1
|
Lv J, Yang S, Zhou W, Liu Z, Tan J, Wei M. Microbial regulation of plant secondary metabolites: Impact, mechanisms and prospects. Microbiol Res 2024; 283:127688. [PMID: 38479233 DOI: 10.1016/j.micres.2024.127688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/17/2024]
Abstract
Plant secondary metabolites possess a wide range of pharmacological activities and play crucial biological roles. They serve as both a defense response during pathogen attack and a valuable drug resource. The role of microorganisms in the regulation of plant secondary metabolism has been widely recognized. The addition of specific microorganisms can increase the synthesis of secondary metabolites, and their beneficial effects depend on environmental factors and plant-related microorganisms. This article summarizes the impact and regulatory mechanisms of different microorganisms on the main secondary metabolic products of plants. We emphasize the mechanisms by which microorganisms regulate hormone levels, nutrient absorption, the supply of precursor substances, and enzyme and gene expression to promote the accumulation of plant secondary metabolites. In addition, the possible negative feedback regulation of microorganisms is discussed. The identification of additional unknown microbes and other driving factors affecting plant secondary metabolism is essential. The prospects for further analysis of medicinal plant genomes and the establishment of a genetic operation system for plant secondary metabolism research are proposed. This study provides new ideas for the use of microbial resources for biological synthesis research and the improvement of crop anti-inverse traits for the use of microbial resources.
Collapse
Affiliation(s)
- Jiayan Lv
- School of Agriculture, Shenzhen Campus, Sun Yat-sen University, Guangdong, Shenzhen 518107, China
| | - Shuangyu Yang
- School of Agriculture, Shenzhen Campus, Sun Yat-sen University, Guangdong, Shenzhen 518107, China
| | - Wei Zhou
- School of Agriculture, Shenzhen Campus, Sun Yat-sen University, Guangdong, Shenzhen 518107, China
| | - Zhongwang Liu
- School of Agriculture, Shenzhen Campus, Sun Yat-sen University, Guangdong, Shenzhen 518107, China
| | - Jinfang Tan
- School of Agriculture, Shenzhen Campus, Sun Yat-sen University, Guangdong, Shenzhen 518107, China
| | - Mi Wei
- School of Agriculture, Shenzhen Campus, Sun Yat-sen University, Guangdong, Shenzhen 518107, China; Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China.
| |
Collapse
|
2
|
López-Vázquez AL, Sepúlveda-García EB, Rubio-Rodríguez E, Ponce-Noyola T, Trejo-Tapia G, Barrera-Cortés J, Cerda-García-Rojas CM, Ramos-Valdivia AC. Induction of Monoterpenoid Oxindole Alkaloids Production and Related Biosynthetic Gene Expression in Response to Signaling Molecules in Hamelia patens Plant Cultures. PLANTS (BASEL, SWITZERLAND) 2024; 13:966. [PMID: 38611495 PMCID: PMC11013434 DOI: 10.3390/plants13070966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
Hamelia patens (Rubiaceae), known as firebush, is a source of bioactive monoterpenoid oxindole alkaloids (MOAs) derived from monoterpenoid indole alkaloids (MIAs). With the aim of understanding the regulation of the biosynthesis of these specialized metabolites, micropropagated plants were elicited with jasmonic acid (JA) and salicylic acid (SA). The MOA production and MIA biosynthetic-related gene expression were evaluated over time. The production of MOAs was increased compared to the control up to 2-fold (41.3 mg g DW-1) at 72 h in JA-elicited plants and 2.5-fold (42.4 mg g DW-1) at 120 h in plants elicited with SA. The increment concurs with the increase in the expression levels of the genes HpaLAMT, HpaTDC, HpaSTR, HpaNPF2.9, HpaTHAS1, and HpaTHAS2. Interestingly, it was found that HpaSGD was downregulated in both treatments after 24 h but in the SA treatment at 120 h only was upregulated to 8-fold compared to the control. In this work, we present the results of MOA production in H. patens and discuss how JA and SA might be regulating the central biosynthetic steps that involve HpaSGD and HpaTHAS genes.
