1
|
Zhang N, Venn B, Bailey CE, Xia M, Mattoon EM, Mühlhaus T, Zhang R. Moderate high temperature is beneficial or detrimental depending on carbon availability in the green alga Chlamydomonas reinhardtii. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:979-1003. [PMID: 37877811 DOI: 10.1093/jxb/erad405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 10/21/2023] [Indexed: 10/26/2023]
Abstract
High temperatures impair plant growth and reduce agricultural yields, but the underlying mechanisms remain elusive. The unicellular green alga Chlamydomonas reinhardtii is an excellent model to study heat responses in photosynthetic cells due to its fast growth rate, many similarities in cellular processes to land plants, simple and sequenced genome, and ample genetic and genomics resources. Chlamydomonas grows in light by photosynthesis and with externally supplied acetate as an organic carbon source. Understanding how organic carbon sources affect heat responses is important for the algal industry but remains understudied. We cultivated wild-type Chlamydomonas under highly controlled conditions in photobioreactors at 25 °C (control), 35 °C (moderate high temperature), or 40 °C (acute high temperature) with or without constant acetate supply for 1 or 4 day. Treatment at 35 °C increased algal growth with constant acetate supply but reduced algal growth without sufficient acetate. The overlooked and dynamic effects of 35 °C could be explained by induced acetate uptake and metabolism. Heat treatment at 40 °C for more than 2 day was lethal to algal cultures with or without constant acetate supply. Our findings provide insights to understand algal heat responses and help improve thermotolerance in photosynthetic cells.
Collapse
Affiliation(s)
- Ningning Zhang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Benedikt Venn
- Computational Systems Biology, RPTU Kaiserslautern, 67663 Kaiserslautern, Germany
| | | | - Ming Xia
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Erin M Mattoon
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Plant and Microbial Biosciences Program, Division of Biology and Biomedical Sciences, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Timo Mühlhaus
- Computational Systems Biology, RPTU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Ru Zhang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| |
Collapse
|
2
|
Dhokane D, Shaikh A, Yadav A, Giri N, Bandyopadhyay A, Dasgupta S, Bhadra B. CRISPR-based bioengineering in microalgae for production of industrially important biomolecules. Front Bioeng Biotechnol 2023; 11:1267826. [PMID: 37965048 PMCID: PMC10641005 DOI: 10.3389/fbioe.2023.1267826] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Microalgae, as photosynthetic organisms, have the potential to produce biomolecules for use in food, feed, cosmetics, nutraceuticals, fuel, and other applications. Faster growth rates and higher protein and lipid content make microalgae a popular chassis for many industrial applications. However, challenges such as low productivity and high production costs have limited their commercialization. To overcome these challenges, bioengineering approaches such as genetic engineering, metabolic engineering, and synthetic biology have been employed to improve the productivity and quality of microalgae-based products. Genetic engineering employing genome editing tools like CRISPR/Cas allows precise and targeted genetic modifications. CRISPR/Cas systems are presently used to modify the genetic makeup of microalgae for enhanced production of specific biomolecules. However, these tools are yet to be explored explicitly in microalgae owing to some limitations. Despite the progress made in CRISPR-based bioengineering approaches, there is still a need for further research to optimize the production of microalgae-based products. This includes improving the efficiency of genome editing tools, understanding the regulatory mechanisms of microalgal metabolism, and optimizing growth conditions and cultivation strategies. Additionally, addressing the ethical, social, and environmental concerns associated with genetic modification of microalgae is crucial for the responsible development and commercialization of microalgae-based products. This review summarizes the advancements of CRISPR-based bioengineering for production of industrially important biomolecules and provides key considerations to use CRISPR/Cas systems in microalgae. The review will help researchers to understand the progress and to initiate genome editing experiments in microalgae.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bhaskar Bhadra
- Synthetic Biology Group, Reliance Industries Ltd., Navi Mumbai, India
| |
Collapse
|
3
|
Courseaux A, George O, Deschamps P, Bompard C, Duchêne T, Dauvillée D. BE3 is the major branching enzyme isoform required for amylopectin synthesis in C hlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2023; 14:1201386. [PMID: 37324674 PMCID: PMC10264815 DOI: 10.3389/fpls.2023.1201386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Abstract
Starch-branching enzymes (BEs) are essential for starch synthesis in both plants and algae where they influence the architecture and physical properties of starch granules. Within Embryophytes, BEs are classified as type 1 and type 2 depending on their substrate preference. In this article, we report the characterization of the three BE isoforms encoded in the genome of the starch producing green algae Chlamydomonas reinhardtii: two type 2 BEs (BE2 and BE3) and a single type 1 BE (BE1). Using single mutant strains, we analyzed the consequences of the lack of each isoform on both transitory and storage starches. The transferred glucan substrate and the chain length specificities of each isoform were also determined. We show that only BE2 and BE3 isoforms are involved in starch synthesis and that, although both isoforms possess similar enzymatic properties, BE3 is critical for both transitory and storage starch metabolism. Finally, we propose putative explanations for the strong phenotype differences evidenced between the C. reinhardtii be2 and be3 mutants, including functional redundancy, enzymatic regulation or alterations in the composition of multimeric enzyme complexes.
