Dae Jung Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yup Kang
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Kwan Woo Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hae Jin Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
12
|
Tao H, Shi P, Zhao XD, Xuan HY, Gong WH, Ding XS. DNMT1 deregulation of SOCS3 axis drives cardiac fibroblast activation in diabetic cardiac fibrosis. J Cell Physiol 2021; 236:3481-3494. [PMID: 32989761 DOI: 10.1002/jcp.30078] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 11/09/2022]
Abstract
Cardiac fibrosis is one of the main pathological manifestations of diabetic cardiomyopathy (DCM). Cardiac fibroblast activation is a key effector of cells resulting in diabetic cardiac fibrosis. However, the underlying mechanism of cardiac fibroblast activation and diabetic cardiac fibrosis remains unclear. Accumulating evidence suggests that DNA methylation alterations play a central role in cardiac fibroblast activation. In this study, we demonstrated that DNA methyltransferase 1 (DNMT1)-mediated suppression of cytokine signaling 3 (SOCS3) promoter hypermethylation leads to downregulation of SOCS3 expression in diabetic cardiac fibrosis. High glucose-induced expression of DNMT1 was increased in cardiac fibroblasts, while the expression of SOCS3 was decreased. Downregulation of SOCS3 facilitated activation of STAT3 to promote cardiac fibroblast activation and collagen deposition. Genetic or pharmacological inactivation of DNMT1 reversed the activated phenotype of cardiac fibroblasts. Clinically, we observed a significant inverse correlation between DNMT1 and SOCS3 expression levels, and loss of SOCS3 expression or increased expression of DNMT1. Taken together, these findings identify DNMT1 silencing of SOCS3 axis as a driver of cardiac fibroblast activation in diabetic cardiac fibrosis. These results provide a scientific and new explanation of the underlying mechanism of diabetic cardiac fibrosis.
Collapse
Affiliation(s)
- Hui Tao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Peng Shi
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, China
| | - Xu-Dong Zhao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, China
| | - Hai-Yang Xuan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wen-Hui Gong
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xuan-Sheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|