Collapse
Affiliation(s)
- Ana Luisa López-Vázquez
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico 07360, Mexico; (A.L.L.-V.); (T.P.-N.); (J.B.-C.)
| | - Edgar Baldemar Sepúlveda-García
- Laboratorio de Biotecnología Vegetal, Instituto de Biotecnología, División de Estudios de Posgrado, Universidad del Papaloapan, San Juan de Tuxtepec 68301, Oaxaca, Mexico;
| | - Elizabeth Rubio-Rodríguez
- Departamento de Biotecnología, Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional (CEPROBI-IPN), Yautepec 62730, Morelos, Mexico; (E.R.-R.); (G.T.-T.)
| | - Teresa Ponce-Noyola
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico 07360, Mexico; (A.L.L.-V.); (T.P.-N.); (J.B.-C.)
| | - Gabriela Trejo-Tapia
- Departamento de Biotecnología, Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional (CEPROBI-IPN), Yautepec 62730, Morelos, Mexico; (E.R.-R.); (G.T.-T.)
| | - Josefina Barrera-Cortés
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico 07360, Mexico; (A.L.L.-V.); (T.P.-N.); (J.B.-C.)
| | - Carlos M. Cerda-García-Rojas
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico 07360, Mexico;
| | - Ana C. Ramos-Valdivia
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico 07360, Mexico; (A.L.L.-V.); (T.P.-N.); (J.B.-C.)
| |
Collapse
|
3
|
Mu D, Shao Y, He J, Zhu L, Qiu D, Wilson IW, Zhang Y, Pan L, Zhou Y, Lu Y, Tang Q. Evaluation of Reference Genes for Normalizing RT-qPCR and Analysis of the Expression Patterns of WRKY1 Transcription Factor and Rhynchophylline Biosynthesis-Related Genes in Uncaria rhynchophylla. Int J Mol Sci 2023; 24:16330. [PMID: 38003520 PMCID: PMC10671239 DOI: 10.3390/ijms242216330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Uncaria rhynchophylla (Miq.) Miq. ex Havil, a traditional medicinal herb, is enriched with several pharmacologically active terpenoid indole alkaloids (TIAs). At present, no method has been reported that can comprehensively select and evaluate the appropriate reference genes for gene expression analysis, especially the transcription factors and key enzyme genes involved in the biosynthesis pathway of TIAs in U. rhynchophylla. Reverse transcription quantitative PCR (RT-qPCR) is currently the most common method for detecting gene expression levels due to its high sensitivity, specificity, reproducibility, and ease of use. However, this methodology is dependent on selecting an optimal reference gene to accurately normalize the RT-qPCR results. Ten candidate reference genes, which are homologues of genes used in other plant species and are common reference genes, were used to evaluate the expression stability under three stress-related experimental treatments (methyl jasmonate, ethylene, and low temperature) using multiple stability analysis methodologies. The results showed that, among the candidate reference genes, S-adenosylmethionine decarboxylase (SAM) exhibited a higher expression stability under the experimental conditions tested. Using SAM as a reference gene, the expression profiles of 14 genes for key TIA enzymes and a WRKY1 transcription factor were examined under three experimental stress treatments that affect the accumulation of TIAs in U. rhynchophylla. The expression pattern of WRKY1 was similar to that of tryptophan decarboxylase (TDC) under ETH treatment. This research is the first to report the stability of reference genes in U. rhynchophylla and provides an important foundation for future gene expression analyses in U. rhynchophylla. The RT-qPCR results indicate that the expression of WRKY1 is similar to that of TDC under ETH treatment. It may coordinate the expression of TDC, providing a possible method to enhance alkaloid production in the future through synthetic biology.