Collapse
Affiliation(s)
- Adeline Courseaux
- University Lille, CNRS, UMR 8576 - UGSF - Uniteí de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Océane George
- University Lille, CNRS, UMR 8576 - UGSF - Uniteí de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Philippe Deschamps
- University Paris-Saclay, CNRS UMR 8079, AgroParisTech, Laboratoire Ecologie Systématique Evolution, Gif-sur-Yvette, France
| | - Coralie Bompard
- University Lille, CNRS, UMR 8576 - UGSF - Uniteí de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Thierry Duchêne
- University Lille, CNRS, UMR 8576 - UGSF - Uniteí de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - David Dauvillée
- University Lille, CNRS, UMR 8576 - UGSF - Uniteí de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
4
|
Zadabbas Shahabadi H, Akbarzadeh A, Ofoghi H, Kadkhodaei S. Site-specific gene knock-in and bacterial phytase gene expression in Chlamydomonas reinhardtii via Cas9 RNP-mediated HDR. FRONTIERS IN PLANT SCIENCE 2023; 14:1150436. [PMID: 37275253 PMCID: PMC10235511 DOI: 10.3389/fpls.2023.1150436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/28/2023] [Indexed: 06/07/2023]
Abstract
In the present study, we applied the HDR (homology-directed DNA repair) CRISPR-Cas9-mediated knock-in system to accurately insert an optimized foreign bacterial phytase gene at a specific site of the nitrate reductase (NR) gene (exon 2) to achieve homologous recombination with the stability of the transgene and reduce insertion site effects or gene silencing. To this end, we successfully knocked-in the targeted NR gene of Chlamydomonas reinhardtii using the bacterial phytase gene cassette through direct delivery of the CRISPR/Cas9 system as the ribonucleoprotein (RNP) complex consisting of Cas9 protein and the specific single guide RNAs (sgRNAs). The NR insertion site editing was confirmed by PCR and sequencing of the transgene positive clones. Moreover, 24 clones with correct editing were obtained, where the phytase gene cassette was located in exon 2 of the NR gene, and the editing efficiency was determined to be 14.81%. Additionally, site-specific gene expression was analyzed and confirmed using RT-qPCR. Cultivation of the positive knocked-in colonies on the selective media during 10 generations indicated the stability of the correct editing without gene silencing or negative insertion site effects. Our results demonstrated that CRISPR-Cas9-mediated knock-in could be applied for nuclear expression of the heterologous gene of interest, and also confirmed its efficacy as an effective tool for site-specific gene knock-in, avoiding nuclear positional effects and gene silencing in C. reinhardtii. These findings could also provide a new perspective on the advantageous application of RNP-CRISPR/Cas9 gene-editing to accelerate the commercial production of complex recombinant proteins in the food-grade organism "C. reinhardtii".
