1
|
Zhao Y, Zhou Y, Xu J, Fan S, Zhu N, Meng Q, Dai S, Yuan X. Cross-Kingdom RNA Transport Based on Extracellular Vesicles Provides Innovative Tools for Plant Protection. PLANTS (BASEL, SWITZERLAND) 2024; 13:2712. [PMID: 39409582 PMCID: PMC11479161 DOI: 10.3390/plants13192712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
RNA interference (RNAi) shows great potential in plant defense against pathogens through RNA-mediated sequence-specific gene silencing. Among RNAi-based plant protection strategies, spray-induced gene silencing (SIGS) is considered a more promising approach because it utilizes the transfer of exogenous RNA between plants and microbes to silence target pathogen genes. The application of nanovesicles significantly enhances RNA stability and delivery efficiency, thereby improving the effectiveness of SIGS and further enhancing plant resistance to diseases and pathogens. This review explores the role of RNAi in plant protection, focusing on the cross-kingdom transport of small RNAs (sRNAs) via extracellular vesicles. It also explores the potential of nanotechnology to further optimize RNA-based plant protection, offering innovative tools and methods in modern plant biotechnology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaofeng Yuan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.Z.); (Y.Z.); (J.X.); (S.F.); (N.Z.); (Q.M.); (S.D.)
| |
Collapse
|
2
|
Luo C, Bashir NH, Li Z, Liu C, Shi Y, Chu H. Plant microRNAs regulate the defense response against pathogens. Front Microbiol 2024; 15:1434798. [PMID: 39282567 PMCID: PMC11392801 DOI: 10.3389/fmicb.2024.1434798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs, typically 20-25 nucleotides in length, that play a crucial role in regulating gene expression post-transcriptionally. They are involved in various biological processes such as plant growth, development, stress response, and hormone signaling pathways. Plants interact with microbes through multiple mechanisms, including mutually beneficial symbiotic relationships and complex defense strategies against pathogen invasions. These defense strategies encompass physical barriers, biochemical defenses, signal recognition and transduction, as well as systemic acquired resistance. MiRNAs play a central role in regulating the plant's innate immune response, activating or suppressing the transcription of specific genes that are directly involved in the plant's defense mechanisms against pathogens. Notably, miRNAs respond to pathogen attacks by modulating the balance of plant hormones such as salicylic acid, jasmonic acid, and ethylene, which are key in activating plant defense mechanisms. Moreover, miRNAs can cross boundaries into fungal and bacterial cells, performing cross-kingdom RNA silencing that enhances the plant's disease resistance. Despite the complex and diverse roles of miRNAs in plant defense, further research into their function in plant-pathogen interactions is essential. This review summarizes the critical role of miRNAs in plant defense against pathogens, which is crucial for elucidating how miRNAs control plant defense mechanisms.
Collapse
Affiliation(s)
- Changxin Luo
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Nawaz Haider Bashir
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Zhumei Li
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Chao Liu
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Yumei Shi
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Honglong Chu
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| |
Collapse
|
3
|
Jiang C, Li Z, Zheng L, Yu Y, Niu D. Small RNAs: Efficient and miraculous effectors that play key roles in plant-microbe interactions. MOLECULAR PLANT PATHOLOGY 2023; 24:999-1013. [PMID: 37026481 PMCID: PMC10346379 DOI: 10.1111/mpp.13329] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Plants' response to pathogens is highly complex and involves changes at different levels, such as activation or repression of a vast array of genes. Recently, many studies have demonstrated that many RNAs, especially small RNAs (sRNAs), are involved in genetic expression and reprogramming affecting plant-pathogen interactions. The sRNAs, including short interfering RNAs and microRNAs, are noncoding RNA with 18-30 nucleotides, and are recognized as key genetic and epigenetic regulators. In this review, we summarize the new findings about defence-related sRNAs in the response to pathogens and our current understanding of their effects on plant-pathogen interactions. The main content of this review article includes the roles of sRNAs in plant-pathogen interactions, cross-kingdom sRNA trafficking between host and pathogen, and the application of RNA-based fungicides for plant disease control.