Collapse
Affiliation(s)
- Detian Mu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Yingying Shao
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jialong He
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Lina Zhu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Deyou Qiu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Iain W Wilson
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Canberra, ACT 2601, Australia
| | - Yao Zhang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Limei Pan
- Key Laboratory of Guangxi for High-Quality Formation and Utilization of Dai-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Yu Zhou
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Ying Lu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Qi Tang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Changsha 410208, China
| |
Collapse
|
4
|
Wu X, Yang Y, Zhang H. Microbial fortification of pharmacological metabolites in medicinal plants. Comput Struct Biotechnol J 2023; 21:5066-5072. [PMID: 37867972 PMCID: PMC10589376 DOI: 10.1016/j.csbj.2023.10.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023] Open
Abstract
Medicinal plants are rich in secondary metabolites with beneficial pharmacological effects. The production of plant secondary metabolites is subjected to the influences by environmental factors including the plant-associated microbiome, which is crucial to the host's fitness and survival. As a result, research interests are increasing in exploiting microbial capacities for enhancing plant production of pharmacological metabolites. A growing body of recent research provides accumulating evidence in support of developing microbe-based tools for achieving this objective. This mini review presents brief summaries of recent studies on medicinal plants that demonstrate microbe-augmented production of pharmacological terpenoids, polyphenols, and alkaloids, followed by discussions on some key questions beyond the promising observations. Explicit molecular insights into the underlying mechanisms will enhance microbial applications for metabolic fortification in medicinal plants.
Collapse
Affiliation(s)
- Xiaoxuan Wu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Yang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- Nanchang Institute of Industrial Innovation, Chinese Academy of Sciences, Nanchang 330224, China
- Jiangxi Center for Innovation and Incubation of Industrial Technologies, Chinese Academy of Sciences, Nanchang 330200, China
| |
Collapse
|
5
|
Wang YZ, Ye YX, Lu JB, Wang X, Lu HB, Zhang ZL, Ye ZX, Lu YW, Sun ZT, Chen JP, Li JM, Zhang CX, Huang HJ. Horizontally Transferred Salivary Protein Promotes Insect Feeding by Suppressing Ferredoxin-Mediated Plant Defenses. Mol Biol Evol 2023; 40:msad221. [PMID: 37804524 PMCID: PMC10583550 DOI: 10.1093/molbev/msad221] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023] Open
Abstract
Herbivorous insects such as whiteflies, planthoppers, and aphids secrete abundant orphan proteins to facilitate feeding. Yet, how these genes are recruited and evolve to mediate plant-insect interaction remains unknown. In this study, we report a horizontal gene transfer (HGT) event from fungi to an ancestor of Aleyrodidae insects approximately 42 to 190 million years ago. BtFTSP1 is a salivary protein that is secreted into host plants during Bemisia tabaci feeding. It targets a defensive ferredoxin 1 in Nicotiana tabacum (NtFD1) and disrupts the NtFD1-NtFD1 interaction in plant cytosol, leading to the degradation of NtFD1 in a ubiquitin-dependent manner. Silencing BtFTSP1 has negative effects on B. tabaci feeding while overexpressing BtFTSP1 in N. tabacum benefits insects and rescues the adverse effect caused by NtFD1 overexpression. The association between BtFTSP1 and NtFD1 is newly evolved after HGT, with the homologous FTSP in its fungal donor failing to interact and destabilize NtFD1. Our study illustrates the important roles of horizontally transferred genes in plant-insect interactions and suggests the potential origin of orphan salivary genes.