Collapse
Affiliation(s)
- Hassan Zadabbas Shahabadi
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
- Agricultural Biotechnology Research Institute of Iran (ABRII), Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran
| | - Arash Akbarzadeh
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Hamideh Ofoghi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Saeid Kadkhodaei
- Agricultural Biotechnology Research Institute of Iran (ABRII), Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran
| |
Collapse
|
5
|
Kolackova M, Janova A, Dobesova M, Zvalova M, Chaloupsky P, Krystofova O, Adam V, Huska D. Role of secondary metabolites in distressed microalgae. ENVIRONMENTAL RESEARCH 2023; 224:115392. [PMID: 36746204 DOI: 10.1016/j.envres.2023.115392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/09/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Proficient photosynthetic microalgae/cyanobacteria produce a remarkable amount of various biomolecules. Secondary metabolites (SM) represent high value products for global biotrend application. Production improvement can be achieved by nutritional, environmental, and physiological stress as a first line tools for their stimulation. In recent decade, an increasing interest in algal stress biology and omics techniques have deepened knowledge in this area. However, deep understanding and connection of specific stress elucidator are missing. Hence, the present review summarizes recent evidence with an emphasis on the carotenoids, phenolic, and less-discussed compounds (glycerol, proline, mycosporins-like amino acids). Even when they are synthesized at very low concentrations, it highlights the need to expand knowledge in this area using genome-editing tools and omics approaches.
Collapse
Affiliation(s)
- Martina Kolackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Anna Janova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Marketa Dobesova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Monika Zvalova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Pavel Chaloupsky
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Olga Krystofova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Dalibor Huska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.
| |
Collapse
|
6
|
Chen H, Yang QL, Xu JX, Deng X, Zhang YJ, Liu T, Rots MG, Xu GL, Huang KY. Efficient methods for multiple types of precise gene-editing in Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 37310200 DOI: 10.1111/tpj.16265] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 06/14/2023]
Abstract
Precise gene-editing using CRISPR/Cas9 technology remains a long-standing challenge, especially for genes with low expression and no selectable phenotypes in Chlamydomonas reinhardtii, a classic model for photosynthesis and cilia research. Here, we developed a multi-type and precise genetic manipulation method in which a DNA break was generated by Cas9 nuclease and the repair was mediated using a homologous DNA template. The efficacy of this method was demonstrated for several types of gene editing, including inactivation of two low-expression genes (CrTET1 and CrKU80), the introduction of a FLAG-HA epitope tag into VIPP1, IFT46, CrTET1 and CrKU80 genes, and placing a YFP tag into VIPP1 and IFT46 for live-cell imaging. We also successfully performed a single amino acid substitution for the FLA3, FLA10 and FTSY genes, and documented the attainment of the anticipated phenotypes. Lastly, we demonstrated that precise fragment deletion from the 3'-UTR of MAA7 and VIPP1 resulted in a stable knock-down effect. Overall, our study has established efficient methods for multiple types of precise gene editing in Chlamydomonas, enabling substitution, insertion and deletion at the base resolution, thus improving the potential of this alga in both basic research and industrial applications.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qing-Lin Yang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jia-Xi Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuan Deng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yun-Jie Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Ting Liu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Marianne G Rots
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
| | - Guo-Liang Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Key Laboratory of Medical Epigenetics, Laboratory of Cancer Epigenetics, Institutes of Biomedical Sciences, Medical College of Fudan University, Chinese Academy of Medical Sciences (RU069), Shanghai, China
| | - Kai-Yao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
7
|
Patel VK, Das A, Kumari R, Kajla S. Recent progress and challenges in CRISPR-Cas9 engineered algae and cyanobacteria. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
8
|
Mattoon EM, McHargue W, Bailey CE, Zhang N, Chen C, Eckhardt J, Daum CG, Zane M, Pennacchio C, Schmutz J, O'Malley RC, Cheng J, Zhang R. High-throughput identification of novel heat tolerance genes via genome-wide pooled mutant screens in the model green alga Chlamydomonas reinhardtii. PLANT, CELL & ENVIRONMENT 2023; 46:865-888. [PMID: 36479703 PMCID: PMC9898210 DOI: 10.1111/pce.14507] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/04/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Different high temperatures adversely affect crop and algal yields with various responses in photosynthetic cells. The list of genes required for thermotolerance remains elusive. Additionally, it is unclear how carbon source availability affects heat responses in plants and algae. We utilized the insertional, indexed, genome-saturating mutant library of the unicellular, eukaryotic green alga Chlamydomonas reinhardtii to perform genome-wide, quantitative, pooled screens under moderate (35°C) or acute (40°C) high temperatures with or without organic carbon sources. We identified heat-sensitive mutants based on quantitative growth rates and identified putative heat tolerance genes (HTGs). By triangulating HTGs with heat-induced transcripts or proteins in wildtype cultures and MapMan functional annotations, we presented a high/medium-confidence list of 933 Chlamydomonas genes with putative roles in heat tolerance. Triangulated HTGs include those with known thermotolerance roles and novel genes with little or no functional annotation. About 50% of these high-confidence HTGs in Chlamydomonas have orthologs in green lineage organisms, including crop species. Arabidopsis thaliana mutants deficient in the ortholog of a high-confidence Chlamydomonas HTG were also heat sensitive. This work expands our knowledge of heat responses in photosynthetic cells and provides engineering targets to improve thermotolerance in algae and crops.