Collapse
Affiliation(s)
- Chun‐Hao Jiang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| | - Zi‐Jie Li
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| | - Li‐Yu Zheng
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| | - Yi‐Yang Yu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| | - Dong‐Dong Niu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| |
Collapse
|
4
|
Shaw RK, Shen Y, Yu H, Sheng X, Wang J, Gu H. Multi-Omics Approaches to Improve Clubroot Resistance in Brassica with a Special Focus on Brassica oleracea L. Int J Mol Sci 2022; 23:9280. [PMID: 36012543 PMCID: PMC9409056 DOI: 10.3390/ijms23169280] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/04/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Brassica oleracea is an agronomically important species of the Brassicaceae family, including several nutrient-rich vegetables grown and consumed across the continents. But its sustainability is heavily constrained by a range of destructive pathogens, among which, clubroot disease, caused by a biotrophic protist Plasmodiophora brassicae, has caused significant yield and economic losses worldwide, thereby threatening global food security. To counter the pathogen attack, it demands a better understanding of the complex phenomenon of Brassica-P. brassicae pathosystem at the physiological, biochemical, molecular, and cellular levels. In recent years, multiple omics technologies with high-throughput techniques have emerged as successful in elucidating the responses to biotic and abiotic stresses. In Brassica spp., omics technologies such as genomics, transcriptomics, ncRNAomics, proteomics, and metabolomics are well documented, allowing us to gain insights into the dynamic changes that transpired during host-pathogen interactions at a deeper level. So, it is critical that we must review the recent advances in omics approaches and discuss how the current knowledge in multi-omics technologies has been able to breed high-quality clubroot-resistant B. oleracea. This review highlights the recent advances made in utilizing various omics approaches to understand the host resistance mechanisms adopted by Brassica crops in response to the P. brassicae attack. Finally, we have discussed the bottlenecks and the way forward to overcome the persisting knowledge gaps in delivering solutions to breed clubroot-resistant Brassica crops in a holistic, targeted, and precise way.
Collapse
Affiliation(s)
| | | | | | | | | | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
5
|
Li Q, Shah N, Zhou X, Wang H, Yu W, Luo J, Liu Y, Li G, Liu C, Zhang C, Chen P. Identification of Micro Ribonucleic Acids and Their Targets in Response to Plasmodiophora brassicae Infection in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 12:734419. [PMID: 34777417 PMCID: PMC8585624 DOI: 10.3389/fpls.2021.734419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/21/2021] [Indexed: 05/24/2023]
Abstract
Clubroot disease, which is caused by the soil-borne pathogen Plasmodiophora brassicae War (P. brassicae), is one of the oldest and most destructive diseases of Brassica and cruciferous crops in the world. Plant microRNAs [micro ribonucleic acids (miRNAs)] play important regulatory roles in several developmental processes. Although the role of plant miRNAs in plant-microbe interaction has been extensively studied, there are only few reports on the specific functions of miRNAs in response to P. brassicae. This study investigated the roles of miRNAs and their targets during P. brassicae infection in a pair of Brassica napus near-isogenic lines (NILs), namely clubroot-resistant line 409R and clubroot-susceptible line 409S. Small RNA sequencing (sRNA-seq) and degradome-seq were performed on root samples of 409R and 409S with or without P. brassicae inoculation. sRNA-seq identified a total of 48 conserved and 72 novel miRNAs, among which 18 had a significant differential expression in the root of 409R, while only one miRNA was differentially expressed in the root of 409S after P. brassicae inoculation. The degradome-seq analysis identified 938 miRNA target transcripts, which are transcription factors, enzymes, and proteins involved in multiple biological processes and most significantly enriched in the plant hormone signal transduction pathway. Between 409R and 409S, we found eight different degradation pathways in response to P. brassicae infection, such as those related to fatty acids. By combining published transcriptome data, we identified a total of six antagonistic miRNA-target pairs in 409R that are responsive to P. brassicae infection and involved in pathways associated with root development, hypersensitive cell death, and chloroplast metabolic synthesis. Our results reveal that P. brassicae infection leads to great changes in miRNA pool and target transcripts. More interestingly, these changes are different between 409R and 409S. Clarification of the crosstalk between miRNAs and their targets may shed new light on the possible mechanisms underlying the pathogen resistance against P. brassicae.