Collapse
Affiliation(s)
- Yi-Zhe Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yu-Xuan Ye
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hai-Bin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Ze-Long Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yu-Wen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zong-Tao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
6
|
Liao Y, Wang JY, Pan Y, Zou X, Wang C, Peng Y, Ao YL, Lam MF, Zhang X, Zhang XQ, Shi L, Zhang S. The Protective Effect of (-)-Tetrahydroalstonine against OGD/R-Induced Neuronal Injury via Autophagy Regulation. Molecules 2023; 28:molecules28052370. [PMID: 36903613 PMCID: PMC10005631 DOI: 10.3390/molecules28052370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Here, (-)-Tetrahydroalstonine (THA) was isolated from Alstonia scholaris and investigated for its neuroprotective effect towards oxygen-glucose deprivation/re-oxygenation (OGD/R)-induced neuronal damage. In this study, primary cortical neurons were pre-treated with THA and then subjected to OGD/R induction. The cell viability was tested by the MTT assay, and the states of the autophagy-lysosomal pathway and Akt/mTOR pathway were monitored by Western blot analysis. The findings suggested that THA administration increased the cell viability of OGD/R-induced cortical neurons. Autophagic activity and lysosomal dysfunction were found at the early stage of OGD/R, which were significantly ameliorated by THA treatment. Meanwhile, the protective effect of THA was significantly reversed by the lysosome inhibitor. Additionally, THA significantly activated the Akt/mTOR pathway, which was suppressed after OGD/R induction. In summary, THA exhibited promising protective effects against OGD/R-induced neuronal injury by autophagy regulation through the Akt/mTOR pathway.
Collapse
Affiliation(s)
- Yumei Liao
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jun-Ya Wang
- Guangdong Provincial Engineering Research Center for Modernization of TCM, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yan Pan
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xueyi Zou
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Engineering Research Center for Modernization of TCM, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Chaoqun Wang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yinghui Peng
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yun-Lin Ao
- Guangdong Provincial Engineering Research Center for Modernization of TCM, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Mei Fong Lam
- Centro Hospitalar Conde de São Januário, Macau, China
| | - Xiaoshen Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Xiao-Qi Zhang
- Guangdong Provincial Engineering Research Center for Modernization of TCM, College of Pharmacy, Jinan University, Guangzhou 510632, China
- NMPA Key Laboratory for Quality Evaluation of TCM, Jinan University, Guangzhou 510632, China
- Correspondence: (X.-Q.Z.); (S.Z.)
| | - Lei Shi
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Shiqing Zhang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- Correspondence: (X.-Q.Z.); (S.Z.)
| |
Collapse
|
7
|
Soltani N, Firouzabadi FN, Shafeinia A, Shirali M, Sadr AS. De Novo transcriptome assembly and differential expression analysis of catharanthus roseus in response to salicylic acid. Sci Rep 2022; 12:17803. [PMID: 36280677 PMCID: PMC9592577 DOI: 10.1038/s41598-022-20314-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/12/2022] [Indexed: 01/19/2023] Open
Abstract
The anti-cancer vinblastine and vincristine alkaloids can only be naturally found in periwinkle (Catharanthus roseus). Both of these alkaloids' accumulations are known to be influenced by salicylic acid (SA). The transcriptome data to reveal the induction effect (s) of SA, however, seem restricted at this time. In this study, the de novo approach of transcriptome assembly was performed on the RNA-Sequencing (RNA-Seq) data in C. roseus. The outcome demonstrated that SA treatment boosted the expression of all the genes in the Terpenoid Indole Alkaloids (TIAs) pathway that produces the vinblastine and vincristine alkaloids. These outcomes supported the time-course measurements of vincristine alkaloid, the end product of the TIAs pathway, and demonstrated that SA spray had a positive impact on transcription and alkaloid synthesis. Additionally, the abundance of transcription factor families including bHLH, C3H, C2H2, MYB, MYB-related, AP2/ ERF, NAC, bZIP, and WRKY suggests a role for a variety of transcription families in response to the SA stimuli. Di-nucleotide and tri-nucleotide SSRs were the most prevalent SSR markers in microsatellite analyses, making up 39% and 34% of all SSR markers, respectively, out of the 77,192 total SSRs discovered.