Collapse
Affiliation(s)
- Erin M. Mattoon
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
- Plant and Microbial Biosciences Program, Division of Biology and Biomedical Sciences, Washington University in Saint Louis, St. Louis, Missouri 63130, USA
| | - William McHargue
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | | | - Ningning Zhang
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | - James Eckhardt
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Chris G. Daum
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Matt Zane
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christa Pennacchio
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jeremy Schmutz
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ronan C. O'Malley
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri 65211, USA
| | - Ru Zhang
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| |
Collapse
|
9
|
Dhokane D, Kancharla N, Savarimuthu A, Bhadra B, Bandyopadhyay A, Dasgupta S. Genome Editing in Chlamydomonas reinhardtii Using Cas9-gRNA Ribonucleoprotein Complex: A Step-by-Step Guide. Methods Mol Biol 2023; 2653:207-217. [PMID: 36995629 DOI: 10.1007/978-1-0716-3131-7_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Genome editing technologies have provided opportunities to manipulate literally any genomic location, opening new avenues for reverse genetics-based improvements. Among them, CRISPR/Cas9 is the most versatile tool for genome editing applications in prokaryotes and eukaryotes. Here, we provide a guide to successfully carry out high-efficiency genome editing in Chlamydomonas reinhardtii using preassembled CRISPR/Cas9-gRNA ribonucleoprotein (RNP) complexes.
Collapse
Affiliation(s)
- Dhananjay Dhokane
- Synthetic Biology Group, Reliance Corporate Park, Reliance Industries Ltd, Ghansoli, Navi Mumbai, India
| | - Nagesh Kancharla
- Synthetic Biology Group, Reliance Corporate Park, Reliance Industries Ltd, Ghansoli, Navi Mumbai, India
| | - Arockiasamy Savarimuthu
- Synthetic Biology Group, Reliance Corporate Park, Reliance Industries Ltd, Ghansoli, Navi Mumbai, India
| | - Bhaskar Bhadra
- Synthetic Biology Group, Reliance Corporate Park, Reliance Industries Ltd, Ghansoli, Navi Mumbai, India.
| | - Anindya Bandyopadhyay
- Synthetic Biology Group, Reliance Corporate Park, Reliance Industries Ltd, Ghansoli, Navi Mumbai, India.
| | - Santanu Dasgupta
- Synthetic Biology Group, Reliance Corporate Park, Reliance Industries Ltd, Ghansoli, Navi Mumbai, India
| |
Collapse
|
10
|
Schroda M, Remacle C. Molecular Advancements Establishing Chlamydomonas as a Host for Biotechnological Exploitation. FRONTIERS IN PLANT SCIENCE 2022; 13:911483. [PMID: 35845675 PMCID: PMC9277225 DOI: 10.3389/fpls.2022.911483] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/07/2022] [Indexed: 05/13/2023]
Abstract
Chlamydomonas reinhardtii is emerging as a production platform for biotechnological purposes thanks to recent achievements, which we briefly summarize in this review. Firstly, robust nuclear transgene expression is now possible because several impressive improvements have been made in recent years. Strains allowing efficient and stable nuclear transgene expression are available and were recently made more amenable to rational biotechnological approaches by enabling genetic crosses and identifying their causative mutation. The MoClo synthetic biology strategy, based on Golden Gate cloning, was developed for Chlamydomonas and includes a growing toolkit of more than 100 genetic parts that can be robustly and rapidly assembled in a predefined order. This allows for rapid iterative cycles of transgene design, building, testing, and learning. Another major advancement came from various findings improving transgene design and expression such as the systematic addition of introns into codon-optimized coding sequences. Lastly, the CRISPR/Cas9 technology for genome editing has undergone several improvements since its first successful report in 2016, which opens the possibility of optimizing biosynthetic pathways by switching off competing ones. We provide a few examples demonstrating that all these recent developments firmly establish Chlamydomonas as a chassis for synthetic biology and allow the rewiring of its metabolism to new capabilities.