Collapse
Affiliation(s)
- Qian Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Nadil Shah
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xueqing Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huiying Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenlin Yu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiajie Luo
- Agricultural Technology Extension Station of Linxiang, Lincang, China
| | - Yajun Liu
- Agricultural Technology Extension Station of Lincang, Lincang, China
| | - Genze Li
- Industrial Crops Institute of Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Chao Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunyu Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Peng Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Meng H, Wang S, Yang W, Ding X, Li N, Chu Z, Li X. Identification of virulence associated milRNAs and their bidirectional targets in Rhizoctonia solani and maize during infection. BMC PLANT BIOLOGY 2021; 21:155. [PMID: 33771101 PMCID: PMC8004440 DOI: 10.1186/s12870-021-02930-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/10/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Anastomosis group 1 IA (AG1-IA) of Rhizoctonia solani is the major agent of banded leaf and sheath blight (BLSB) disease that causes severe yield loss in many worldwide crops. MicroRNAs (miRNAs) are ~ 22 nt non-coding RNAs that negatively regulate gene expression levels by mRNA degradation or translation inhibition. A better understanding of miRNA function during AG1-IA infection can expedite to elucidate the molecular mechanisms of fungi-host interactions. RESULTS In this study, we sequenced three small RNA libraries obtained from the mycelium of AG1-IA isolate, non-infected maize sheath and mixed maize sheath 3 days after inoculation. In total, 137 conserved and 34 novel microRNA-like small RNAs (milRNAs) were identified from the pathogen. Among these, one novel and 17 conserved milRNAs were identified as potential virulence-associated (VA) milRNAs. Subsequently, the prediction of target genes for these milRNAs was performed in both AG1-IA and maize, while functional annotation of these targets suggested a link to pathogenesis-related biological processes. Further, expression patterns of these virulence-associated milRNAs demonstrated that theyparticipate in the virulence of AG1-IA. Finally, regulation of one maize targeting gene, GRMZM2G412674 for Rhi-milRNA-9829-5p, was validated by dual-luciferase assay and identified to play a positive role in BLSB resistance in two maize mutants. These results suggest the global differentially expressed milRNAs of R. solani AG1-IA that participate in the regulation of target genes in both AG1-IA and maize to reinforce its pathogenicity. CONCLUSIONS Our data have provided a comprehensive overview of the VA-milRNAs of R. solani and identified that they are probably the virulence factors by directly interfered in host targeting genes. These results offer new insights on the molecular mechanisms of R.solani-maize interactions during the process of infection.
Collapse
Affiliation(s)
- Hongxu Meng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Shaoli Wang
- Yantai Academy of Agricultural Sciences, Yan'tai, 265500, Shandong, People's Republic of China
| | - Wei Yang
- Key Laboratory of Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Xinhua Ding
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Ning Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| | - Xiaoming Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| |
Collapse
|
7
|
Tahmasebi A, Khahani B, Tavakol E, Afsharifar A, Shahid MS. Microarray analysis of Arabidopsis thaliana exposed to single and mixed infections with Cucumber mosaic virus and turnip viruses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:11-27. [PMID: 33627959 PMCID: PMC7873207 DOI: 10.1007/s12298-021-00925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/16/2020] [Accepted: 01/03/2021] [Indexed: 05/05/2023]
Abstract
UNLABELLED Cucumber mosaic virus (CMV), Turnip mosaic virus (TuMV) and Turnip crinkle virus (TCV) are important plant infecting viruses. In the present study, whole transcriptome alteration of Arabidopsis thaliana in response to CMV, TuMV and TCV, individual as well as mixed infections of CMV and TuMV/CMV and TCV were investigated using microarray data. In response to CMV, TuMV and TCV infections, a total of 2517, 3985 and 277 specific differentially expressed genes (DEGs) were up-regulated, while 2615, 3620 and 243 specific DEGs were down-regulated, respectively. The number of 1222 and 30 common DEGs were up-regulated during CMV and TuMV as well as CMV and TCV infections, while 914 and 24 common DEGs were respectively down-regulated. Genes encoding immune response mediators, signal transducer activity, signaling and stress response functions were among the most significantly upregulated genes during CMV and TuMV or CMV and TCV mixed infections. The NAC, C3H, C2H2, WRKY and bZIP were the most commonly presented transcription factor (TF) families in CMV and TuMV infection, while AP2-EREBP and C3H were the TF families involved in CMV and TCV infections. Moreover, analysis of miRNAs during CMV and TuMV and CMV and TCV infections have demonstrated the role of miRNAs in the down regulation of host genes in response to viral infections. These results identified the commonly expressed virus-responsive genes and pathways during plant-virus interaction which might develop novel antiviral strategies for improving plant resistance to mixed viral infections. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00925-3.
Collapse
Affiliation(s)
- Aminallah Tahmasebi
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, 7916193145 Iran
- Plant Protection Research Group, University of Hormozgan, Bandar Abbas, Iran
| | - Bahman Khahani
- Department of Plant Genetics and Production, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Elahe Tavakol
- Department of Plant Genetics and Production, College of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|