Collapse
Affiliation(s)
- Narges Soltani
- Production Engineering and Plant Genetics Department, Faculty of Agriculture and Natural Resources, Lorestan University, P.O. Box 465, Khorramabad, Iran
| | - Farhad Nazarian Firouzabadi
- Production Engineering and Plant Genetics Department, Faculty of Agriculture and Natural Resources, Lorestan University, P.O. Box 465, Khorramabad, Iran.
| | - Alireza Shafeinia
- Department of Plant Production & Genetics, Faculty of Agriculture, Agricultural Sciences & Natural Resources, University of Khuzestan, Mollasani, Iran
| | - Masoud Shirali
- Agri-Food and Biosciences Institute, Hillsborough, BT26 6DR, UK
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5AJ, UK
| | - Ayeh Sadat Sadr
- South of Iran Aquaculture Research Institute (SIARI), Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization (AREEO), Ahvaz, Iran.
| |
Collapse
|
8
|
Ahmadzadeh M, Keshtkar AH, Moslemkhany K, Ahmadzadeh M. Effect of the plant probiotic bacteria on terpenoid indole alkaloid biosynthesis pathway gene expression profiling, vinblastine and vincristine content in the root of Catharanthus roseus. Mol Biol Rep 2022; 49:10357-10365. [PMID: 36097118 DOI: 10.1007/s11033-022-07841-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 07/30/2022] [Accepted: 08/04/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Catharanthus roseus is the sole resource of vinblastine and vincristine, two TIAs of great interest for their powerful anticancer activities. Increasing the concentration of these alkaloids in various organs of the plant is one of the important goals in C. roseus breeding programs. Plant probiotic bacteria (PBB) act as biotic elicitors and can induce the synthesis of secondary products in plants. The purpose of this research is to study the effects of PBB on expression of the TIA biosynthetic pathway genes and the content of alkaloids in C. roseus. METHODS AND RESULTS The individual and combined effects of P. fluorescens strains 169 and A. brasilense strains Ab-101 was studied for expression of the TIA biosynthetic pathway genes (G10H, DAT, T16H and CrPRX) using qRT-PCR and the content of vinblastine and vincristine using HPLC method in roots of C. roseus. P. fluorescens. This drastically increased the content of vinblastine and vincristine alkaloids, compared to the control in the roots, to 174 and 589 (µg/g), respectively. Molecular analysis showed bacterium significantly increased the expression of more genes in the TIA biosynthetic pathway compared to the control. P. fluorescens increased the expression of the final gene of the biosynthetic pathway (CrPRX) 47.9 times compared to the control. Our findings indicate the correlation between transcriptional and metabolic outcomes. The same was true for A. brasilense. CONCLUSIONS It can be concluded that seed treatments and seedling root treatments composed of naturally occurring probiotic bacteria are likely to be widely applicable for inducing enhanced alkaloid contents in medicinal plants.
Collapse
Affiliation(s)
- M Ahmadzadeh
- Faculty of Agriculture, Buali Sina University, Hamedan, Iran
| | - A H Keshtkar
- Faculty of Agriculture, Buali Sina University, Hamedan, Iran.
| | - K Moslemkhany
- Seed and Plant Certification and Registration Institute, Agricultural Research, Education and Extension Organisation (AREEO), Tehran, Iran
| | - M Ahmadzadeh
- College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
9
|
Morey KJ, Peebles CAM. Hairy roots: An untapped potential for production of plant products. FRONTIERS IN PLANT SCIENCE 2022; 13:937095. [PMID: 35991443 PMCID: PMC9389236 DOI: 10.3389/fpls.2022.937095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
While plants are an abundant source of valuable natural products, it is often challenging to produce those products for commercial application. Often organic synthesis is too expensive for a viable commercial product and the biosynthetic pathways are often so complex that transferring them to a microorganism is not trivial or feasible. For plants not suited to agricultural production of natural products, hairy root cultures offer an attractive option for a production platform which offers genetic and biochemical stability, fast growth, and a hormone free culture media. Advances in metabolic engineering and synthetic biology tools to engineer hairy roots along with bioreactor technology is to a point where commercial application of the technology will soon be realized. We discuss different applications of hairy roots. We also use a case study of the advancements in understanding of the terpenoid indole alkaloid pathway in Catharanthus roseus hairy roots to illustrate the advancements and challenges in pathway discovery and in pathway engineering.