Collapse
Affiliation(s)
- Michael Schroda
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, Kaiserslautern, Germany
| | - Claire Remacle
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liege, Liege, Belgium
| |
Collapse
|
11
|
Zhang N, Mattoon EM, McHargue W, Venn B, Zimmer D, Pecani K, Jeong J, Anderson CM, Chen C, Berry JC, Xia M, Tzeng SC, Becker E, Pazouki L, Evans B, Cross F, Cheng J, Czymmek KJ, Schroda M, Mühlhaus T, Zhang R. Systems-wide analysis revealed shared and unique responses to moderate and acute high temperatures in the green alga Chlamydomonas reinhardtii. Commun Biol 2022; 5:460. [PMID: 35562408 PMCID: PMC9106746 DOI: 10.1038/s42003-022-03359-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
Different intensities of high temperatures affect the growth of photosynthetic cells in nature. To elucidate the underlying mechanisms, we cultivated the unicellular green alga Chlamydomonas reinhardtii under highly controlled photobioreactor conditions and revealed systems-wide shared and unique responses to 24-hour moderate (35°C) and acute (40°C) high temperatures and subsequent recovery at 25°C. We identified previously overlooked unique elements in response to moderate high temperature. Heat at 35°C transiently arrested the cell cycle followed by partial synchronization, up-regulated transcripts/proteins involved in gluconeogenesis/glyoxylate-cycle for carbon uptake and promoted growth. But 40°C disrupted cell division and growth. Both high temperatures induced photoprotection, while 40°C distorted thylakoid/pyrenoid ultrastructure, affected the carbon concentrating mechanism, and decreased photosynthetic efficiency. We demonstrated increased transcript/protein correlation during both heat treatments and hypothesize reduced post-transcriptional regulation during heat may help efficiently coordinate thermotolerance mechanisms. During recovery after both heat treatments, especially 40°C, transcripts/proteins related to DNA synthesis increased while those involved in photosynthetic light reactions decreased. We propose down-regulating photosynthetic light reactions during DNA replication benefits cell cycle resumption by reducing ROS production. Our results provide potential targets to increase thermotolerance in algae and crops. A systems-wide analysis of the single-cell green alga Chlamydomonas reinhardti reveals shared and unique responses to moderate and acute high temperatures using multiple-level investigation of transcriptomics, proteomics, cell physiology, photosynthetic parameters, and cellular ultrastructure.
Collapse
Affiliation(s)
- Ningning Zhang
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Erin M Mattoon
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA.,Plant and Microbial Biosciences Program, Division of Biology and Biomedical Sciences, Washington University in Saint Louis, St. Louis, Missouri, 63130, USA
| | - Will McHargue
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA.,Plant and Microbial Biosciences Program, Division of Biology and Biomedical Sciences, Washington University in Saint Louis, St. Louis, Missouri, 63130, USA
| | | | - David Zimmer
- TU Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Kresti Pecani
- The Rockefeller University, New York, New York, 10065, USA
| | - Jooyeon Jeong
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Cheyenne M Anderson
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA.,Plant and Microbial Biosciences Program, Division of Biology and Biomedical Sciences, Washington University in Saint Louis, St. Louis, Missouri, 63130, USA
| | - Chen Chen
- University of Missouri-Columbia, Columbia, Missouri, 65211, USA
| | - Jeffrey C Berry
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Ming Xia
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Shin-Cheng Tzeng
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Eric Becker
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Leila Pazouki
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Bradley Evans
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Fred Cross
- The Rockefeller University, New York, New York, 10065, USA
| | - Jianlin Cheng
- University of Missouri-Columbia, Columbia, Missouri, 65211, USA
| | - Kirk J Czymmek
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | | | | | - Ru Zhang
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA.