Collapse
|
10
|
Mall M, Shanker K, Samad A, Kalra A, Sundaresan V, Shukla AK. Stress responsiveness of vindoline accumulation in Catharanthus roseus leaves is mediated through co-expression of allene oxide cyclase with pathway genes. PROTOPLASMA 2022; 259:755-773. [PMID: 34459997 DOI: 10.1007/s00709-021-01701-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Vindoline is an important alkaloid produced in Catharanthus roseus leaves. It is the more important monomer of the scarce and costly anticancer bisindole alkaloids, vincristine, and vinblastine, as unlike catharanthine (the other monomer), its biosynthesis is restricted to the leaves. Here, biotic (bacterial endophyte, phytoplasma, virus) and abiotic (temperature, salinity, SA, MeJa) factors were studied for their effect on vindoline accumulation in C. roseus. Variations in vindoline pathway-related gene expression were reflected in changes in vindoline content. Since allene oxide cyclase (CrAOC) is involved in jasmonate biosynthesis and MeJa modulates many vindoline pathway genes, the correlation between CrAOC expression and vindoline content was studied. It was taken up for full-length cloning, tissue-specific expression profiling, in silico analyses, and upstream genomic region analysis for cis-regulatory elements. Co-expression analysis of CrAOC with vindoline metabolism-related genes under the influence of aforementioned abiotic/biotic factors indicated its stronger direct correlation with the tabersonine-to-vindoline genes (t16h, omt, t3o, t3r, nmt, d4h, dat) as compared to the pre-tabersonine genes (tdc, str, sgd). Its expression was inversely related to that of downstream-acting peroxidase (prx) (except under temperature stress). Direct/positive relationship of CrAOC expression with vindoline content established it as a key gene modulating vindoline accumulation in C. roseus.
Collapse
Affiliation(s)
- Maneesha Mall
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, UP, India
| | - Karuna Shanker
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, UP, India
| | - Abdul Samad
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, UP, India
| | - Alok Kalra
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, UP, India
| | - Velusamy Sundaresan
- CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Allalasandra, GKVK Post, Bengaluru, 560065, Karnataka, India
| | - Ashutosh K Shukla
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, UP, India.
| |
Collapse
|
11
|
Tang W, Liu X, He Y, Yang F. Enhancement of Vindoline and Catharanthine Accumulation, Antioxidant Enzymes Activities, and Gene Expression Levels in Catharanthus roseus Leaves by Chitooligosaccharides Elicitation. Mar Drugs 2022; 20:md20030188. [PMID: 35323487 PMCID: PMC8950274 DOI: 10.3390/md20030188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 01/17/2023] Open
Abstract
Catharanthus roseus (L.) G. Don is a plant belonging to the genus Catharanthus of the Apocynaceae family. It contains more than one hundred alkaloids, of which some exhibit significant pharmacological activities. Chitooligosaccharides are the only basic aminooligosaccharides with positively charged cations in nature, which can regulate plant growth and antioxidant properties. In this study, the leaves of Catharanthus roseus were sprayed with chitooligosaccharides of different molecular weights (1 kDa, 2 kDa, 3 kDa) and different concentrations (0.01 μg/mL, 0.1 μg/mL, 1 μg/mL and 10 μg/mL). The fresh weights of its root, stem and leaf were all improved after chitooligosaccharides treatments. More importantly, the chitooligosaccharides elicitor strongly stimulated the accumulation of vindoline and catharanthine in the leaves, especially with the treatment of 0.1 μg/mL 3 kDa chitooligosaccharides, the contents of them were increased by 60.68% and 141.54%, respectively. Furthermore, as the defensive responses, antioxidant enzymes activities (catalase, glutathione reductase, ascorbate peroxidase, peroxidase and superoxide dismutase) were enhanced