| |
Collapse
|
12
|
The Spermidine Synthase Gene SPD1: A Novel Auxotrophic Marker for Chlamydomonas reinhardtii Designed by Enhanced CRISPR/Cas9 Gene Editing. Cells 2022; 11:cells11050837. [PMID: 35269459 PMCID: PMC8909627 DOI: 10.3390/cells11050837] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/15/2022] [Accepted: 02/24/2022] [Indexed: 01/09/2023] Open
Abstract
Biotechnological application of the green microalga Chlamydomonas reinhardtii hinges on the availability of selectable markers for effective expression of multiple transgenes. However, biological safety concerns limit the establishment of new antibiotic resistance genes and until today, only a few auxotrophic markers exist for C. reinhardtii. The recent improvements in gene editing via CRISPR/Cas allow directed exploration of new endogenous selectable markers. Since editing frequencies remain comparably low, a Cas9-sgRNA ribonucleoprotein (RNP) delivery protocol was strategically optimized by applying nitrogen starvation to the pre-culture, which improved successful gene edits from 10% to 66% after pre-selection. Probing the essential polyamine biosynthesis pathway, the spermidine synthase gene (SPD1) is shown to be a potent selectable marker with versatile biotechnological applicability. Very low levels of spermidine (0.75 mg/L) were required to maintain normal mixotrophic and phototrophic growth in newly designed spermidine auxotrophic strains. Complementation of these strains with a synthetic SPD1 gene was achieved when the mature protein was expressed in the cytosol or targeted to the chloroplast. This work highlights the potential of new selectable markers for biotechnology as well as basic research and proposes an effective pipeline for the identification of new auxotrophies in C. reinhardtii.
Collapse
|
13
|
Zhang N, Pazouki L, Nguyen H, Jacobshagen S, Bigge BM, Xia M, Mattoon EM, Klebanovych A, Sorkin M, Nusinow DA, Avasthi P, Czymmek KJ, Zhang R. Comparative Phenotyping of Two Commonly Used Chlamydomonas reinhardtii Background Strains: CC-1690 (21gr) and CC-5325 (The CLiP Mutant Library Background). PLANTS (BASEL, SWITZERLAND) 2022; 11:585. [PMID: 35270055 PMCID: PMC8912731 DOI: 10.3390/plants11050585] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 05/02/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii is an excellent model organism to investigate many essential cellular processes in photosynthetic eukaryotes. Two commonly used background strains of Chlamydomonas are CC-1690 and CC-5325. CC-1690, also called 21gr, has been used for the Chlamydomonas genome project and several transcriptome analyses. CC-5325 is the background strain for the Chlamydomonas Library Project (CLiP). Photosynthetic performance in CC-5325 has not been evaluated in comparison with CC-1690. Additionally, CC-5325 is often considered to be cell-wall deficient, although detailed analysis is missing. The circadian rhythms in CC-5325 are also unclear. To fill these knowledge gaps and facilitate the use of the CLiP mutant library for various screens, we performed phenotypic comparisons between CC-1690 and CC-5325. Our results showed that CC-5325 grew faster heterotrophically in dark and equally well in mixotrophic liquid medium as compared to CC-1690. CC-5325 had lower photosynthetic efficiency and was more heat-sensitive than CC-1690. Furthermore, CC-5325 had an intact cell wall which had comparable integrity to that in CC-1690 but appeared to have reduced thickness. Additionally, CC-5325 could perform phototaxis, but could not maintain a sustained circadian rhythm of phototaxis as CC1690 did. Finally, in comparison to CC-1690, CC-5325 had longer cilia in the medium with acetate but slower swimming speed in the medium without nitrogen and acetate. Our results will be useful for researchers in the Chlamydomonas community to choose suitable background strains for mutant analysis and employ the CLiP mutant library for genome-wide mutant screens under appropriate conditions, especially in the areas of photosynthesis, thermotolerance, cell wall, and circadian rhythms.
Collapse
Affiliation(s)
- Ningning Zhang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| | - Leila Pazouki
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| | - Huong Nguyen
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| | - Sigrid Jacobshagen
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA;
| | - Brae M. Bigge
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (B.M.B.); (P.A.)
| | - Ming Xia
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| | - Erin M. Mattoon
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
- Plant and Microbial Biosciences Program, Division of Biology and Biomedical Sciences, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Anastasiya Klebanovych
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| | - Maria Sorkin
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
- Plant and Microbial Biosciences Program, Division of Biology and Biomedical Sciences, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Dmitri A. Nusinow
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| | - Prachee Avasthi
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (B.M.B.); (P.A.)
| | - Kirk J. Czymmek
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| | - Ru Zhang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (N.Z.); (L.P.); (H.N.); (M.X.); (E.M.M.); (A.K.); (M.S.); (D.A.N.); (K.J.C.)
| |
Collapse
|
14
|
Niziolek M, Bicka M, Osinka A, Samsel Z, Sekretarska J, Poprzeczko M, Bazan R, Fabczak H, Joachimiak E, Wloga D. PCD Genes-From Patients to Model Organisms and Back to Humans. Int J Mol Sci 2022; 23:ijms23031749. [PMID: 35163666 PMCID: PMC8836003 DOI: 10.3390/ijms23031749] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a hereditary genetic disorder caused by the lack of motile cilia or the assembxly of dysfunctional ones. This rare human disease affects 1 out of 10,000-20,000 individuals and is caused by mutations in at least 50 genes. The past twenty years brought significant progress in the identification of PCD-causative genes and in our understanding of the connections between causative mutations and ciliary defects observed in affected individuals. These scientific advances have been achieved, among others, due to the extensive motile cilia-related research conducted using several model organisms, ranging from protists to mammals. These are unicellular organisms such as the green alga Chlamydomonas, the parasitic protist Trypanosoma, and free-living ciliates, Tetrahymena and Paramecium, the invertebrate Schmidtea, and vertebrates such as zebrafish, Xenopus, and mouse. Establishing such evolutionarily distant experimental models with different levels of cell or body complexity was possible because both basic motile cilia ultrastructure and protein composition are highly conserved throughout evolution. Here, we characterize model organisms commonly used to study PCD-related genes, highlight their pros and cons, and summarize experimental data collected using these models.
Collapse
Affiliation(s)
- Michal Niziolek
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Marta Bicka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Faculty of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland
| | - Anna Osinka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Zuzanna Samsel
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Justyna Sekretarska
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Martyna Poprzeczko
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - Rafal Bazan
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Correspondence: (E.J.); (D.W.); Tel.: +48-22-58-92-338 (E.J. & D.W.)
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Correspondence: (E.J.); (D.W.); Tel.: +48-22-58-92-338 (E.J. & D.W.)
| |
Collapse
|
15
|
Muthukrishnan L. Bio‐engineering of microalgae: Challenges and future prospects toward industrial and environmental applications. J Basic Microbiol 2022; 62:310-329. [DOI: 10.1002/jobm.202100417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/28/2021] [Accepted: 01/08/2022] [Indexed: 01/29/2023]
Affiliation(s)
- Lakshmipathy Muthukrishnan
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals Saveetha Institute of Medical and Technical Sciences Chennai Tamil Nadu India
| |
Collapse
|
16
|
Akella S, Ma X, Bacova R, Harmer ZP, Kolackova M, Wen X, Wright DA, Spalding MH, Weeks DP, Cerutti H. Co-targeting strategy for precise, scarless gene editing with CRISPR/Cas9 and donor ssODNs in Chlamydomonas. PLANT PHYSIOLOGY 2021; 187:2637-2655. [PMID: 34618092 PMCID: PMC8644747 DOI: 10.1093/plphys/kiab418] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/30/2021] [Indexed: 05/20/2023]
Abstract
Programmable site-specific nucleases, such as the clustered regularly interspaced short palindromic repeat (CRISPR)/ CRISPR-associated protein 9 (Cas9) ribonucleoproteins (RNPs), have allowed creation of valuable knockout mutations and targeted gene modifications in Chlamydomonas (Chlamydomonas reinhardtii). However, in walled strains, present methods for editing genes lacking a selectable phenotype involve co-transfection of RNPs and exogenous double-stranded DNA (dsDNA) encoding a selectable marker gene. Repair of the dsDNA breaks induced by the RNPs is usually accompanied by genomic insertion of exogenous dsDNA fragments, hindering the recovery of precise, scarless mutations in target genes of interest. Here, we tested whether co-targeting two genes by electroporation of pairs of CRISPR/Cas9 RNPs and single-stranded oligodeoxynucleotides (ssODNs) would facilitate the recovery of precise edits in a gene of interest (lacking a selectable phenotype) by selection for precise editing of another gene (creating a selectable marker)-in a process completely lacking exogenous dsDNA. We used PPX1 (encoding protoporphyrinogen IX oxidase) as the generated selectable marker, conferring resistance to oxyfluorfen, and identified precise edits in the homolog of bacterial ftsY or the WD and TetratriCopeptide repeats protein 1 genes in ∼1% of the oxyfluorfen resistant colonies. Analysis of the target site sequences in edited mutants suggested that ssODNs were used as templates for DNA synthesis during homology directed repair, a process prone to replicative errors. The Chlamydomonas acetolactate synthase gene could also be efficiently edited to serve as an alternative selectable marker. This transgene-free strategy may allow creation of individual strains containing precise mutations in multiple target genes, to study complex cellular processes, pathways, or structures.