under chitooligosaccharides treatments. To further elucidate the underlying mechanism, qRT-PCR was used to investigate the genes expression levels of secologanin synthase (SLS), strictosidine synthase (STR), strictosidine glucosidase (SGD), tabersonine 16-hydroxylase (T16H), desacetoxyvindoline-4-hydroxylase (D4H), deacetylvindoline-4-O-acetyltransferase (DAT), peroxidase 1 (PRX1) and octadecanoid-responsive Catharanthus AP2-domain protein 3 (ORCA3). All the genes were significantly up-regulated after chitooligosaccharides treatments, and the transcription abundance of ORCA3, SLS, STR, DAT and PRX1 reached a maximal level with 0.1 μg/mL 3 kDa chitooligosaccharides treatment. All these results suggest that spraying Catharanthus roseus leaves with chitooligosaccharides, especially 0.1 μg/mL of 3 kDa chitooligosaccharides, may effectively improve the pharmaceutical value of Catharanthus roseus.
Collapse
Affiliation(s)
| | | | | | - Fan Yang
- Correspondence: ; Tel./Fax: +86-411-86323646
| |
Collapse
|
12
|
Liu Y, Patra B, Singh SK, Paul P, Zhou Y, Li Y, Wang Y, Pattanaik S, Yuan L. Terpenoid indole alkaloid biosynthesis in Catharanthus roseus: effects and prospects of environmental factors in metabolic engineering. Biotechnol Lett 2021; 43:2085-2103. [PMID: 34564757 PMCID: PMC8510960 DOI: 10.1007/s10529-021-03179-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/28/2021] [Indexed: 11/10/2022]
Abstract
Plants synthesize a vast array of specialized metabolites that primarily contribute to their defense and survival under adverse conditions. Many of the specialized metabolites have therapeutic values as drugs. Biosynthesis of specialized metabolites is affected by environmental factors including light, temperature, drought, salinity, and nutrients, as well as pathogens and insects. These environmental factors trigger a myriad of changes in gene expression at the transcriptional and posttranscriptional levels. The dynamic changes in gene expression are mediated by several regulatory proteins that perceive and transduce the signals, leading to up- or down-regulation of the metabolic pathways. Exploring the environmental effects and related signal cascades is a strategy in metabolic engineering to produce valuable specialized metabolites. However, mechanistic studies on environmental factors affecting specialized metabolism are limited. The medicinal plant Catharanthus roseus (Madagascar periwinkle) is an important source of bioactive terpenoid indole alkaloids (TIAs), including the anticancer therapeutics vinblastine and vincristine. The emerging picture shows that various environmental factors significantly alter TIA accumulation by affecting the expression of regulatory and enzyme-encoding genes in the pathway. Compared to our understanding of the TIA pathway in response to the phytohormone jasmonate, the impacts of environmental factors on TIA biosynthesis are insufficiently studied and discussed. This review thus focuses on these aspects and discusses possible strategies for metabolic engineering of TIA biosynthesis. PURPOSE OF WORK: Catharanthus roseus is a rich source of bioactive terpenoid indole alkaloids (TIAs). The objective of this work is to present a comprehensive account of the influence of various biotic and abiotic factors on TIA biosynthesis and to discuss possible strategies to enhance TIA production through metabolic engineering.
Collapse
Affiliation(s)
- Yongliang Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky 40546 USA
| | - Barunava Patra
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky 40546 USA
| | - Sanjay Kumar Singh
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky 40546 USA
| | - Priyanka Paul
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky 40546 USA
| | - Yan Zhou
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky 40546 USA
| | - Yongqing Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky 40546 USA
| | - Ling Yuan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky 40546 USA
| |
Collapse
|