Collapse
Affiliation(s)
- Soujanya Akella
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska–Lincoln, Lincoln, Nebraska 68588, USA
| | - Xinrong Ma
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska–Lincoln, Lincoln, Nebraska 68588, USA
| | - Romana Bacova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Zachary P Harmer
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska–Lincoln, Lincoln, Nebraska 68588, USA
| | - Martina Kolackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Xiaoxue Wen
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska–Lincoln, Lincoln, Nebraska 68588, USA
| | - David A Wright
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Martin H Spalding
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Donald P Weeks
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Heriberto Cerutti
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska–Lincoln, Lincoln, Nebraska 68588, USA
| |
Collapse
|
17
|
Sizova I, Kelterborn S, Verbenko V, Kateriya S, Hegemann P. Chlamydomonas POLQ is necessary for CRISPR/Cas9-mediated gene targeting. G3 (BETHESDA, MD.) 2021; 11:jkab114. [PMID: 33836052 PMCID: PMC8495919 DOI: 10.1093/g3journal/jkab114] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023]
Abstract
The use of CRISPR/Cas endonucleases has revolutionized gene editing techniques for research on Chlamydomonas reinhardtii. To better utilize the CRISPR/Cas system, it is essential to develop a more comprehensive understanding of the DNA repair pathways involved in genome editing. In this study, we have analyzed contributions from canonical KU80/KU70-dependent nonhomologous end-joining (cNHEJ) and DNA polymerase theta (POLQ)-mediated end joining on SpCas9-mediated untemplated mutagenesis and homology-directed repair (HDR)/gene inactivation in Chlamydomonas. Using CRISPR/SpCas9 technology, we generated DNA repair-defective mutants ku80, ku70, polQ for gene targeting experiments. Our results show that untemplated repair of SpCas9-induced double strand breaks results in mutation spectra consistent with an involvement of both KU80/KU70 and POLQ. In addition, the inactivation of POLQ was found to negatively affect HDR of the inactivated paromomycin-resistant mut-aphVIII gene when donor single-stranded oligos were used. Nevertheless, mut-aphVIII was still repaired by homologous recombination in these mutants. POLQ inactivation suppressed random integration of transgenes co-transformed with the donor ssDNA. KU80 deficiency did not affect these events but instead was surprisingly found to stimulate HDR/gene inactivation. Our data suggest that in Chlamydomonas, POLQ is the main contributor to CRISPR/Cas-induced HDR and random integration of transgenes, whereas KU80/KU70 potentially plays a secondary role. We expect our results will lead to improvement of genome editing in C. reinhardtii and can be used for future development of algal biotechnology.
Collapse
Affiliation(s)
- Irina Sizova
- Experimental Biophysics, Institute of Biology, Humboldt University of Berlin, Berlin D-10099, Germany
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, Gatchina 188300, Russia
- Kurchatov Genome Center - PNPI, Gatchina 188300, Russia
| | - Simon Kelterborn
- Experimental Biophysics, Institute of Biology, Humboldt University of Berlin, Berlin D-10099, Germany
| | - Valeriy Verbenko
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, Gatchina 188300, Russia
- Kurchatov Genome Center - PNPI, Gatchina 188300, Russia
| | - Suneel Kateriya
- Laboratory of Optobiology School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Peter Hegemann
- Experimental Biophysics, Institute of Biology, Humboldt University of Berlin, Berlin D-10099, Germany
| |
Collapse
|